CN202813540U - 节能型热泵与热电联产耦合供热系统 - Google Patents

节能型热泵与热电联产耦合供热系统 Download PDF

Info

Publication number
CN202813540U
CN202813540U CN2012200963617U CN201220096361U CN202813540U CN 202813540 U CN202813540 U CN 202813540U CN 2012200963617 U CN2012200963617 U CN 2012200963617U CN 201220096361 U CN201220096361 U CN 201220096361U CN 202813540 U CN202813540 U CN 202813540U
Authority
CN
China
Prior art keywords
heat
pump
supply network
water
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2012200963617U
Other languages
English (en)
Inventor
于刚
张永生
靳涛
张光
卞双
鞠翠玲
邢长燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN2012200963617U priority Critical patent/CN202813540U/zh
Application granted granted Critical
Publication of CN202813540U publication Critical patent/CN202813540U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本实用新型公开了属于能源领域的一种节能型热泵与热电联产耦合供热系统。该系统由汽轮机、汽轮机凝汽设备、汽轮机循环冷却设备、蒸汽吸收式热泵、热网加热器、耦合器及换热站通过相应的管路连接组成。该系统利用热泵和热电联产热网加热器加热热网循环水,热泵出水和热网加热器出水经由耦合器进行水量和温度的分配和调整,实现全供热季供热温度和流量的合格。该系统取消尖峰加热器,减少占地和投资;能够保证热泵带基础热负荷,最大化提取余热量,增大供热能力,最大化热泵的经济性,达到节能减排的目的。

Description

节能型热泵与热电联产耦合供热系统
技术领域
本实用新型属于能源领域,特别涉及一种节能型热泵与热电联产耦合供热系统。 
背景技术
热泵机组能够消耗少量热量,提取低温热源的热量,从而获得比消耗的热量更多的供热热量,具有可观的经济性。热泵机组尤其是蒸汽驱动型热泵机组在热力发电厂中具有的优势很多,1.热泵机组的驱动蒸汽可利用热力发电厂中汽轮机的抽汽,获取便捷;2.电厂凝汽设备具有大量的低温余热,可以作为热泵机组的优质低温热源;3.热力发电厂带有大量的热负荷,能够满足热泵机组的基础负荷要求。采用热泵机组进行供热,可以提取低温热源的热量进行供热,减少汽轮机的抽汽量,扩大供热面积,极大提高供热机组的经济性。但是热泵机组供热具有不可克服的缺陷,即可行的供水温度不高,难以满足供热季严寒期的供热要求,必须增加尖峰热网加热器才能保证严寒期的供热温度要求。但是尖峰加热器容量大,占地及投资相应较大,年利用率极低;同时这种热泵机组与尖峰加热器的供热方式,热泵机组采暖季中大部分时间低负荷运行,余热不能得到充分回收,供热系统热经济性很低,节能减排不彻底。 
传统的热电联产系统简单,供热温度调节范围大,全供热季均能够满足供热热水温度的要求。但是受到汽轮机最小排汽量的影响,抽汽量最大时仍然有大量的汽轮机排汽进入凝汽设备,浪费大量的余热,同时供热热负荷也不能扩大。 
热泵机组与热电联产耦合供热,能够发挥各自的特点,用热泵提取余热,扩大供热面积。同时热网供水流量和热负荷可在热泵机组和热电联产加热器间进行 调配,即能实现供水流量和温度的调节要求,又能保证热泵带基础负荷,将供热的经济性最大化。可取消热泵尖峰加热器,减小占地面积,减少投资和运行维护工作量。可实现节能减排最大化。 
实用新型内容
本实用新型的目的是针对传统的热电联产系统简单,供热温度调节范围大,全供热季均能够满足供热热水温度的要求。但是受到汽轮机最小排汽量的影响,抽汽量最大时仍然有大量的汽轮机排汽进入凝汽设备,浪费大量的余热,同时供热热负荷也不能扩大的不足而提出一种节能型热泵与热电联产耦合供热系统,其特征在于,该耦合供热系统由汽轮机、汽轮机凝汽设备、汽轮机循环冷却设备、蒸汽吸收式热泵、耦合器、热网加热器及换热站由相应的管路连接组成;系统组成形式如下:锅炉1与汽轮机2通过管道相连接,汽轮机2的排汽连接汽轮机凝汽设备3;汽轮机凝汽设备3的循环水出水通过管道连接循环水冷却设备4和蒸汽收吸式热泵机组9,循环冷却设备4和热泵机组9的循环水回水经由循环水泵14连接到汽轮机凝汽设备3;汽轮机2的抽汽通过管道分别连接蒸汽收吸式热泵机组9和热网加热器5;第一二级换热站6的回水经过热网回水管道经由第一热网循环水泵12连接到热网加热器5,热网加热器5的出水经过管道连接到耦合系统8;第二二级换热站10的回水经过热网回水管道经由第二热网循环水泵13连接到热泵机组9,热泵机组9的供水出口经过管道连接到耦合系统8;耦合系统出水分为两路,分别连接到第一二级换热站6和第二二级换热站10;第一二级换热站6与第一热用户7通过管道相连,第二二级换热站10与第二热用户11通过管道相连;流量平衡阀门8-8连接在第一热网循环水泵12和第二热网循环水泵13的入口端,对耦合系统的回水流量进行流量平衡。 
所述耦合系统出水分为两路供水通道,第一路为加热器侧供水通道,由加热 器侧入口阀门8-4、耦合器8-1和加热器侧出口阀门8-5连接成供水通道,并配有加热器侧旁路阀门8-2;第二路为热泵侧供水通道,由热泵侧入口阀门8-6、耦合器8-1和热泵侧出口阀门8-7连接成供水通道,并配有热泵侧旁路阀门8-3。 
耦合器由第一路入口接管8-1-1、第二路入口接管8-1-3、流体分配区8-1-5、流体混合区8-1-6、第一路出口接管8-1-2和第二路出口接管8-1-4组成。主要完成流体的分配和混合作用,并减少流动阻力、增加混合均匀性。入口接管至少有2路,出口接管至少有1路。 
所述耦合系统为与热网加热器5连接的加热器侧入口阀门8-4和与热泵机组连接的热泵侧入口阀门8-6共同连接到耦合系统,并经由耦合系统连接各个换热站,热网回水管道再连接在第一热网循环水泵12和第二热网循环水泵13的入口端;热网回水通过回水平衡管平衡流量,实现耦合系统对热网回水的混合与分配功能。 
 本实用新型的有益效果是:具有传统热电联产供热和热泵供热两种供热方式,通过两种供热方式的耦合,能够发挥两者的优势,补偿各自不足,实现整个采暖季供热热网水流量和热负荷在热电联产加热器和热泵机组之间的调配,能够使热泵机组带基础负荷,热电联产带尖峰负荷,最大化提取发电厂余热,满足供水流量和温度在全供热季内的调节要求,可取消热泵机组的尖峰加热器,节省占地面积,节省投资和运行维护工作量;实现能量的梯级利用,提高汽轮机组及其供热系统的热经济性,达到节能减排的效果。 
附图说明
图1是一种热泵与热电联产耦合供热系统结构形式示意图。 
图2是简化耦合系统的热泵与热电联产耦合供热系统结构形式示意图。 
图3是耦合器结构示意图。 
具体实施方式
本实用新型提出一种节能的热泵与热电联产耦合供热系统。下面结合附图和具体实施例进一步详细描述本实用新型。 
实施例1 
图1是一种热泵与热电联产耦合供热系统结构形式示意图,该系统采用双热网供热的实现形式,包括汽轮机、汽轮机凝汽设备、汽轮机循环冷却设备、蒸汽吸收式热泵、热网加热器、二级换热站以及相应的管路和附属设备组成。 
锅炉1与汽轮机2通过管道相连接,汽轮机2的排汽连接汽轮机凝汽设备3;汽轮机凝汽设备3的循环水出水通过管道连接循环水冷却设备4和蒸汽收吸式热泵机组9,循环冷却设备4和热泵机组9的循环水回水经由循环水泵14连接到汽轮机凝汽设备3;汽轮机2的抽汽通过管道分别连接蒸汽收吸式热泵机组9和热网加热器5;第一二级换热站6的回水经过热网回水管道经由第一热网循环水泵12连接到热网加热器5,热网加热器5的出水经过管道连接到耦合系统8;第二二级换热站10的回水经过热网回水管道经由第二热网循环水泵13连接到热泵机组9,热泵机组9的供水出口经过管道连接到耦合系统8;耦合系统出水分为两路,分别连接到第一二级换热站6和第二二级换热站10;第一二级换热站6与第一热用户7通过管道相连,第二二级换热站10与第二热用户11通过管道相连;流量平衡阀门8-8连接在第一热网循环水泵12和第二热网循环水泵13的入口端,对耦合系统的回水流量进行流量平衡。 
所述耦合系统出水分为两路供水通道,第一路为加热器侧供水通道,由加热器侧入口阀门8-4、耦合器8-1和加热器侧出口阀门8-5连接成供水通道,并配有加热器侧旁路阀门8-2;第二路为热泵侧供水通道,由热泵侧入口阀门8-6、耦合器8-1和热泵侧出口阀门8-7连接成供水通道,并配有热泵侧旁路阀门8-3。 
图3是耦合器结构示意图,图中耦合器由第一路入口接管8-1-1第二路入口接管8-1-3流体分配区8-1-5流体混合区8-1-6第一路出口接管8-1-2第二路出口接管8-1-4组成。主要完成流体的分配和混合作用,并减少流动阻力、增加混合均匀性。入口接管可以有2路以上,出口接管可有1路及以上。 
实施例2 
图2所示是简化耦合系统的热泵与热电联产耦合供热系统结构形式示意图。该系统采用单热网供热的实现形式,包括汽轮机、汽轮机凝汽设备、汽轮机循环冷却设备、蒸汽吸收式热泵、热网加热器、换热站以及相应的管路和附属设备组成。图中,耦合系统的结构为与热网加热器5连接的加热器侧入口阀门8-4和与热泵机组连接的热泵侧入口阀门8-6共同连接到耦合系统,并经过耦合系统连接各个二级换热站,热网回水管道再连接在第一热网循环水泵12和第二热网循环水泵13的入口端;其余部分与图1相同。 
由热网循环水泵12送来的热网循环水,加热后的热网循环水进入耦合系统8;汽轮机2的抽汽进入热泵机组9作为驱动蒸汽,放出热量后凝结为水进行回收,热泵输出的热量加热由热网循环水泵12送来的热网循环水,被热泵加热后的热网循环水进入耦合系统8;耦合系统将首站加热器供水和热泵供水进行耦合,耦合后流量和温度满足供热要求后,经由热网管道送到第一二级级换热站6,第一二级换热站6将热量传送到第一热用户7采暖。当加热器侧入口阀门8-4和热泵侧入口阀门8-6同时打开时,热泵和热电联产供热可实现耦合供热;当加热器侧入口阀门8-4打开,并且热泵侧入口阀门8-6关闭时,热电联产单独供热;当加热器侧入口阀门8-4关闭,并且热泵侧入口阀门8-6打开时,热泵机组单独供热。单一热网回水可略去回水平衡管道及其阀门。 

Claims (3)

1.一种热泵与热电联产耦合供热系统,其特征在于,系统由汽轮机、汽轮机凝汽设备、汽轮机循环冷却设备、蒸汽吸收式热泵、耦合器、热网加热器及换热站通过相应的管路连接组成;具体组成结构如下:锅炉(1)与汽轮机(2)通过管道相连接,汽轮机(2)的排汽连接汽轮机凝汽设备(3);汽轮机凝汽设备(3)的循环水出水通过管道连接循环水冷却设备(4)和蒸汽收吸式热泵机组(9),循环冷却设备(4)和热泵机组(9)的循环水回水经由循环水泵(14)连接到汽轮机凝汽设备(3);汽轮机(2)的抽汽通过管道分别连接蒸汽收吸式热泵机组(9)和热网加热器(5);第一二级换热站(6)的回水经过热网回水管道经由第一热网循环水泵(12)连接到热网加热器(5),热网加热器(5)的出水经过管道连接到耦合系统(8);第二二级换热站(10)的回水经过热网回水管道经由第二热网循环水泵(13)连接到热泵机组(9),热泵机组(9)的供水出口经过管道连接到耦合系统(8);耦合系统出水分为两路,分别连接到第一二级换热站(6)(6)和第二二级换热站(10);第一二级换热站(6)与第一热用户(7)通过管道相连,第二二级换热站(10)与第二热用户(11)通过管道相连;流量平衡阀门(8-8)连接在第一热网循环水泵(12)和第二热网循环水泵(13)的入口端,对耦合系统的回水流量进行流量平衡,实现节能减排。
2.根据权利要求1所述热泵与热电联产耦合供热系统,其特征在于,所述耦合系统由两路供水通道组成,第一路为加热器侧供水通道,由加热器侧入口阀门(8-4)、耦合器(8-1)和加热器侧出口阀门(8-5)连接成供水通道,并配有加热器侧旁路阀门(8-2);第二路为热泵侧供水通道,由热泵侧入口阀门(8-6)、耦合器(8-1)和热泵侧出口阀门(8-7)连接成供水通道,并配有热泵侧旁路阀门(8-3)。 
耦合器由第一路入口接管(8-1-1)、第二路入口接管(8-1-3)、流体分配区(8-1-5)、流体混合区(8-1-6)、第一路出口接管(8-1-2)和第二路出口接管(8-1-4)组成;主要完成流体的分配和混合作用,并减少流动阻力、增加混合均匀性,入口接管至少有2路,出口接管至少1路。
3.根据权利要求1所述热泵与热电联产耦合供热系统,其特征在于,所述耦合系统由与热网加热器(5)连接的加热器侧入口阀门(8-4)和与热泵机组连接的热泵侧入口阀门(8-6)共同连接到耦合系统,并经由耦合系统连接到各个换热站,热网回水管道再连接到第一热网循环水泵(12)和第二热网循环水泵(13)的入口端;热网回水通过回水平衡管平衡流量,实现耦合系统对热网回水的混合与分配功能。 
CN2012200963617U 2012-03-14 2012-03-14 节能型热泵与热电联产耦合供热系统 Expired - Fee Related CN202813540U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012200963617U CN202813540U (zh) 2012-03-14 2012-03-14 节能型热泵与热电联产耦合供热系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012200963617U CN202813540U (zh) 2012-03-14 2012-03-14 节能型热泵与热电联产耦合供热系统

Publications (1)

Publication Number Publication Date
CN202813540U true CN202813540U (zh) 2013-03-20

Family

ID=47872403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012200963617U Expired - Fee Related CN202813540U (zh) 2012-03-14 2012-03-14 节能型热泵与热电联产耦合供热系统

Country Status (1)

Country Link
CN (1) CN202813540U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589035A (zh) * 2012-03-14 2012-07-18 华北电力大学 一种节能的热泵与热电联产耦合供热系统及耦合供热方法
CN106969398A (zh) * 2017-03-29 2017-07-21 赫普热力发展有限公司 热电厂区域多能互补能源微网系统
CN110567189A (zh) * 2019-09-10 2019-12-13 华北电力大学 一种蒸汽压缩型吸收式热泵
CN114198801A (zh) * 2021-12-13 2022-03-18 西安热工研究院有限公司 一种低压缸零出力供热系统及方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589035A (zh) * 2012-03-14 2012-07-18 华北电力大学 一种节能的热泵与热电联产耦合供热系统及耦合供热方法
CN102589035B (zh) * 2012-03-14 2014-06-18 华北电力大学 一种节能的热泵与热电联产耦合供热系统及耦合供热方法
CN106969398A (zh) * 2017-03-29 2017-07-21 赫普热力发展有限公司 热电厂区域多能互补能源微网系统
CN110567189A (zh) * 2019-09-10 2019-12-13 华北电力大学 一种蒸汽压缩型吸收式热泵
CN110567189B (zh) * 2019-09-10 2024-01-19 华北电力大学 一种蒸汽压缩型吸收式热泵
CN114198801A (zh) * 2021-12-13 2022-03-18 西安热工研究院有限公司 一种低压缸零出力供热系统及方法
CN114198801B (zh) * 2021-12-13 2022-12-27 西安热工研究院有限公司 一种低压缸零出力供热系统及方法

Similar Documents

Publication Publication Date Title
CN102589035B (zh) 一种节能的热泵与热电联产耦合供热系统及耦合供热方法
CN101240949B (zh) 梯级能量利用的可调容量的家庭能源系统
CN102331110B (zh) 基于吸收式换热的区域热电冷联合能源系统及其方法
CN201181133Y (zh) 一种燃气内燃机热电冷联供系统
CN113175698B (zh) 一种利用地热能加热二级网水的换热站系统及方法
CN105972681B (zh) 水源热泵-汽轮机与热网互补联合供热系统
CN109489101B (zh) 一种集中供热系统及其集中供热方法
CN106613531A (zh) 一种用于温室大棚的光伏光热一体化循环系统
CN202813540U (zh) 节能型热泵与热电联产耦合供热系统
CN108757129A (zh) 一种sofc燃料电池与内燃机燃气分布式耦合系统及其运行方法
CN102997309A (zh) 具有高温热源加热器旁路管道的分级加热供暖系统
CN201672587U (zh) 热泵耦合热电联产的供暖系统
CN201964501U (zh) 一种梯级利用潜热的热泵供暖系统
CN103994486B (zh) 燃气锅炉大温差高效供热系统
CN103968598A (zh) 大温差集中供热/制冷系统
CN101846416A (zh) 热电联产耦合热泵实现区域冷热联供系统及方法
CN206176510U (zh) 集中供热二次网调峰机组
CN200996678Y (zh) 还热式阶梯供热装置
CN209763538U (zh) 一种耦合地热能和太阳能的冷热电三联供系统
CN201836967U (zh) 利用直接空冷机组余热供热的热电联产节能装置
CN206377728U (zh) 一种利用冷却水余热直接空冷高背压‑抽汽联合供热系统
CN206234894U (zh) 一种分布式清洁能源供热系统
CN201662280U (zh) 应用系统热回收的地源热泵系统
CN210951955U (zh) 一种冷水热泵机组高效制冷系统
CN207797182U (zh) 基于吸收式大温差换热机组的热电联产集中供热系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130320

Termination date: 20150314

EXPY Termination of patent right or utility model