CN202563269U - Atomic clock long-term stability optimization apparatus - Google Patents

Atomic clock long-term stability optimization apparatus Download PDF

Info

Publication number
CN202563269U
CN202563269U CN201220125813XU CN201220125813U CN202563269U CN 202563269 U CN202563269 U CN 202563269U CN 201220125813X U CN201220125813X U CN 201220125813XU CN 201220125813 U CN201220125813 U CN 201220125813U CN 202563269 U CN202563269 U CN 202563269U
Authority
CN
China
Prior art keywords
temperature
unit
lamp
points
experimental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201220125813XU
Other languages
Chinese (zh)
Inventor
詹志明
雷海东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jianghan University
Original Assignee
Jianghan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jianghan University filed Critical Jianghan University
Priority to CN201220125813XU priority Critical patent/CN202563269U/en
Application granted granted Critical
Publication of CN202563269U publication Critical patent/CN202563269U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

The utility model discloses an atomic clock long-term stability optimization apparatus which comprises a setting module for setting a plurality of working parameter points; a lamp temperature regulation module for regulating temperature of a spectrum lamp in a physical system of an atomic clock according to experimental points of each working parameter point corresponding to the lamp temperature; a cavity temperature regulation module for regulating temperature of a microwave cavity in the physical system of the atomic clock according to the experimental points of each working parameter point corresponding to the cavity temperature; a C field current regulation module for regulating current magnitude of a C field coil in the physical system according to the experimental points of each working parameter point corresponding to C field current; and a measurement module for measuring a frequency difference between atomic clock output frequencies corresponding to each working parameter point and that of a standard clock source and selecting an optimal working parameter point according to the frequency difference. The apparatus can be used to raise long-term stability for atomic clocks.

Description

原子钟长稳优化装置Atomic clock long-term stability optimization device

技术领域 technical field

本实用新型涉及原子钟领域,特别涉及一种原子钟长稳优化装置。The utility model relates to the field of atomic clocks, in particular to an atomic clock long-term stability optimization device.

背景技术 Background technique

原子钟的长期稳定度是衡量原子钟性能的一个重要指标,其主要受原子钟的长期漂移特性的影响。由于目前没有物理模型对长期漂移的原因进行解释,因此,在测量和改进原子钟的长期稳定度时,必须设计大量的参数优化实验,以选出原子钟的长期稳定度最佳工作参数点。The long-term stability of atomic clock is an important index to measure the performance of atomic clock, which is mainly affected by the long-term drift characteristics of atomic clock. Since there is currently no physical model to explain the reasons for the long-term drift, when measuring and improving the long-term stability of atomic clocks, a large number of parameter optimization experiments must be designed to select the best operating parameter points for the long-term stability of atomic clocks.

其中,影响长期稳定度的系统参数众多,包括灯温、腔温、微波功率等,所以选取所有相关参数进行全面的参数优化实验,在实际操作中基本上是不可能的。传统的参数优化实验通常是采用优化装置对系统参数逐个优化。首先,优化第一个系统参数:固定其余系统参数的值,对该第一个系统参数进行调节,测量原子钟的频率信号输出的稳定度,选择稳定度最高时的值作为该第一个系统参数的最优值;然后优化第二个系统参数:将已优化的系统参数固定在其最优值,并固定其余未优化的系统参数的值,获取该第二个系统参数的最优值;重复前述步骤,直至获得所有系统参数的最优值,所有系统参数的最优值的组合即为前述原子钟的最佳工作参数点。具体地,以灯温、腔温为例,首先,先将腔温固定,调节灯温,获取灯温的最优值;然后,将灯温固定在该最优参数点,调节腔温,获取腔温的最优值;最后,将灯温和腔温的最优值的组合作为原子钟的最佳工作参数点。Among them, there are many system parameters that affect the long-term stability, including lamp temperature, cavity temperature, microwave power, etc., so it is basically impossible to select all relevant parameters for a comprehensive parameter optimization experiment in actual operation. Traditional parameter optimization experiments usually use optimization devices to optimize system parameters one by one. First, optimize the first system parameter: fix the values of other system parameters, adjust the first system parameter, measure the stability of the frequency signal output of the atomic clock, and select the value with the highest stability as the first system parameter then optimize the second system parameter: fix the optimized system parameter at its optimal value, and fix the values of the remaining unoptimized system parameters to obtain the optimal value of the second system parameter; repeat The aforementioned steps until the optimal values of all system parameters are obtained, the combination of the optimal values of all system parameters is the optimal working parameter point of the aforementioned atomic clock. Specifically, taking the lamp temperature and cavity temperature as examples, firstly, the cavity temperature is fixed, and the lamp temperature is adjusted to obtain the optimal value of the lamp temperature; then, the lamp temperature is fixed at the optimal parameter point, and the cavity temperature is adjusted to obtain The optimal value of the chamber temperature; finally, the combination of the lamp temperature and the optimal value of the chamber temperature is taken as the optimal operating parameter point of the atomic clock.

在实现本实用新型的过程中,发明人发现现有技术至少存在以下问题:In the process of realizing the utility model, the inventor finds that the prior art has at least the following problems:

改变前述系统参数优化的顺序,如预先固定灯温而不是腔温,会产生另外的最佳工作参数点。这是由于传统的参数优化实验是采取预先固定某些系统参数的方法,忽略了各系统参数之间存在交互作用的影响。相应地,用于传统参数优化实验的优化装置结构复杂,导致最终得到的最佳工作参数点不准确,进而限制了原子钟的长期稳定度的进一步提高。Changing the order of optimization of the aforementioned system parameters, such as pre-fixing the lamp temperature instead of the cavity temperature, will produce another optimal operating parameter point. This is because the traditional parameter optimization experiment adopts the method of pre-fixing some system parameters, ignoring the influence of interaction between system parameters. Correspondingly, the optimization device used in traditional parameter optimization experiments has a complicated structure, which leads to inaccurate optimal working parameter points, which limits the further improvement of the long-term stability of atomic clocks.

实用新型内容 Utility model content

为了提高原子钟的长期稳定度,本实用新型实施例提供了一种原子钟长稳优化装置。所述技术方案如下:In order to improve the long-term stability of the atomic clock, the embodiment of the utility model provides an atomic clock long-term stability optimization device. Described technical scheme is as follows:

一种原子钟长稳优化装置,其特征在于,所述装置包括:An atomic clock long-term stability optimization device is characterized in that the device comprises:

用于设置多个工作参数点的设置模块;每个所述工作参数点包括多个实验点且每个实验点对应不同的待优化参数,每个所述待优化参数对应多个实验点且对应的实验点数量相同,与同一个待优化参数相对应的实验点均匀分布在所述待优化参数的取值范围内且包括所述取值范围的两端点,每两个所述工作参数点中最多只有一个实验点相同,且各个所述实验点在所有所述工作参数点中出现的次数相等;所述待优化参数包括灯温、腔温和C场电流;A setting module for setting a plurality of working parameter points; each said working parameter point includes a plurality of experimental points and each experimental point corresponds to a different parameter to be optimized, and each said parameter to be optimized corresponds to a plurality of experimental points and corresponds to The number of experimental points is the same, and the experimental points corresponding to the same parameter to be optimized are uniformly distributed within the value range of the parameter to be optimized and include the two ends of the value range, and every two operating parameter points Only one experimental point is the same at most, and the number of occurrences of each of the experimental points in all the operating parameter points is equal; the parameters to be optimized include lamp temperature, chamber temperature and C field current;

用于根据各所述工作参数点中对应灯温的实验点,调节原子钟的物理系统中光谱灯的温度的灯温调节模块;A lamp temperature adjustment module for adjusting the temperature of the spectral lamp in the physical system of the atomic clock according to the experimental point corresponding to the lamp temperature in each of the working parameter points;

用于根据各所述工作参数点中对应腔温的实验点,调节所述物理系统中微波腔的温度的腔温调节模块;A cavity temperature adjustment module for adjusting the temperature of the microwave cavity in the physical system according to the experimental point corresponding to the cavity temperature in each of the working parameter points;

用于根据各所述工作参数点中对应C场电流的实验点,调节所述物理系统中C场线圈的通电电流大小的C场电流调节模块;以及A C-field current adjustment module for adjusting the magnitude of the energizing current of the C-field coil in the physical system according to the experimental point corresponding to the C-field current in each of the working parameter points; and

用于测量各所述工作参数点对应的原子钟的输出频率与标准时钟源的频率差,并根据所述频率差选择最佳工作参数点的测量模块;A measurement module for measuring the frequency difference between the output frequency of the atomic clock corresponding to each of the operating parameter points and the standard clock source, and selecting the best operating parameter point according to the frequency difference;

所述设置模块分别与所述灯温调节模块、所述腔温调节模块、所述C场电流调节模块和所述测量模块相连;所述灯温调节模块与所述光谱灯相连;所述腔温调节模块与所述微波腔相连;所述C场电流调节模块与所述C场线圈相连;所述测量模块与所述原子钟的隔离放大器相连。The setting module is respectively connected with the lamp temperature adjustment module, the cavity temperature adjustment module, the C field current adjustment module and the measurement module; the lamp temperature adjustment module is connected with the spectrum lamp; the cavity The temperature regulation module is connected with the microwave cavity; the C-field current regulation module is connected with the C-field coil; the measurement module is connected with the isolation amplifier of the atomic clock.

其中,所述灯温调节模块还用于,Wherein, the lamp temperature adjustment module is also used for,

对所述最佳工作参数点中对应灯温的实验点进行微调;Fine-tuning the experimental point corresponding to the lamp temperature in the optimal working parameter point;

相应地,所述测量模块还用于,Correspondingly, the measurement module is also used for,

测量微调后所述原子钟输出频率与标准时钟源的频率差,并根据所述频率差确定所述最佳工作参数点中对应灯温的最优实验点。Measure the frequency difference between the output frequency of the atomic clock and the standard clock source after fine-tuning, and determine the optimal experimental point corresponding to the lamp temperature in the optimal working parameter point according to the frequency difference.

其中,所述灯温调节模块具体包括:Wherein, the lamp temperature adjustment module specifically includes:

用于为所述原子钟的光谱灯加热的第一加热单元;a first heating unit for heating the spectral lamp of the atomic clock;

用于测量所述光谱灯的温度并将测得的温度转换为电压值的第一电桥单元;a first bridge unit for measuring the temperature of the spectrum lamp and converting the measured temperature into a voltage value;

用于将所述电桥单元输出的电压值差分放大的第一差分放大单元;a first differential amplification unit for differentially amplifying the voltage value output by the bridge unit;

用于采集所述差分放大单元输出的电压值并转换为数字信号的第一模数转换单元;以及A first analog-to-digital conversion unit for collecting the voltage value output by the differential amplification unit and converting it into a digital signal; and

用于根据所述模数转换单元转换的数字信号控制所述加热单元是否工作的第一处理单元;A first processing unit for controlling whether the heating unit works according to the digital signal converted by the analog-to-digital conversion unit;

所述第一加热单元与所述第一处理单元相连;所述第一电桥单元分别与所述第一差分放大单元和所述第一处理单元相连;所述第一差分放大单元与所述第一模数转换单元相连;所述第一模数转换单元与所述第一处理单元相连。The first heating unit is connected to the first processing unit; the first bridge unit is respectively connected to the first differential amplification unit and the first processing unit; the first differential amplification unit is connected to the first differential amplification unit The first analog-to-digital conversion unit is connected; the first analog-to-digital conversion unit is connected to the first processing unit.

其中,所述腔温调节模块具体包括:Wherein, the chamber temperature adjustment module specifically includes:

用于为所述原子钟的微波腔加热的第二加热单元;a second heating unit for heating the microwave cavity of the atomic clock;

用于测量所述微波腔的温度并将测得的温度转换为电压值的第二电桥单元;a second bridge unit for measuring the temperature of the microwave cavity and converting the measured temperature into a voltage value;

用于将所述电桥单元输出的电压值差分放大的第二差分放大单元;a second differential amplification unit for differentially amplifying the voltage value output by the bridge unit;

用于采集所述差分放大单元输出的电压值并转换为数字信号的第二模数转换单元;以及a second analog-to-digital conversion unit for collecting the voltage value output by the differential amplification unit and converting it into a digital signal; and

用于根据所述模数转换单元转换的数字信号控制所述加热单元是否工作的第二处理单元;A second processing unit for controlling whether the heating unit works according to the digital signal converted by the analog-to-digital conversion unit;

所述第二加热单元与所述第二处理单元相连;所述第二电桥单元分别与所述第二差分放大单元和所述第二处理单元相连;所述第二差分放大单元与所述第二模数转换单元相连;所述第二模数转换单元与所述第二处理单元相连。The second heating unit is connected to the second processing unit; the second bridge unit is connected to the second differential amplification unit and the second processing unit respectively; the second differential amplification unit is connected to the second differential amplification unit The second analog-to-digital conversion unit is connected; the second analog-to-digital conversion unit is connected to the second processing unit.

其中,所述第一电桥单元或第二电桥单元具体包括:Wherein, the first bridge unit or the second bridge unit specifically includes:

热敏电阻、第一恒温电阻、数字电位计、第二恒温电阻、以及直流电压基准;Thermistor, first constant temperature resistor, digital potentiometer, second constant temperature resistor, and DC voltage reference;

其中,所述热敏电阻第一端与所述第一恒温电阻第二端相连,所述第一恒温电阻的第一端与所述数字电位计的第二端相连,所述数字电位计的第一端与所述第二恒温电阻的第二端相连,所述第二恒温电阻的第一端与所述热敏电阻的第二端相连,所述直流电压基准位于所述热敏电阻和所述第二恒温电阻的连接点、所述第一恒温电阻和所述数字电位计的连接点之间。Wherein, the first end of the thermistor is connected to the second end of the first constant temperature resistor, the first end of the first constant temperature resistor is connected to the second end of the digital potentiometer, and the digital potentiometer The first end is connected to the second end of the second constant temperature resistor, the first end of the second constant temperature resistor is connected to the second end of the thermistor, and the DC voltage reference is located between the thermistor and the thermistor. Between the connection point of the second constant temperature resistor, the connection point of the first constant temperature resistor and the digital potentiometer.

进一步地,所述第一处理单元或第二处理单元为单片机。Further, the first processing unit or the second processing unit is a single-chip microcomputer.

本实用新型实施例提供的技术方案带来的有益效果是:通过设置模块设置工作参数点,并使得工作参数点中对应的待优化参数的实验点在待优化参数的取值范围内分布均匀;灯温调节模块、腔温调节模块和C场电流调节模块根据各工作参数点分别调节原子钟的灯温、腔温和C场电流;测量模块测量各工作参数点对应的原子钟的输出频率与标准时钟源的频率差,并根据频率差选择最佳工作参数点;简化了传统参数优化实验采用的优化装置,能够解决现有的参数优化实验中系统参数之间存在交互作用的问题,使参数优化实验通过优化装置得到的最佳工作参数点更加准确,提高了原子钟的长期稳定度。The beneficial effect brought by the technical solution provided by the embodiment of the utility model is: the working parameter points are set through the setting module, and the experimental points of the parameters to be optimized corresponding to the working parameter points are evenly distributed within the value range of the parameters to be optimized; The lamp temperature adjustment module, cavity temperature adjustment module and C field current adjustment module respectively adjust the lamp temperature, chamber temperature and C field current of the atomic clock according to each operating parameter point; the measurement module measures the output frequency of the atomic clock corresponding to each operating parameter point and the standard clock source frequency difference, and select the best working parameter point according to the frequency difference; the optimization device used in the traditional parameter optimization experiment is simplified, and the problem of interaction between system parameters in the existing parameter optimization experiment can be solved, so that the parameter optimization experiment can pass The optimal working parameter point obtained by optimizing the device is more accurate, which improves the long-term stability of the atomic clock.

附图说明Description of drawings

为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the accompanying drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description are only some implementations of the present invention. For example, those of ordinary skill in the art can also obtain other drawings based on these drawings on the premise of not paying creative efforts.

图1是本实用新型实施例中提供的一种原子钟长稳优化装置的示意图;Fig. 1 is a schematic diagram of an atomic clock long-term stability optimization device provided in an embodiment of the present invention;

图2是本实用新型实施例中提供的第一电桥单元的示意图;Fig. 2 is the schematic diagram of the first electric bridge unit provided in the utility model embodiment;

图3是本实用新型实施例中提供的C场电流调节模块的工作示意图;Fig. 3 is the working diagram of the C field current regulation module provided in the utility model embodiment;

图4是本实用新型实施例中提供的工作参数点分布的示意图;Fig. 4 is a schematic diagram of the point distribution of working parameters provided in the embodiment of the present invention;

图5是本实用新型实施例中提供的灯温与频率差的测试曲线图。Fig. 5 is a test curve diagram of lamp temperature and frequency difference provided in the embodiment of the present invention.

具体实施方式 Detailed ways

为使本实用新型的目的、技术方案和优点更加清楚,下面将结合附图对本实用新型实施方式作进一步地详细描述。In order to make the purpose, technical solutions and advantages of the present utility model clearer, the implementation of the present utility model will be further described in detail below in conjunction with the accompanying drawings.

为便于对本实用新型实施例所述装置的描述,下面首先对原子钟的结构进行介绍。原子钟一般包括物理系统1和电子线路。物理系统1主要包括光谱灯1a、微波腔1b、C场线圈1c和集成滤光泡1d等。电子线路主要包括隔离放大器2、微波倍、混频3、综合器4、伺服电路5和压控晶振6。In order to facilitate the description of the device described in the embodiment of the present invention, the structure of the atomic clock is first introduced below. An atomic clock generally includes a physical system 1 and electronic circuits. The physical system 1 mainly includes a spectral lamp 1a, a microwave cavity 1b, a C-field coil 1c, and an integrated filter bubble 1d. The electronic circuit mainly includes an isolation amplifier 2, a microwave multiplier, a frequency mixer 3, a synthesizer 4, a servo circuit 5 and a voltage-controlled crystal oscillator 6.

基于此,参见图1,本实用新型实施例提供了一种原子钟长稳优化装置,该装置具体包括设置模块101、灯温调节模块102、腔温调节模块103、C场电流调节模块104和测量模块105;其中,设置模块101分别与灯温调节模块102、腔温调节模块103、C场电流调节模块104和测量模块105相连;灯温调节模块102与光谱灯1a相连;腔温调节模块103与微波腔1b相连;C场电流调节模块104与C场线圈1c相连;测量模块105与原子钟的隔离放大器2相连。Based on this, referring to Fig. 1, an embodiment of the present invention provides an atomic clock long-term stability optimization device, which specifically includes a setting module 101, a lamp temperature adjustment module 102, a cavity temperature adjustment module 103, a C field current adjustment module 104 and a measurement Module 105; wherein, the setting module 101 is connected to the lamp temperature adjustment module 102, the cavity temperature adjustment module 103, the C field current adjustment module 104 and the measurement module 105; the lamp temperature adjustment module 102 is connected to the spectrum lamp 1a; the cavity temperature adjustment module 103 It is connected to the microwave cavity 1b; the C-field current adjustment module 104 is connected to the C-field coil 1c; the measurement module 105 is connected to the isolation amplifier 2 of the atomic clock.

设置模块101,用于设置多个工作参数点;每个工作参数点包括多个实验点且每个实验点对应不同的待优化参数,每个待优化参数对应多个实验点且对应的实验点数量相同,与同一个待优化参数相对应的实验点均匀分布在待优化参数的取值范围内且包括取值范围的两端点,每两个工作参数点中最多只有一个实验点相同,且各个实验点在所有工作参数点中出现的次数相等;该待优化参数包括灯温、腔温和C场电流。The setting module 101 is used to set a plurality of operating parameter points; each operating parameter point includes a plurality of experimental points and each experimental point corresponds to a different parameter to be optimized, and each parameter to be optimized corresponds to a plurality of experimental points and the corresponding experimental point The number is the same, the experimental points corresponding to the same parameter to be optimized are evenly distributed in the value range of the parameter to be optimized and include the two ends of the value range, and only one experimental point is the same in every two working parameter points, and each The number of experimental points appearing in all working parameter points is equal; the parameters to be optimized include lamp temperature, chamber temperature and C field current.

灯温调节模块102,用于根据各工作参数点中对应灯温的实验点,调节原子钟的物理系统1中光谱灯1a的温度。The lamp temperature adjustment module 102 is used to adjust the temperature of the spectrum lamp 1a in the physical system 1 of the atomic clock according to the experimental point corresponding to the lamp temperature in each working parameter point.

其中,参见图2,灯温调节模块102具体包括:Wherein, referring to FIG. 2, the lamp temperature adjustment module 102 specifically includes:

第一加热单元1021,与第一处理单元1025相连,用于为原子钟的光谱灯1a加热。The first heating unit 1021 is connected with the first processing unit 1025 and used for heating the spectrum lamp 1a of the atomic clock.

具体地,第一加热单元1021为设置在光谱灯1a外围的加热丝1e。Specifically, the first heating unit 1021 is a heating wire 1e arranged on the periphery of the spectrum lamp 1a.

第一电桥单元1022,分别与第一差分放大单元1023和第一处理单元1025相连,用于测量光谱灯1a的温度并将测得的温度转换为电压值。The first bridge unit 1022 is connected to the first differential amplification unit 1023 and the first processing unit 1025 respectively, and is used to measure the temperature of the spectrum lamp 1a and convert the measured temperature into a voltage value.

具体地,第一电桥单元1022根据第一处理单元1025的指令预置和测量光谱灯1a的实际温度,并根据预置的温度与实际温度的差值产生电压差。Specifically, the first bridge unit 1022 presets and measures the actual temperature of the spectral lamp 1a according to the instruction of the first processing unit 1025, and generates a voltage difference according to the difference between the preset temperature and the actual temperature.

第一差分放大单元1023,分别与第一电桥单元1022和第一模数转换单元1021相连,用于将第一电桥单元1022输出的电压值差分放大。The first differential amplification unit 1023 is connected to the first bridge unit 1022 and the first analog-to-digital conversion unit 1021 respectively, and is used for differentially amplifying the voltage value output by the first bridge unit 1022 .

第一模数转换单元1024,分别与第一差分放大单元1023和第一处理单元1025相连,用于采集第一差分放大单元1023输出的电压值并转换为数字信号。The first analog-to-digital conversion unit 1024 is connected to the first differential amplification unit 1023 and the first processing unit 1025 respectively, and is used to collect the voltage value output by the first differential amplification unit 1023 and convert it into a digital signal.

第一处理单元1025,用于根据第一模数转换单元1024转换的数字信号控制第一加热单元1021是否工作。The first processing unit 1025 is configured to control whether the first heating unit 1021 works according to the digital signal converted by the first analog-to-digital conversion unit 1024 .

具体地,第一处理单元1025根据接收的数字信号,通过预置的“数字信号-灯温”关系表,判断光谱灯1a实际温度与预置的温度是否一致;如果光谱灯1a实际温度低于预置的温度值,则控制第一加热单元1021为光谱灯加热;如果光谱灯1a实际温度等于或高于预置的温度值,则停止第一加热单元1021工作;优选地,第一处理单元1025具体为单片机。Specifically, the first processing unit 1025 judges whether the actual temperature of the spectrum lamp 1a is consistent with the preset temperature through the preset "digital signal-lamp temperature" relationship table according to the received digital signal; if the actual temperature of the spectrum lamp 1a is lower than preset temperature value, then control the first heating unit 1021 to heat the spectrum lamp; if the actual temperature of the spectrum lamp 1a is equal to or higher than the preset temperature value, then stop the first heating unit 1021 from working; preferably, the first processing unit 1025 is specifically a single-chip microcomputer.

腔温调节模块103,用于根据各工作参数点中对应腔温的实验点,调节物理系统1中微波腔1b的温度。The cavity temperature adjustment module 103 is configured to adjust the temperature of the microwave cavity 1b in the physical system 1 according to the experimental point corresponding to the cavity temperature in each working parameter point.

其中,腔温调节模块103具体包括:Wherein, the chamber temperature adjustment module 103 specifically includes:

第二加热单元,用于为原子钟的微波腔1b加热;The second heating unit is used to heat the microwave cavity 1b of the atomic clock;

第二电桥单元,用于测量微波腔1b的温度并将测得的温度转换为电压值;The second bridge unit is used to measure the temperature of the microwave cavity 1b and convert the measured temperature into a voltage value;

第二差分放大单元,用于将第二电桥单元输出的电压值差分放大;The second differential amplification unit is used to differentially amplify the voltage value output by the second bridge unit;

第二模数转换单元,用于采集第二差分放大单元输出的电压值并转换为数字信号;The second analog-to-digital conversion unit is used to collect the voltage value output by the second differential amplifier unit and convert it into a digital signal;

第二处理单元,用于根据第二模数转换单元转换的数字信号控制第二加热单元是否工作。The second processing unit is configured to control whether the second heating unit works according to the digital signal converted by the second analog-to-digital conversion unit.

值得说明的是,腔温调节模块103与灯温调节模块102的结构相同,在此不再详述。It is worth noting that the structure of the chamber temperature adjustment module 103 is the same as that of the lamp temperature adjustment module 102 , which will not be described in detail here.

进一步地,第一电桥单元1022具体包括:Further, the first bridge unit 1022 specifically includes:

热敏电阻1022a、第一恒温电阻1022b、数字电位计1022c、第二恒温电阻1022d、以及直流电压基准1022e;其中,热敏电阻1022a第一端与第一恒温电阻1022b第二端相连,第一恒温电阻1022b的第一端与数字电位计1022c的第二端相连,数字电位计1022c的第一端与第二恒温电阻1022d的第二端相连,第二恒温电阻1022d的第一端与热敏电阻1022a的第二端相连,直流电压基准1022e位于热敏电阻1022a和第二恒温电阻1022d的连接点a、第一恒温电阻1022b和数字电位计1022c的连接点b之间。Thermistor 1022a, first constant temperature resistor 1022b, digital potentiometer 1022c, second constant temperature resistor 1022d, and DC voltage reference 1022e; wherein, the first end of thermistor 1022a is connected to the second end of the first constant temperature resistor 1022b, and the first The first end of constant temperature resistance 1022b is connected with the second end of digital potentiometer 1022c, the first end of digital potentiometer 1022c is connected with the second end of second constant temperature resistance 1022d, the first end of second constant temperature resistance 1022d is connected with thermistor The second end of the resistor 1022a is connected, and the DC voltage reference 1022e is located between the connection point a of the thermistor 1022a and the second constant temperature resistor 1022d, and the connection point b of the first constant temperature resistor 1022b and the digital potentiometer 1022c.

热敏电阻1022a,用于实时测量光谱灯1a的温度;Thermistor 1022a is used to measure the temperature of spectrum lamp 1a in real time;

第一恒温电阻1022b、第二恒温电阻1022d,用于平衡电桥;The first constant temperature resistor 1022b and the second constant temperature resistor 1022d are used to balance the bridge;

数字电位计1022c,用于根据第一处理单元1025的命令字变化阻值,预置光谱灯1a的温度;The digital potentiometer 1022c is used to change the resistance value according to the command word of the first processing unit 1025, and preset the temperature of the spectrum lamp 1a;

直流电压基准1022e,用于给电桥提供电压参考。The DC voltage reference 1022e is used to provide a voltage reference for the bridge.

其中,第二电桥单元1032与第一电桥单元1022结构相同,在此不再详述。Wherein, the structure of the second bridge unit 1032 is the same as that of the first bridge unit 1022 , which will not be described in detail here.

C场电流调节模块104,用于根据各工作参数点中对应C场电流的实验点,调节物理系统1中C场线圈1c的通电电流大小。The C-field current adjustment module 104 is configured to adjust the energizing current of the C-field coil 1c in the physical system 1 according to the experimental point corresponding to the C-field current in each working parameter point.

其中,参见图3,C场线圈1c绕制在整个微波腔1b的腔体壁上,并与外围通电导线1f构成回路;C场电流调节模块104通过控制通电导线1f的电流大小,来控制整个C场线圈1c中的电流大小。Wherein, referring to FIG. 3 , the C-field coil 1c is wound on the cavity wall of the entire microwave cavity 1b, and forms a loop with the peripheral conducting wire 1f; the C-field current adjustment module 104 controls the entire The magnitude of the current in the C field coil 1c.

测量模块105,用于测量各工作参数点对应的原子钟的输出频率与标准时钟源的频率差,并根据频率差选择最佳工作参数点。The measuring module 105 is used to measure the frequency difference between the output frequency of the atomic clock corresponding to each working parameter point and the standard clock source, and select the best working parameter point according to the frequency difference.

进一步地,灯温调节模块102还用于,对最佳工作参数点中对应灯温的实验点进行微调,并保持最佳工作参数点中的其余实验点不变。Further, the lamp temperature adjustment module 102 is also used for fine-tuning the experimental point corresponding to the lamp temperature in the optimal working parameter point, and keeping the rest of the experimental points in the optimal working parameter point unchanged.

相应地,测量模块105还用于,测量微调后原子钟输出频率与标准时钟源的频率差,并根据频率差确定最佳工作参数点中对应灯温的最优实验点。微调的范围为当前最佳工作参数点中对应灯温的实验点前后各0.5℃,每次调节的调节量为0.1℃。Correspondingly, the measurement module 105 is also used to measure the frequency difference between the fine-tuned atomic clock output frequency and the standard clock source, and determine the optimal experimental point corresponding to the lamp temperature in the optimal working parameter point according to the frequency difference. The fine-tuning range is 0.5°C before and after the experimental point corresponding to the lamp temperature in the current best working parameter point, and the adjustment amount of each adjustment is 0.1°C.

其中,针对本实用新型实施例中所述装置的工作过程和原理描述如下:Wherein, the working process and principle of the device described in the embodiment of the utility model are described as follows:

第一步:通过设置模块101确定待优化参数及各待优化参数的取值范围。Step 1: Determine the parameters to be optimized and the value range of each parameter to be optimized through the setting module 101 .

如表1所示,在本实施例中,该待优化参数包括灯温、腔温和C场电流。因为原子钟的长期稳定度取决于原子钟的长期漂移特性,所以作为一种长期稳定度参数优化的方法,待优化参数须在影响原子钟的长期漂移特性的参数中选取。容易知道,影响长期漂移特性的参数主要包括灯温、腔温和C场电流。其中,灯温是光谱灯的温度,决定了光频移;腔温是腔泡系统中微波腔的温度,决定了吸收泡内微弱的化学物理反应;C场电流是绕制在微波腔上的C场线圈的通电电流,决定了微波功率频移。As shown in Table 1, in this embodiment, the parameters to be optimized include lamp temperature, chamber temperature and C field current. Because the long-term stability of the atomic clock depends on the long-term drift characteristics of the atomic clock, as a method for optimizing long-term stability parameters, the parameters to be optimized must be selected from the parameters that affect the long-term drift characteristics of the atomic clock. It is easy to know that the parameters that affect the long-term drift characteristics mainly include lamp temperature, chamber temperature and C field current. Among them, the lamp temperature is the temperature of the spectrum lamp, which determines the optical frequency shift; the cavity temperature is the temperature of the microwave cavity in the cavity-bubble system, which determines the weak chemical and physical reactions in the absorbing bubble; the C field current is wound on the microwave cavity The energizing current of the C field coil determines the frequency shift of the microwave power.

其中,灯温的取值范围为120℃~130℃,腔温的取值范围为60℃~70℃,C场电流的取值范围为1mA-2mA。为每一个待优化参数确定一个取值范围,目的是为了减少实验次数。因为在实际操作中,要进行全面的实验是比较困难的。本实施例分别为灯温、腔温和C场电流确定一个取值范围。其中,灯温、腔温和C场电流的取值范围是结合零光强频移、零泡温度系数以及微波功率频移确定出的一个合适的范围。此为现有技术,不再详述。Wherein, the value range of the lamp temperature is 120°C-130°C, the value range of the cavity temperature is 60°C-70°C, and the value range of the C field current is 1mA-2mA. A value range is determined for each parameter to be optimized in order to reduce the number of experiments. Because in actual operation, it is more difficult to conduct a comprehensive experiment. In this embodiment, a value range is respectively determined for the lamp temperature, the cavity temperature and the C field current. Wherein, the value ranges of lamp temperature, chamber temperature and C field current are a suitable range determined by combining zero light intensity frequency shift, zero bubble temperature coefficient and microwave power frequency shift. This is a prior art and will not be described in detail.

为方便说明,下文中分别用A、B和C表示灯温、腔温和C场电流。For the convenience of explanation, A, B and C are used to represent the lamp temperature, chamber temperature and C field current respectively in the following.

表1Table 1

  待优化参数 Parameters to be optimized   取值范围 Ranges   A(灯温) A(lamp temperature)   120℃~130℃ 120℃~130℃   B(腔温) B (cavity temperature)   60℃~70℃ 60℃~70℃   C(C场电流) C (C field current)   1mA-2mA 1mA-2mA

第二步:通过设置模块101在各待优化参数的取值范围中选取各待优化参数的实验点;其中,每个待优化参数对应多个实验点且每个待优化参数对应的实验点数量相同,与同一个待优化参数相对应的实验点均匀分布在待优化参数的取值范围内且包括该取值范围的两端点。Second step: select the experimental points of each parameter to be optimized in the value range of each parameter to be optimized by setting module 101; wherein, each parameter to be optimized corresponds to a plurality of experimental points and the number of experimental points corresponding to each parameter to be optimized Similarly, the experimental points corresponding to the same parameter to be optimized are uniformly distributed within the value range of the parameter to be optimized and include both ends of the value range.

这种选取实验点的方式可以保证各待优化参数的对应的实验点在其自身的取值范围内分布均匀,提高实验测量结果的精确度。This method of selecting experimental points can ensure that the corresponding experimental points of each parameter to be optimized are evenly distributed within its own value range, and improve the accuracy of experimental measurement results.

表2Table 2

  实验点 Experimental point   差值 difference   120℃、125℃、130℃ 120°C, 125°C, 130°C   5℃ 5°C   60℃、65℃、70℃ 60°C, 65°C, 70°C   5℃ 5°C   1mA、1.5mA、2mA 1mA, 1.5mA, 2mA   0.5mA 0.5mA

在本实施例中,如表2所示,灯温、腔温和C场电流对应的实验点各为3个;按照实验点的大小,A包括A1、A2、A3;B包括B1、B2、B3;C包括C1、C2、C3。灯温、腔温和C场电流对应的实验点均包括了自身取值范围的端点且均匀分别在自身取值范围内。如表2所示,灯温、腔温的相邻实验点之间的差值为5℃,C场电流的实验点相邻之间的差值为0.5mA。In this embodiment, as shown in Table 2, there are three experimental points corresponding to the lamp temperature, chamber temperature and C field current; according to the size of the experimental points, A includes A1, A2, and A3; B includes B1, B2, and B3 ; C includes C1, C2, C3. The experimental points corresponding to the lamp temperature, chamber temperature and C field current all include the endpoints of their own value ranges and are evenly within their own value ranges. As shown in Table 2, the difference between adjacent experimental points of lamp temperature and cavity temperature is 5°C, and the difference between adjacent experimental points of C field current is 0.5mA.

第三步:通过设置模块101根据实验点设置原子钟的工作参数点;其中,每个工作参数点包括多个实验点且每个实验点对应不同的待优化参数,每两个工作参数点中最多只有一个实验点相同,且各个实验点在所有工作参数点中出现的次数相等。Step 3: set the operating parameter points of the atomic clock according to the experimental points through the setting module 101; wherein, each operating parameter point includes a plurality of experimental points and each experimental point corresponds to different parameters to be optimized, and the maximum of each two operating parameter points Only one experimental point is the same, and the number of times each experimental point appears in all working parameter points is equal.

这种设置方式能保证所有的工作参数点在所有待优化参数的取值范围内分布均匀,进一步提高实验测量结果的精确度。This setting method can ensure that all working parameter points are evenly distributed within the value range of all parameters to be optimized, further improving the accuracy of experimental measurement results.

本实施例按前述设置的方式,根据实验点设置了9个工作参数点,具体如表3所示,In this embodiment, according to the foregoing setting method, 9 working parameter points are set according to the experimental points, specifically as shown in Table 3,

表3table 3

  工作参数点号 Working parameter point number   A(灯温) A(lamp temperature)   B(腔温) B (cavity temperature)   C(C场电流) C (C field current)   ① A1(120℃)A1(120℃) B1(60℃)B1(60℃) C1(1mA)C1(1mA)   ② A1(120℃)A1(120℃) B2(65℃)B2(65℃) C2(1.5mA)C2(1.5mA)   ③ A1(120℃)A1(120℃) B3(70℃)B3(70℃) C3(2mA)C3(2mA)   ④ A2(125℃)A2(125℃) B1(60℃)B1(60℃) C2(1.5mA)C2(1.5mA)   ⑤ A2(125℃)A2(125℃) B2(65℃)B2(65℃) C3(2mA)C3(2mA)   ⑥ A2(125℃)A2(125℃) B3(70℃)B3(70℃) C1(1mA)C1(1mA)   ⑦ A3(130℃)A3(130℃) B1(60℃)B1(60℃) C3(2mA)C3(2mA)   ⑧ A3(130℃)A3(130℃) B2(65℃)B2(65℃) C1(1mA)C1(1mA)   ⑨ A3(130℃)A3(130℃) B3(70℃)B3(70℃) C2(1.5mA)C2(1.5mA)

从图4可以看出,表2中9个工作参数点均匀地分布在灯温、腔温和C场电流的取值范围内。It can be seen from Figure 4 that the nine operating parameter points in Table 2 are evenly distributed within the value range of lamp temperature, chamber temperature and C field current.

第四步:通过灯温调节模块102、腔温调节模块103、C场电流调节模块104分别根据各工作参数点调节原子钟的参数。Step 4: through the lamp temperature adjustment module 102, cavity temperature adjustment module 103, and C-field current adjustment module 104, adjust the parameters of the atomic clock according to each working parameter point.

例如,选择了前述表3中工作参数点①,那么,根据工作参数点①,分别将原子钟的灯温调节为120℃、腔温调节为60℃、以及C场电流调节为1mA。For example, if the working parameter point ① in the aforementioned Table 3 is selected, then, according to the working parameter point ①, the lamp temperature of the atomic clock is adjusted to 120°C, the chamber temperature is adjusted to 60°C, and the C field current is adjusted to 1mA.

第五步:通过测量模块105测量原子钟输出频率与标准时钟源的频率差,获取最佳工作参数点。Step 5: Measure the frequency difference between the output frequency of the atomic clock and the standard clock source through the measurement module 105 to obtain the optimal operating parameter point.

其中,根据选择的工作参数点完成调节灯温、腔温和C场电流后,测量并记录一次原子钟输出频率与标准时钟源的频率差。当完成所有工作参数点的测量后,比较记录的所有频率差,获取频率差最小的工作参数点,作为与原子钟长期稳定度对应的最佳工作参数点。Among them, after adjusting the lamp temperature, chamber temperature and C field current according to the selected working parameter points, measure and record the frequency difference between the output frequency of the atomic clock and the standard clock source once. After the measurement of all working parameter points is completed, compare all recorded frequency differences, and obtain the working parameter point with the smallest frequency difference as the best working parameter point corresponding to the long-term stability of the atomic clock.

在本实施例中,使用了频率差的形式反映原子钟整机的长期稳定度。实验的结果选择了频率差最小的工作参数点⑥,即灯温选择在125℃,腔温选择在70℃,C场电流大小选择在1mA。In this embodiment, the form of frequency difference is used to reflect the long-term stability of the atomic clock. As a result of the experiment, the operating parameter point ⑥ with the smallest frequency difference was selected, that is, the lamp temperature was selected at 125°C, the cavity temperature was selected at 70°C, and the C field current was selected at 1mA.

值得说明的是,每调节完一个待测工作参数点后,测量该待测工作参数点对应的频率差;然后继续调节其他的待测工作参数点,以及测量对应的频率差。It is worth noting that after adjusting a working parameter point to be tested, measure the frequency difference corresponding to the working parameter point to be tested; then continue to adjust other working parameter points to be tested, and measure the corresponding frequency difference.

第六步:通过灯温调节模块102和测量模块105对获取的最佳工作参数点进行优化。Step 6: Optimizing the obtained optimum working parameter points through the lamp temperature adjustment module 102 and the measurement module 105 .

其中,由于待优化参数的取值范围是由零光强频移、零泡温度系数以及微波功率频移决定的。并且,为了节约系统资源,只在取值范围内选取实验点。因此,实验点的具体选取不可能很全面。例如,在本实施例中,灯温、腔温的相邻实验点之间的差值为5℃。然而,实际的原子钟整机无论是光源模块,还是共振吸收泡环节对工作温度波动控制的范围远比5℃小些。基于此,需要对最佳工作参数点进行进一步的优化。Among them, the value range of the parameters to be optimized is determined by the frequency shift of zero light intensity, the temperature coefficient of zero bubble and the frequency shift of microwave power. Moreover, in order to save system resources, the experimental points are only selected within the range of values. Therefore, the specific selection of experimental points cannot be very comprehensive. For example, in this embodiment, the difference between adjacent experimental points of lamp temperature and cavity temperature is 5°C. However, the actual atomic clock, whether it is the light source module or the resonant absorbing bubble, has a much smaller control range than 5°C for operating temperature fluctuations. Based on this, it is necessary to further optimize the optimal working parameter point.

具体地,因为光谱线型的变化最终会影响原子钟整机频率的输出,改变光谱灯的温度,将使整个光谱线型发生变化,不同的光谱线型下,光强变化对系统的贡献是不一样的。故在本实施例中,选择了最佳工作参数点中对应灯温的实验点125℃进行微调,微调的范围为当前最佳工作参数点中对应灯温的实验点前后各0.5℃,每次调节的调节量为0.1℃。Specifically, because changes in the spectral line type will eventually affect the output of the atomic clock's overall frequency, changing the temperature of the spectral lamp will change the entire spectral line type. Under different spectral line types, the contribution of light intensity changes to the system is different. the same. Therefore, in this embodiment, the experimental point 125°C corresponding to the lamp temperature in the best working parameter point is selected for fine-tuning. The adjustment amount of the adjustment is 0.1°C.

进一步地,通过调节原子钟的光谱灯灯温在124.5℃~125.5℃范围之间变化,同时测量系统的输出频率与标准时钟源的频率差,寻找灯温对频率的拐点。参见图5,横坐标是光谱灯灯温,用A’表示;纵坐标为通过测量记录的原子钟输出频率与标准时钟源的频率差数值,用Y’表示。由图可知,随着光谱灯温度的改变,整机输出的频率会在5×10-11/℃至1×10-12/℃内变化。其中,灯温在125.2℃时,差频值最小。因此,确定灯温在125.2℃为最佳工作参数点中最优实验点。Further, by adjusting the spectral lamp temperature of the atomic clock to vary between 124.5°C and 125.5°C, and measuring the frequency difference between the output frequency of the system and the standard clock source, the inflection point of the lamp temperature versus frequency is found. Referring to Fig. 5, the abscissa is the lamp temperature of the spectral lamp, represented by A'; the ordinate is the frequency difference value between the output frequency of the atomic clock recorded by measurement and the standard clock source, represented by Y'. It can be seen from the figure that as the temperature of the spectrum lamp changes, the output frequency of the whole machine will change within 5×10 -11 /°C to 1×10 -12 /°C. Among them, when the lamp temperature is 125.2 ℃, the difference frequency value is the smallest. Therefore, it is determined that the lamp temperature is at 125.2°C as the optimal experimental point among the optimal working parameter points.

本实用新型实施例提供的技术方案带来的有益效果是:通过设置模块设置工作参数点,并使得工作参数点中对应的待优化参数的实验点在待优化参数的取值范围内分布均匀;灯温调节模块、腔温调节模块和C场电流调节模块根据各工作参数点分别调节原子钟的灯温、腔温和C场电流;测量模块测量各工作参数点对应的原子钟的输出频率与标准时钟源的频率差,并根据频率差选择最佳工作参数点;简化了传统参数优化实验采用的优化装置,能够解决现有的参数优化实验中系统参数之间存在交互作用的问题,使参数优化实验通过优化装置得到的最佳工作参数点更加准确,提高了原子钟的长期稳定度。The beneficial effect brought by the technical solution provided by the embodiment of the utility model is: the working parameter points are set through the setting module, and the experimental points of the parameters to be optimized corresponding to the working parameter points are evenly distributed within the value range of the parameters to be optimized; The lamp temperature adjustment module, cavity temperature adjustment module and C field current adjustment module respectively adjust the lamp temperature, chamber temperature and C field current of the atomic clock according to each operating parameter point; the measurement module measures the output frequency of the atomic clock corresponding to each operating parameter point and the standard clock source frequency difference, and select the best working parameter point according to the frequency difference; the optimization device used in the traditional parameter optimization experiment is simplified, and the problem of interaction between system parameters in the existing parameter optimization experiment can be solved, so that the parameter optimization experiment can pass The optimal working parameter point obtained by optimizing the device is more accurate, which improves the long-term stability of the atomic clock.

本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps for implementing the above embodiments can be completed by hardware, and can also be completed by instructing related hardware through a program. The program can be stored in a computer-readable storage medium. The above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.

以上所述仅为本实用新型的较佳实施例,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。The above descriptions are only preferred embodiments of the present utility model, and are not intended to limit the present utility model. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present utility model shall be included in this utility model. within the scope of protection of utility models.

Claims (6)

1.一种原子钟长稳优化装置,其特征在于,所述装置包括:1. An atomic clock long-term stability optimization device is characterized in that, the device comprises: 用于设置多个工作参数点的设置模块;每个所述工作参数点包括多个实验点且每个实验点对应不同的待优化参数,每个所述待优化参数对应多个实验点且对应的实验点数量相同,与同一个待优化参数相对应的实验点均匀分布在所述待优化参数的取值范围内且包括所述取值范围的两端点,每两个所述工作参数点中最多只有一个实验点相同,且各个所述实验点在所有所述工作参数点中出现的次数相等;所述待优化参数包括灯温、腔温和C场电流;A setting module for setting a plurality of working parameter points; each said working parameter point includes a plurality of experimental points and each experimental point corresponds to a different parameter to be optimized, and each said parameter to be optimized corresponds to a plurality of experimental points and corresponds to The number of experimental points is the same, and the experimental points corresponding to the same parameter to be optimized are uniformly distributed within the value range of the parameter to be optimized and include the two ends of the value range, and every two operating parameter points Only one experimental point is the same at most, and the number of occurrences of each of the experimental points in all the operating parameter points is equal; the parameters to be optimized include lamp temperature, chamber temperature and C field current; 用于根据各所述工作参数点中对应灯温的实验点,调节原子钟的物理系统中光谱灯的温度的灯温调节模块;A lamp temperature adjustment module for adjusting the temperature of the spectral lamp in the physical system of the atomic clock according to the experimental point corresponding to the lamp temperature in each of the working parameter points; 用于根据各所述工作参数点中对应腔温的实验点,调节所述物理系统中微波腔的温度的腔温调节模块;A cavity temperature adjustment module for adjusting the temperature of the microwave cavity in the physical system according to the experimental point corresponding to the cavity temperature in each of the working parameter points; 用于根据各所述工作参数点中对应C场电流的实验点,调节所述物理系统中C场线圈的通电电流大小的C场电流调节模块;以及A C-field current adjustment module for adjusting the magnitude of the energizing current of the C-field coil in the physical system according to the experimental point corresponding to the C-field current in each of the working parameter points; and 用于测量各所述工作参数点对应的原子钟的输出频率与标准时钟源的频率差,并根据所述频率差选择最佳工作参数点的测量模块;A measurement module for measuring the frequency difference between the output frequency of the atomic clock corresponding to each of the operating parameter points and the standard clock source, and selecting the best operating parameter point according to the frequency difference; 所述设置模块分别与所述灯温调节模块、所述腔温调节模块、所述C场电流调节模块和所述测量模块相连;所述灯温调节模块与所述光谱灯相连;所述腔温调节模块与所述微波腔相连;所述C场电流调节模块与所述C场线圈相连;所述测量模块与所述原子钟的隔离放大器相连。The setting module is respectively connected with the lamp temperature adjustment module, the cavity temperature adjustment module, the C field current adjustment module and the measurement module; the lamp temperature adjustment module is connected with the spectrum lamp; the cavity The temperature regulation module is connected with the microwave cavity; the C-field current regulation module is connected with the C-field coil; the measurement module is connected with the isolation amplifier of the atomic clock. 2.根据权利要求1所述的装置,其特征在于,所述灯温调节模块还用于,2. The device according to claim 1, wherein the lamp temperature adjustment module is also used for: 对所述最佳工作参数点中对应灯温的实验点进行微调;Fine-tuning the experimental point corresponding to the lamp temperature in the optimal working parameter point; 相应地,所述测量模块还用于,Correspondingly, the measurement module is also used for, 测量微调后所述原子钟输出频率与标准时钟源的频率差,并根据所述频率差确定所述最佳工作参数点中对应灯温的最优实验点。Measure the frequency difference between the output frequency of the atomic clock and the standard clock source after fine-tuning, and determine the optimal experimental point corresponding to the lamp temperature in the optimal working parameter point according to the frequency difference. 3.根据权利要求1所述的装置,其特征在于,所述灯温调节模块具体包括:3. The device according to claim 1, wherein the lamp temperature adjustment module specifically comprises: 用于为所述原子钟的光谱灯加热的第一加热单元;a first heating unit for heating the spectral lamp of the atomic clock; 用于测量所述光谱灯的温度并将测得的温度转换为电压值的第一电桥单元;a first bridge unit for measuring the temperature of the spectrum lamp and converting the measured temperature into a voltage value; 用于将所述电桥单元输出的电压值差分放大的第一差分放大单元;a first differential amplification unit for differentially amplifying the voltage value output by the bridge unit; 用于采集所述差分放大单元输出的电压值并转换为数字信号的第一模数转换单元;以及A first analog-to-digital conversion unit for collecting the voltage value output by the differential amplification unit and converting it into a digital signal; and 用于根据所述模数转换单元转换的数字信号控制所述加热单元是否工作的第一处理单元;A first processing unit for controlling whether the heating unit works according to the digital signal converted by the analog-to-digital conversion unit; 所述第一加热单元与所述第一处理单元相连;所述第一电桥单元分别与所述第一差分放大单元和所述第一处理单元相连;所述第一差分放大单元与所述第一模数转换单元相连;所述第一模数转换单元与所述第一处理单元相连。The first heating unit is connected to the first processing unit; the first bridge unit is respectively connected to the first differential amplification unit and the first processing unit; the first differential amplification unit is connected to the first differential amplification unit The first analog-to-digital conversion unit is connected; the first analog-to-digital conversion unit is connected to the first processing unit. 4.根据权利要求1所述的装置,其特征在于,所述腔温调节模块具体包括:4. The device according to claim 1, wherein the chamber temperature adjustment module specifically comprises: 用于为所述原子钟的微波腔加热的第二加热单元;a second heating unit for heating the microwave cavity of the atomic clock; 用于测量所述微波腔的温度并将测得的温度转换为电压值的第二电桥单元;a second bridge unit for measuring the temperature of the microwave cavity and converting the measured temperature into a voltage value; 用于将所述电桥单元输出的电压值差分放大的第二差分放大单元;a second differential amplification unit for differentially amplifying the voltage value output by the bridge unit; 用于采集所述差分放大单元输出的电压值并转换为数字信号的第二模数转换单元;以及a second analog-to-digital conversion unit for collecting the voltage value output by the differential amplification unit and converting it into a digital signal; and 用于根据所述模数转换单元转换的数字信号控制所述加热单元是否工作的第二处理单元;A second processing unit for controlling whether the heating unit works according to the digital signal converted by the analog-to-digital conversion unit; 所述第二加热单元与所述第二处理单元相连;所述第二电桥单元分别与所述第二差分放大单元和所述第二处理单元相连;所述第二差分放大单元与所述第二模数转换单元相连;所述第二模数转换单元与所述第二处理单元相连。The second heating unit is connected to the second processing unit; the second bridge unit is connected to the second differential amplification unit and the second processing unit respectively; the second differential amplification unit is connected to the second differential amplification unit The second analog-to-digital conversion unit is connected; the second analog-to-digital conversion unit is connected to the second processing unit. 5.根据权利要求3或4所述的装置,其特征在于,所述第一电桥单元或第二电桥单元具体包括:5. The device according to claim 3 or 4, wherein the first bridge unit or the second bridge unit specifically comprises: 热敏电阻、第一恒温电阻、数字电位计、第二恒温电阻、以及直流电压基准;Thermistor, first constant temperature resistor, digital potentiometer, second constant temperature resistor, and DC voltage reference; 其中,所述热敏电阻第一端与所述第一恒温电阻第二端相连,所述第一恒温电阻的第一端与所述数字电位计的第二端相连,所述数字电位计的第一端与所述第二恒温电阻的第二端相连,所述第二恒温电阻的第一端与所述热敏电阻的第二端相连,所述直流电压基准位于所述热敏电阻和所述第二恒温电阻的连接点、所述第一恒温电阻和所述数字电位计的连接点之间。Wherein, the first end of the thermistor is connected to the second end of the first constant temperature resistor, the first end of the first constant temperature resistor is connected to the second end of the digital potentiometer, and the digital potentiometer The first end is connected to the second end of the second constant temperature resistor, the first end of the second constant temperature resistor is connected to the second end of the thermistor, and the DC voltage reference is located between the thermistor and the thermistor. Between the connection point of the second constant temperature resistor, the connection point of the first constant temperature resistor and the digital potentiometer. 6.根据权利要求3或4所述的装置,其特征在于,所述第一处理单元或第二处理单元为单片机。6. The device according to claim 3 or 4, wherein the first processing unit or the second processing unit is a single chip microcomputer.
CN201220125813XU 2012-03-29 2012-03-29 Atomic clock long-term stability optimization apparatus Expired - Fee Related CN202563269U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201220125813XU CN202563269U (en) 2012-03-29 2012-03-29 Atomic clock long-term stability optimization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201220125813XU CN202563269U (en) 2012-03-29 2012-03-29 Atomic clock long-term stability optimization apparatus

Publications (1)

Publication Number Publication Date
CN202563269U true CN202563269U (en) 2012-11-28

Family

ID=47212910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201220125813XU Expired - Fee Related CN202563269U (en) 2012-03-29 2012-03-29 Atomic clock long-term stability optimization apparatus

Country Status (1)

Country Link
CN (1) CN202563269U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611448A (en) * 2012-03-29 2012-07-25 江汉大学 Method and device for optimizing long-period stability parameters of atomic frequency standard
CN103048916A (en) * 2012-12-17 2013-04-17 江汉大学 Combined type atomic clock
CN103076746A (en) * 2012-12-17 2013-05-01 江汉大学 Wall shift measurement system and control method thereof
CN106774532A (en) * 2016-12-29 2017-05-31 江汉大学 Steady optical frequency output intent high and its control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611448A (en) * 2012-03-29 2012-07-25 江汉大学 Method and device for optimizing long-period stability parameters of atomic frequency standard
CN102611448B (en) * 2012-03-29 2014-06-25 江汉大学 Method and device for optimizing long-period stability parameters of atomic frequency standard
CN103048916A (en) * 2012-12-17 2013-04-17 江汉大学 Combined type atomic clock
CN103076746A (en) * 2012-12-17 2013-05-01 江汉大学 Wall shift measurement system and control method thereof
CN103048916B (en) * 2012-12-17 2015-10-07 江汉大学 Combined type atomic clock
CN103076746B (en) * 2012-12-17 2016-03-30 江汉大学 A kind of control method of wall shift measurement system
CN106774532A (en) * 2016-12-29 2017-05-31 江汉大学 Steady optical frequency output intent high and its control system
CN106774532B (en) * 2016-12-29 2019-02-01 江汉大学 High steady optical frequency output method and its control system

Similar Documents

Publication Publication Date Title
CN202563269U (en) Atomic clock long-term stability optimization apparatus
CN103226187B (en) Method for measuring loss of magnetic element
CN102004190B (en) Impedance test device of low-voltage electric power carrier channel
CN102122958B (en) Device and method for automatically repairing rubidium atom frequency-standard frequency drift
CN102611448A (en) Method and device for optimizing long-period stability parameters of atomic frequency standard
CN102055539A (en) Automated calibration method and equipment for meter output signal
CN104363013B (en) A kind of FV convertor of low additional noise
CN102707153A (en) Contact resistance measuring system and method based on voltage-frequency conversion method
CN104035062B (en) A kind of high accuracy calibration method based on ATT7022E computation chip
CN207586312U (en) A kind of digital frequency meter based on FPGA
CN203745634U (en) Three-phase power harmonic standard source
CN202522693U (en) Device for detecting measure accuracy degree of electric energy meter
CN103558578A (en) Thermistor detection system for electronic electric energy meter and method of system
CN104316892A (en) Transformer load box calibration device
CN106483486A (en) A kind of continuous wave power probe power calibration system and method
CN109100672B (en) Adjusting method of voltage and current sampling module suitable for non-invasive load monitoring
CN204465512U (en) A Rubidium Atomic Frequency Standard Drift Correction System
CN210090656U (en) Current standard device based on quantum precision measurement
CN117538812A (en) Standard meter based on dual-channel electric parameter synchronous sampling and measuring method
CN203551762U (en) Electronic instrument transformer and merging unit verification system
CN203166871U (en) Improved atomic frequency standard servo system
CN106502299B (en) A kind of temperature control voltage adjusting circuit
CN211718508U (en) Electric energy meter performance detection system
CN214951864U (en) A temperature field testing device
CN204613383U (en) Earth resistance tester calibration equipment

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121128

Termination date: 20140329