CN202549843U - 凹面cmos图像传感器、凹面cmos图像传感元件及摄像头 - Google Patents

凹面cmos图像传感器、凹面cmos图像传感元件及摄像头 Download PDF

Info

Publication number
CN202549843U
CN202549843U CN2011201275944U CN201120127594U CN202549843U CN 202549843 U CN202549843 U CN 202549843U CN 2011201275944 U CN2011201275944 U CN 2011201275944U CN 201120127594 U CN201120127594 U CN 201120127594U CN 202549843 U CN202549843 U CN 202549843U
Authority
CN
China
Prior art keywords
photosensitive unit
cmos image
concave surface
substrate
unit array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2011201275944U
Other languages
English (en)
Inventor
赵立新
赵立辉
孟庆
陈红洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Galaxycore Shanghai Ltd Corp
Original Assignee
Galaxycore Shanghai Ltd Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galaxycore Shanghai Ltd Corp filed Critical Galaxycore Shanghai Ltd Corp
Priority to CN2011201275944U priority Critical patent/CN202549843U/zh
Application granted granted Critical
Publication of CN202549843U publication Critical patent/CN202549843U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

本实用新型涉及一种凹面CMOS图像传感器、凹面CMOS图像传感元件及摄像头。在一个实施例中,提供了一种凹面CMOS图像传感器,包括:基底,所述基底包括可弯曲的材料;以及位于所述基底上的多个分离的感光单元阵列,所述多个分离的感光单元阵列中的每一个包括至少一个感光单元,其中,所述基底是可弯曲的,从而允许所述多个分离的感光单元阵列形成面向镜头的凹面。本实用新型的凹面CMOS图像传感器使得光线能够大体上垂直照射到感光单元阵列上,进而至少部分地降低相邻感光单元间的光串扰。

Description

凹面CMOS图像传感器、凹面CMOS图像传感元件及摄像头
技术领域
本实用新型涉及半导体技术领域,更具体地,本实用新型涉及一种凹面CMOS图像传感器、凹面CMOS图像传感元件及摄像头。 
背景技术
随着半导体技术的发展,图像传感器已广泛应用于各种需要进行数字成像的领域,例如数码照相机、数码摄像机等电子产品中。根据光电转换方式的不同,图像传感器通常可以分为两类:电荷耦合器件(Charge Coupled Device,CCD)图像传感器和互补金属氧化物半导体(CMOS)图像传感器。其中,CMOS图像传感器具有体积小、功耗低、生产成本低等优点,因此,CMOS图像传感器易于集成在例如手机、笔记本电脑、平板电脑等便携电子设备中,作为提供数字成像功能的摄像模组使用。 
摄像模组通常由图像传感器与镜头构成。随着便携设备目益轻薄化,为了减小体积或厚度,摄像模组中镜头与图像传感器间的距离也被设计得越来越近。然而,镜头与图像传感器间距过近会导致入射光线经由镜头折射后不能垂直照射在图像传感器上,即折射后的光线与图像传感器中感光单元的法线呈一定的夹角,在图像传感器边缘这种现象尤为明显。 
图像传感器通常采用阵列式排布的结构,图像传感器阵列的每一单元被称为感光单元,其由像素单元、像素单元上的滤光膜以及微透镜组成。对于阵列式排布的图像传感器,非垂直照射的光线在穿过感光单元阵列中一个感光单元的微透镜与滤光膜之后,会部分照射到相邻感光单元的像素单元上,从而导致光串扰。对于彩色CMOS图像传感器,相邻感光单元间的光串扰会产生混色问题,进而影响成像质量。 
现有技术中,一种可用于减少光串扰的方法是使用多镜片组合 的镜头来补偿,以使得光线能够大体上垂直照射到各个感光单元。然而,在体积较小的摄像模组上很难集成复杂的镜头结构,而且制作成本也较高。 
实用新型内容
可见,需要提供一种凹面CMOS图像传感器,使得经过镜头折射的光线能够大体上垂直照射在图像传感器的感光单元阵列上,以减少相邻感光单元之间的光串扰。 
为了解决上述问题,在根据本实用新型一个方面的实施例中,提供了一种凹面CMOS图像传感器,包括:基底,所述基底包括可弯曲的材料;以及位于所述基底上的多个分离的感光单元阵列,所述多个分离的感光单元阵列中的每一个包括至少一个感光单元,其中,所述基底是可弯曲的,从而允许所述多个分离的感光单元阵列形成面向镜头的凹面。 
在一个例子中,在所述多个分离的感光单元阵列中,存在两个感光单元阵列的法线形成的锐角大于10度。 
在一个例子中,在所述多个分离的感光单元阵列中,一半以上的感光单元阵列中的每一个的行或列包括不多于16个感光单元。 
在一个例子中,所述凹面CMOS图像传感器还包括位于所述多个分离的感光单元阵列之间的低透光率的介质。 
在一个例子中,所述多个感光单元阵列通过金属线连通,其中一半以上的所述金属线的长度大于所述多个感光单元阵列间距的1.05倍。 
在一个例子中,所述感光单元包括:像素单元;位于所述像素单元上的滤光膜;以及位于所述滤光膜上的微透镜。 
在一个例子中,所述凹面CMOS图像传感器是背照式CMOS图像传感器。 
在一个例子中,所述多个分离的感光单元阵列中的每一个只包括一个感光单元,并且包括沿固定于所述基底上的平面,与所述平面相对的另一面,以及垂直于所述基底的侧面分布的掺杂区域,所 述掺杂区域是通过侧向离子注入形成的。 
在一个例子中,所述基底包含导电的多个分离的第一区域以及不导电的第二区域,其中所述多个分离的第一区域使得图像传感器中至少部分引线块与图像传感器封装中对应的管脚连通。 
在一个例子中,所述基底包括各向异性导电材料,所述各向异性导电材料在垂直于所述基底的方向导电,以使得图像传感器中至少部分引线块与图像传感器封装中对应的管脚连通。 
在根据本实用新型另一方面的实施例中,提供了一种摄像头,包括根据本实用新型的凹面CMOS图像传感器。 
在一个例子中,所述摄像头包括手机摄像头。 
在根据本实用新型另一方面的实施例中,还提供了一种凹面CMOS图像传感元件,包括:基底,所述基底包括可弯曲的材料;位于所述基底上的多个分离的感光单元阵列,所述多个分离的感光单元阵列中的每一个包括至少一个感光单元;以及支撑,所述支撑包括弯曲的支撑面,其中,所述基底是可弯曲的,并且固定于所述支撑的支撑面上,所述支撑面的曲率使得所述多个分离的感光单元阵列形成面向镜头的凹面。 
在一个例子中,在所述多个分离的感光单元阵列中,存在两个感光单元阵列的法线形成的锐角大于10度。 
在一个例子中,在所述多个分离的感光单元阵列中,一半以上的感光单元阵列中的每一个的行或列包括不多于16个感光单元。 
在一个例子中,所述凹面CMOS图像传感元件还包括位于所述多个分离的感光单元阵列之间的低透光率的介质。 
在一个例子中,所述凹面CMOS图像传感元件是背照式CMOS图像传感元件。 
在一个例子中,所述多个分离的感光单元阵列中的每一个只包括一个感光单元,并且包括沿固定于所述基底上的平面,与所述平面相对的另一面,以及垂直于所述基底的侧面分布的掺杂区域,所述掺杂区域是通过侧向离子注入形成的。 
在一个例子中,所述基底包含导电的多个分离的第一区域与不 导电的第二区域,其中所述多个分离的第一区域使得所述凹面CMOS图像传感元件中的至少部分引线块与所述支撑中对应的管脚连通。 
在一个例子中,所述基底包括各向异性导电材料,所述各向异性导电材料在垂直于所述基底的方向导电,以使得所述凹面CMOS图像传感元件中的至少部分引线块与所述支撑中对应的管脚连通。 
在一个例子中,所述多个感光单元阵列通过金属线连通,其中一半以上的所述金属线的长度大于所述多个感光单元阵列间距的1.05倍。 
在根据本实用新型另一方面的实施例中,还提供了一种摄像头,包括一种凹面CMOS图像传感元件,所述凹面CMOS图像传感元件包括:基底,所述基底包括可弯曲的材料;位于所述基底上的多个分离的感光单元阵列,所述多个分离的感光单元阵列中的每一个包括至少一个感光单元;以及支撑,所述支撑包括弯曲的支撑面,其中,所述基底是可弯曲的,并且固定于所述支撑的支撑面上,所述支撑面的曲率使得所述多个分离的感光单元阵列形成面向镜头的凹面。 
与现有技术相比,本实用新型的凹面CMOS图像传感器包括多个分离的感光单元阵列,这些分离的感光单元阵列可以以适于镜头折射光线的方向来排布,从而使得光线能够大体上垂直照射到感光单元阵列,进而至少部分地降低相邻感光单元间的光串扰。此外,采用本实用新型的凹面CMOS图像传感器的摄像模组,可以简化镜头的设计,从而降低成本。 
本实用新型的以上特性及其他特性将在下文中的实施例部分进行明确地阐述。 
附图说明
通过参照附图阅读以下所作的对非限制性实施例的详细描述,能够更容易地理解本实用新型的特征、目的和优点。其中,相同或相似的附图标记代表相同或相似的装置。 
图1(a)示出了根据本实用新型一个实施例的凹面CMOS图像传感器的俯视图; 
图1(b)示出了图1(a)所示的凹面CMOS图像传感器沿A-A’方向的剖视图; 
图2(a)示出了根据本实用新型一个实施例的凹面CMOS图像传感器的俯视图; 
图2(b)示出了根据本实用新型一个实施例,图2(a)所示的凹面CMOS图像传感器沿B-B’方向的剖视图; 
图2(c)示出了根据本实用新型另一个实施例,图2(a)所示的凹面CMOS图像传感器沿B-B’方向的剖视图; 
图3示出了根据本实用新型一个实施例的凹面CMOS图像传感元件的剖视图; 
图4示出了根据本实用新型一个实施例的制造背照式凹面CMOS图像传感器的流程; 
图5(a)至图5(e)示出了根据本实用新型一个实施例的制造背照式凹面CMOS图像传感器流程的剖视图; 
图6(a)至图6(h)示出了根据本实用新型另一个实施例的制造背照式凹面CMOS图像传感器流程的剖视图。 
具体实施方式
下面详细讨论实施例的实施和使用。然而,应当理解,所讨论的具体实施例仅仅示范性地说明实施和使用本实用新型的特定方式,而非限制本实用新型的范围。 
参考图1(a),示出了根据本实用新型一个实施例的凹面CMOS图像传感器的俯视图。该凹面CMOS图像传感器包括基底101以及位于所述基底101上的多个分离的感光单元阵列103,其中,所述多个分离的感光单元阵列103中的每一个包括至少一个感光单元。 
具体地,基底101包括可弯曲的材料,例如聚酰亚胺等柔性有机高分子材料,因此,基底101是可弯曲的,从而允许所述多个分离的感光单元阵列103形成面向镜头的凹面。需要说明的是,这里 所称的可弯曲,是指在一定的外力作用下,基底101容易发生适当的形变,以带动基底101上的多个分离的感光单元阵列103的相对位置发生变化,而基底101与每个感光单元阵列103结构上的连接则基本不变。 
本领域普通技术人员可以理解,图1(a)中感光单元阵列103的数量仅为示例,在实际应用中,根据凹面CMOS图像传感器分辨率的不同,凹面CMOS图像传感器中感光单元阵列103的数量、每一个感光单元阵列103中感光单元的数量及排布方式也会有所不同。在图1(a)所示的实施例中,每个感光单元阵列103中感光单元的数量及内部的排布相同,而且所述多个分离的感光单元阵列103规则地阵列排布在基底103上。在这种情况下,该凹面CMOS图像传感器的行分辨率等于一列感光单元阵列103的行分辨率的总和,而该凹面CMOS图像传感器的列分辨率等于一行感光单元阵列103的列分辨率的总和。在另一个实施例中,基底101上多个感光单元阵列103所包含的感光单元的数量可以不完全相同,例如基底101中间区域(即靠近镜头主光轴的区域)的感光单元阵列103的面积较大,包含较多数量的感光单元,而基底101边缘区域的感光单元阵列103的面积较小,包含的感光单元也较少。由于感光单元阵列103通常不可弯曲,因此,在基底101受力弯曲后,较小面积的感光单元阵列103可以避免与弯曲的基底101不相匹配,进而出现成像误差的问题。在一个优选的实施例中,在凹面CMOS图像传感器的多个分离的感光单元阵列103中,一半以上的感光单元阵列103中的每一个的行或列包括不多于16个感光单元。 
需要说明的是,这里所称的分离,是指每一感光单元阵列103中形成光电二极管、MOS晶体管等的半导体衬底区域相互分隔;但不同的感光单元阵列103,例如阵列排布的感光单元阵列103中同一行和/或同一列中相邻的感光单元阵列103,仍可以通过其间的金属线105连通。其中,根据感光单元阵列103中包含的感光单元数量的不同,以及感光单元排布方式的不同,相邻的感光单元阵列103之间的金属线的数量也有所不同。在一个实施例中,该凹面CMOS 图像传感器中的部分金属线105,例如一半以上的金属线105,的长度可以大于感光单元阵列103的间距,以使得基底101在受力弯曲后,金属线105仍可以延展一定的长度而不发生断裂,从而保证感光单元阵列103间的互相连通。在本文中所称的金属线105的长度,是指位于不同感光单元阵列103之间的金属线105的长度,而不包括金属线105位于感光单元阵列103内的区域。在一个优选的实施例中,金属线105的长度大于所述多个感光单元阵列103间距的1.05倍。可选地,金属线105例如为铜线、铝线或其他金属互连材料。 
参考图1(b),示出了根据图1(a)所示的凹面CMOS图像传感器沿A-A’方向的剖视图。其中,该凹面CMOS图像传感器中每一感光单元阵列103的每一行包含4个感光单元。但应理解,感光单元的数量仅为示例,在实际应用中,每一感光单元阵列103中感光单元的数量可以根据图像传感器分辨率的需要而有所不同。 
如图1(b)所示,在施加一定的外力之后,基底101可以发生弯曲,从而使得基底101呈凹面结构,并使得基底101上的多个分离的感光单元阵列103的感光面向镜头(图中未示出)方向汇聚。 
根据图1(b)可以看出,对于在基底101上不同位置的感光单元阵列103,在基底101受力弯曲后,其偏移幅度可能会有差异。特别地,相对于镜头的主光轴而言,距离主光轴越远,感光单元阵列103的偏移幅度越大,感光单元阵列103感光面的法线与主光轴的夹角也越大。在一个实施例中,在多个分离的感光单元阵列103中,存在两个感光单元阵列103的法线(即感光面的法线)形成的锐角大于10度,从而使得所述多个分离的感光单元阵列103形成面向镜头的凹面。 
在实际应用中,基底101上感光单元阵列103的位置偏移可以至少部分地补偿镜头的折射光线与镜头主光轴之间的偏差,从而使得光线能够大体上垂直入射照射到各个感光单元阵列103的感光面上。这样,照射到感光单元上的光线不会穿过感光单元而照射到相邻的感光单元上,这就有效减少了相邻的感光单元间的光串扰,从而提高图像采集的质量。 
在一个实施例中,该凹面CMOS图像传感器还包括位于多个分离的感光单元阵列103之间的低透光率的介质,以减少光线透射通量,该低透光率的介质例如为透光率低于10%的材料。所述低透光率的介质用于填充互相分离的感光单元阵列103之间的空隙,进一步防止或减少了不同感光单元阵列103之间可能发生的光串扰。特别地,对于每个感光单元阵列103只包括一个感光单元的情况,所述低透光率的介质进一步减少或基本消除了相邻感光单元之间的光串扰。 
根据实施例的不同,该凹面CMOS图像传感器可以是彩色CMOS图像传感器,也可以是黑白CMOS图像传感器。在一个实施例中,该凹面CMOS图像传感器是彩色CMOS图像传感器,其中,每个感光单元包括:像素单元107、位于所述像素单元107上的滤光膜109以及位于所述滤光膜109上的微透镜111。 
参考图2(a),示出了根据本实用新型一个实施例的凹面CMOS图像传感器的俯视图。图2(b)示出了根据本实用新型一个实施例,图2(a)所示的凹面CMOS图像传感器沿B-B’方向的剖视图。 
如图2(a)及图2(b)所示,凹面CMOS图像传感器包括基底201以及位于所述基底201上的多个分离的感光单元阵列203,其中,所述多个分离的感光单元阵列203中的每一个仅包括一个感光单元。进一步地,基底201包括可弯曲的材料,例如聚酰亚胺等柔性有机高分子材料,因此,基底201是可弯曲的,从而允许所述多个分离的感光单元阵列203形成面向镜头的凹面。 
在一个实施例中,该凹面CMOS图像传感器是背照式CMOS图像传感器。所谓“背照式CMOS图像传感器”,是指相对于基底201而言,感光单元阵列203中用于感光的像素单元位于金属线及介质层构成的互连层上方,使得光线能够首先照射到像素单元的光电二极管上,这就避免了互连层影响光线入射,从而增加感光量并提高图像传感器的灵敏度。 
具体而言,每一感光单元包括像素单元207、滤光膜209以及微透镜211,此外,该凹面CMOS图像传感器还包括位于基底201与 像素单元207之间的互连层204。该互连层204由介质层206、以及介质层206中的金属线205以及引线块(图中未示出)构成,该金属线205及引线块可以将像素单元207电引出,并使得不同感光单元阵列203中的像素单元207互相连通。 
像素单元207包括MOS晶体管213以及光电二极管215,该MOS晶体管213与光电二极管215均位于介质层206上的半导体衬底208中,其中,MOS晶体管213进一步包括:第一栅极217、第一栅极两侧半导体衬底208中的第一掺杂区219以及第二掺杂区221,其中第一掺杂区219与第二掺杂区221与半导体衬底208的掺杂类型相反;该光电二极管215由第二掺杂区221与半导体衬底208组成。在一个实施例中,半导体衬底208为P型掺杂,第一掺杂区219为N型重掺杂,而第二掺杂区221为N型掺杂。 
可以看出,MOS晶体管213与光电二极管215形成于同一半导体衬底208中,并且通过共用第二掺杂区221连通。这样,当有光线照射时,光电二极管215感应光照变化所形成的电荷会被相连通的MOS晶体管213转移,进而由该MOS晶体管213提供给其他信号处理电路处理。需要说明的是,图2(b)中MOS晶体管213仅为示例,在实际应用中,每一个像素单元207可以采用例如3晶体管(3-T)或4晶体管(4-T)的结构,其中也相应地包含有多个MOS晶体管。 
在一个优选的实施例中,半导体衬底208远离基底201的一侧还形成有钉扎层(Pinning layer)223,该钉扎层223通常采用P型重掺杂,其可以将光电二极管215推进到远离半导体衬底208表面的区域,从而避免半导体衬底208的表面缺陷影响光电转换,进而提高了该凹面CMOS图像传感器的灵敏度。 
图2(c)示出了根据另一个实施例,图2(a)所示的凹面CMOS图像传感器沿B-B’方向的剖视图。需要说明的是,在本说明书中,半导体衬底以及其中不同区域的掺杂类型仅为示例,并不作为本实用新型的限制,采用其他掺杂类型的半导体衬底以及其中的不同区域仍属于本实用新型的范围。 
如图2(c)所示,该凹面CMOS图像传感器的结构与图2(b)所示的凹面CMOS传感器基本相同,其所包含的多个分离的感光单元阵列203中的每一个仅包括一个感光单元。相比于图2(b)中的凹面CMOS图像传感器,图2(c)中凹面CMOS图像传感器还包含有第三掺杂区225,该第三掺杂区225包括沿与固定于基底201上的平面相对的第一面227,以及垂直于所述基底201的侧面229分布的掺杂区域。在一个实施例中,该第三掺杂区225的掺杂类型为N型掺杂,而半导体衬底208为P型掺杂。 
具体地,该N型掺杂的第三掺杂区225与P型掺杂的半导体衬底208共同构成了第二光电二极管216。与光电二极管215相类似,该第二光电二极管216也用于将光信号转换为电信号。由于每个感光单元阵列203中仅包括一个感光单元,侧面229分布于每一个感光单元的四周,因此,在一个实施例中,第三掺杂区225呈帽状结构,分布在感光单元阵列203上。这种帽状结构大大增加了每一个感光单元的感光区域及电荷俘获能力,从而提高了凹面CMOS图像传感器的灵敏度。 
此外,该凹面CMOS图像传感器还可以包含隔离区231,该隔离区231位于分离的感光单元阵列203之间的基底201上,包含有低透光率的介质以减少光线透射通量,该低透光率的介质例如为透光率低于10%的材料。该低透光率的隔离区231可以阻隔或减少照射到不同感光单元阵列203的光线相互串扰。在一个实施例中,与可弯曲的基底201相适应,隔离区231可以包括低透光率的柔性高分子材料,以使得基底201在受力弯曲后,隔离区231可以相应弯曲,从而不影响不同的感光单元阵列203相对位置的变化。 
在实际应用中,连通多个感光单元阵列203的金属线205进一步地由引线块(图中未示出)引出,在封装凹面CMOS图像传感器时,该引线块可以进一步地由图像传感器封装中的导线引出,从而形成用于引出该凹面CMOS图像传感器的管脚,以加载输入/输出信号和/或驱动信号。在一个实施例中,本实用新型的凹面CMOS图像传感器的基底201中还包含有导电的多个分离的第一区域,以及不 导电的第二区域,其中,所述多个分离的第一区域分别与凹面CMOS图像传感器中的引线块连接,使得对应的引线块被引出,进而使得多个感光单元阵列203中的每一个感光单元被电引出,而所述不导电的第二区域则用于隔离所述导电的多个分离的第一区域。在另一个实施例中,本实用新型的凹面CMOS图像传感器的基底201包括各向异性导电材料,所述各向异性导电材料在垂直于所述基底201的方向导电。通过使用各向异性导电材料,凹面CMOS图像传感器的每个引线块被分别地电引出,不同的引线块也不会相互短接。本领域的技术人员能够理解,对于“各向异性导电材料在垂直于基底的方向导电”,其中垂直并不一定是严格意义上的90度,由于制造误差等原因,导电方向可能会偏离大约不超过10度,对于这种不是严格90度的情况也落入本实用新型的保护范围。 
根据本实用新型的各个实施例的凹面CMOS图像传感器可以应用于包括但不限于手机摄像头、数码相机摄像头、数码摄像机摄像头等摄像头中。 
参考图3,示出了根据本实用新型一个实施例的凹面CMOS图像传感元件的剖视图。 
该凹面CMOS图像传感元件包括:基底301,所述基底301包括可弯曲的材料;位于所述基底301上的多个分离的感光单元阵列303,所述多个分离的感光单元阵列303中的每一个包括至少一个感光单元;以及支撑302,所述支撑302包括弯曲的支撑面,其中,所述基底301是可弯曲的,并且固定于所述支撑302的支撑面上,所述支撑面的曲率使得所述多个分离的感光单元阵列303形成面向镜头的凹面。 
图3中还示出了镜头304,并示意性地示出了光线经镜头304折射后照射在凹面CMOS图像传感元件的光路。镜头304与该凹面CMOS图像传感元件共同构成了摄像头。本领域普通技术人员应该理解,根据镜头304及感光单元阵列303与镜头间距的不同,所述支撑302的曲率也不相同,优选地,所述支撑302的曲率使得多个分离的感光单元阵列303中的每一个中的感光单元的法线能与经镜 头304折射的光线之间的夹角小于预定范围,例如小于5度。 
在一个实施例中,在所述多个分离的感光单元阵列303中,存在两个感光单元阵列303的法线形成的锐角大于10度。 
在一个实施例中,在所述多个分离的感光单元阵列303中,一半以上的感光单元阵列303中的每一个的行或列包括不多于16个感光单元。 
在一个实施例中,所述CMOS图像传感元件还包括位于所述多个分离的感光单元阵列303之间的低透光率的介质。 
在一个实施例中,所述凹面CMOS图像传感元件是背照式CMOS图像传感元件。 
在一个实施例中,所述多个分离的感光单元阵列303中的每一个只包括一个感光单元,并且包括沿固定于所述基底301上的平面,与所述平面相对的另一面,以及垂直于所述基底301的侧面分布的掺杂区域,所述掺杂区域是通过侧向离子注入形成的。 
在一个实施例中,所述基底301包含导电的多个分离的第一区域与不导电的第二区域,其中所述多个分离的第一区域使得凹面CMOS图像传感元件的与所述感光单元阵列303对应的至少部分引线块与所述支撑302中对应的管脚连通。 
在一个实施例中,所述基底301包括各向异性导电材料,所述各向异性导电材料在垂直于所述基底301的方向导电,以使得所述CMOS图像传感元件中的至少部分引线块与所述支撑302中对应的管脚连通。 
在一个实施例中,所述多个感光单元阵列303通过金属线连通,其中一半以上的所述金属线303的长度大于所述多个感光单元阵列间距的1.05倍。 
图4示出了根据本实用新型一个实施例的制造背照式凹面CMOS图像传感器的流程,包括: 
执行步骤S402,在第一基底的第一面上制备多个像素单元阵列、位于所述多个像素单元阵列上的介质层、以及分布于所述介质层中的用于连通所述多个像素单元阵列的金属线;执行步骤S404,在所 述介质层上沉积一层薄膜,所述薄膜包括可弯曲的材料;执行步骤S406,从所述第一基底的第二面减薄所述第一基底至预定的厚度;执行步骤S408,从所述第一基底的第二面形成与所述多个像素单元阵列对应的滤光膜阵列和微透镜阵列,每个像素单元阵列与对应的滤光膜阵列以及微透镜阵列共同构成感光单元阵列;执行步骤S410,从所述第一基底的第二面刻蚀所述第一基底,从而使得所述多个像素单元阵列之间不存在所述第一基底,以及使得所述介质层的剩余厚度在预定厚度范围内;其中,所述薄膜是可弯曲的,从而允许所述多个分离的像素单元阵列形成面向镜头的凹面,以及其中,所述步骤S408和所述步骤S410的顺序是可以互换的。 
图5(a)至图5(e)示出了根据本实用新型一个实施例的制造背照式凹面CMOS图像传感器流程的剖视图。接下来,结合图4以及图5(a)至5(e),对本实用新型的制造背照式凹面CMOS图像传感器的方法的一个实施例做进一步的说明。 
如图5(a)所示,提供第一基底501,该第一基底501例如为硅、锗或绝缘体上硅等半导体衬底。在该第一基底501的第一面502上制备多个像素单元阵列503,其中,每一个像素单元阵列503中可以包含一个或多个像素单元,每个像素单元中包含有光电二极管以及一个或以上的MOS晶体管。 
接着,在该多个像素单元阵列503上形成介质层504,其中该介质层504中进一步包含有位于其中的一层或以上的金属线505。介质层504均匀地覆盖于第一基底501的第一面502上,从而将多个像素单元阵列503覆盖,而介质层504中的金属线505则将所述多个像素单元阵列503连通。具体地,可以采用化学气相沉积工艺形成该介质层504,采用化学气相沉积或物理气相沉积工艺形成该金属线505。 
如图5(b)所示,在介质层504上沉积薄膜506,所述薄膜506包含可弯曲的材料,例如聚酰亚胺等柔性有机高分子材料,因此,所述薄膜506是可弯曲的。 
在一个实施例中,所述薄膜506包括各向异性导电材料,该各 向异性导电材料在垂直于第一基底501,具体为第一基底501的第一面502,方向导电。本领域的技术人员能够理解,“各向异性导电材料在垂直于第一基底的方向导电”,其中垂直并不是严格意义上的90度,由于制造误差等原因,导电方向会偏离大约不超过10度,对于这种不是严格90度的情况也落入本实用新型的保护范围。 
在另一个实施例中,所述薄膜506包括导电的多个分离的第一区域与不导电的第二区域,所述导电的多个分离的第一区域分别与将像素单元阵列503的至少部分引线块(图中未示出)相对应,使得引线块可以进一步地由薄膜506引出,从而使得至少部分引线块能够与图像传感器封装中对应的管脚连通。具体地,可以采用丝网印刷工艺或光刻工艺分别形成第一区域与第二区域。 
如图5(c)所示,从第一基底501的第二面507减薄所述第一基底501至预定的厚度。通过所述减薄,将像素单元阵列503露出,即将像素单元阵列503的光电二极管露出。在一个实施例中,该预定厚度小于或等于第一基底501中像素单元阵列503的深度。具体地,可以采用化学机械抛光工艺来减薄所述第一基底501。 
如图5(d)所示,从所述第一基底501的第二面507形成与所述多个像素单元阵列503对应的滤光膜阵列508和微透镜阵列509,每个像素单元阵列503与对应的滤光膜阵列508以及微透镜阵列509共同构成感光单元阵列510。对于黑白CMOS图像传感器,在一个实施例中,可以在第一基底501的第二面507上形成与所述多个像素单元阵列503对应的钝化层及微透镜阵列。 
如图5(e)所示,从所述第一基底的第二面刻蚀所述第一基底,从而使得所述多个像素单元阵列503之间不存在第一基底,以及使得所述介质层504的剩余厚度在预定范围内,例如小于1微米,当介质层的剩余厚度为零时,则对应于介质层504刻通的情形。 
在一个实施例中,所述刻蚀包括选择性刻蚀,所述选择性刻蚀在所述第一基底和所述介质层504与所述金属线505之间的选择刻蚀比大于预定值,例如大于20∶1,即金属线505被刻蚀的程度远少于介质层504被刻蚀的程度。在一个实施例中,所述介质层504的 剩余厚度小于金属线505与第一基底的第一面的距离,从而使得金属线505全部露出。在一个优选的实施例中,像素单元阵列503之间的介质层504被全部移除,以使得薄膜506露出。应该理解,所述刻蚀无需使得介质层504被完全移除,金属线505上残留有部分介质层504并不会影响该凹面CMOS图像传感器的工作,因此,这种情况仍属于本实用新型的范围。具体地,可以采用各向异性干法刻蚀工艺刻蚀所述第一基底及介质层504。因此,每个像素单元阵列503上方的介质层504不会被移除。 
在一个实施例中,位于多个像素单元阵列503之间的金属线505的长度大于所述刻蚀的宽度,例如大于所述刻蚀宽度的1.05倍。具体地,金属线505可以为曲线或弧线形,从而使得其长度大于刻蚀宽度,即对应位置的像素单元阵列503之间的间距。 
在刻蚀完第一基底之后,像素单元阵列503中形成光电二极管、MOS晶体管等的半导体衬底区域(即第一基底的剩余区域)相互分隔;但不同的像素单元阵列503,例如阵列排布的像素单元阵列503中同一行和/或同一列中相邻的像素单元阵列503,仍可以通过其间未被刻蚀的金属线505连通。 
由于多个像素单元阵列503之间的介质层504基本被移除,而且薄膜506是可弯曲的,因此,所述多个分离的像素单元阵列503可以被允许在外力作用下弯曲,并且形成面向镜头的凹面。 
图6(a)至图6(h)示出了根据本实用新型另一个实施例的制造背照式凹面CMOS图像传感器流程的剖视图。该凹面CMOS图像传感器中所包含的多个分离的感光单元阵列中的每一个仅包括一个感光单元。 
需要说明的是,在本说明书中,半导体衬底以及其中不同区域的掺杂类型仅为示例,并不作为本实用新型的限制,采用其他掺杂类型的半导体衬底以及其中的不同区域仍属于本实用新型的范围。 
如图6(a)所示,提供第一基底601,该第一基底601例如为硅、锗或绝缘体上硅等半导体衬底。在该第一基底601的第一面602上制备多个像素单元阵列603,其中,每一个像素单元阵列603中仅 包含一个像素单元,其中进一步包含有光电二极管以及一个或以上的MOS晶体管。 
接着,在该多个像素单元阵列603上形成介质层604,其中该介质层604中进一步包含有位于其中的一层或以上的金属线605。介质层604均匀地覆盖于第一基底601的第一面602上,从而将多个像素单元阵列603覆盖,而介质层604中的金属线605则将所述多个像素单元阵列603连通。 
如图6(b)所示,从第一基底601的第一面602刻蚀介质层604至第一预定深度,从而在所述多个像素单元阵列603之间形成多个第一沟槽619。在一个优选的实施例中,所述第一沟槽619使得像素单元阵列603之间的介质层604中最顶层的金属线605露出。 
如图6(c)所示,在介质层604上沉积薄膜606,所述薄膜606包含可弯曲的材料,例如聚酰亚胺等柔性有机高分子材料,因此,所述薄膜606是可弯曲的。在一个实施例中,该薄膜606的厚度大于5微米。 
在一个实施例中,所述薄膜606包括各向异性导电材料,该各向异性导电材料在垂直于第一基底601方向导电。 
在另一个实施例中,所述薄膜606包括导电的多个分离的第一区域与不导电的第二区域,所述导电的多个分离的第一区域分别与将像素单元阵列603电引出的引线块(图中未示出)相对应,使得该引线块可以进一步地由薄膜606引出。具体地,可以采用丝网印刷工艺或光刻工艺分别形成第一区域与第二区域。 
如图6(d)所示,从第一基底601的第二面607减薄所述第一基底601至预定的厚度。通过所述减薄,将像素单元阵列603露出,即将像素单元阵列603的光电二极管露出。在一个实施例中,该预定厚度小于或等于第一基底601中像素单元阵列603的深度。具体地,可以采用化学机械抛光工艺来减薄所述第一基底601。 
如图6(e)所示,从第一基底的第二面刻蚀所述第一基底至第二预定深度,从而在多个感光单元阵列603之间形成多个第二沟槽620。所述第一预定深度与第二预定深度使得多个感光单元阵列603 之间不存在第一基底,以及使得感光单元阵列603之间的介质层的剩余厚度在预定厚度范围内,例如小于1微米,当介质层的剩余厚度为零时,则对应介质层刻通的情形。 
在一个实施例中,所述刻蚀包括选择性刻蚀,所述选择性刻蚀在所述第一基底和所述介质层与所述金属线605之间的选择刻蚀比大于预定值,例如20∶1,即金属线605被刻蚀的程度远少于介质层被刻蚀的程度。 
在刻蚀完第一基底之后,像素单元阵列603中形成光电二极管、MOS晶体管等的半导体衬底区域(即第一基底的剩余区域)相互分隔;但不同的像素单元阵列603,例如阵列排布的像素单元阵列603中同一行和/或同一列中相邻的像素单元阵列603,仍可以通过其间未被刻蚀的金属线605连通。 
如图6(f)所示,在形成多个分离的像素单元阵列603之后,还包括:从所述第一基底的第二面607对第一基底进行侧向离子注入,从而在所述第二面607以及每个所述像素单元阵列603的垂直于所述第一基底的所述第一面的侧面621上形成N型掺杂区域;以及从所述第一基底的所述第二面607对所述第一基底进行非垂直光照,所述非垂直光照的角度使得光仅照射到所述第二面607以及所述侧面621,从而激活注入到所述第二面607以及所述侧面621的离子。 
这样,该N型掺杂区及与该N型掺杂区相连的第一基底601共同构成了第二光电二极管。在一个实施例中,第二光电二极管呈帽状结构分布在像素单元阵列603上,这种帽状结构大大增加了每一个感光单元的感光区域及电荷俘获能力,从而提高了凹面CMOS图像传感器的灵敏度。 
如图6(g)所示,从所述第一基底的第二面607形成与所述多个像素单元阵列603对应的滤光膜阵列608和微透镜阵列609,每个像素单元阵列603与对应的滤光膜阵列608以及微透镜阵列609共同构成感光单元阵列610。 
由于多个感光单元阵列610之间的介质层基本被移除,而且薄 膜606是可弯曲的,因此,所述多个分离的感光单元阵列610可以被允许在外力作用下弯曲,并且形成面向镜头的凹面。 
如图6(h)所示,在形成多个分离的感光单元阵列610之后,还可以在所述多个分离的感光单元阵列610之间填充低透光率的介质以减少光线透射通量,该低透光率的介质例如为透光率低于10%的材料。在一个实施例中,该低透光率的介质的厚度至少超过像素单元阵列的厚度,即至少填充到滤光膜阵列608的位置。该低透光率的介质可以阻隔照射到不同感光单元阵列610的光线相互串扰,从而提高凹面CMOS图像传感器的图像采集质量。 
尽管在附图和前述的描述中详细阐明和描述了本实用新型,应认为该阐明和描述是说明性的和示例性的,而不是限制性的;本实用新型不限于所上述实施方式。 
那些本技术领域的一般技术人员可以通过研究说明书、公开的内容及附图和所附的权利要求书,理解和实施对披露的实施方式的其他改变。在权利要求中,措词“包括”不排除其他的元素和步骤,并且措辞“一个”不排除复数。在实用新型的实际应用中,一个零件可能执行权利要求中所引用的多个技术特征的功能。权利要求中的任何附图标记不应理解为对范围的限制。 

Claims (22)

1.一种凹面CMOS图像传感器,包括:
基底,所述基底包括可弯曲的材料;以及
位于所述基底上的多个分离的感光单元阵列,所述多个分离的感光单元阵列中的每一个包括至少一个感光单元,
其中,所述基底是可弯曲的,从而允许所述多个分离的感光单元阵列形成面向镜头的凹面。
2.根据权利要求1所述的凹面CMOS图像传感器,其特征在于,在所述多个分离的感光单元阵列中,存在两个感光单元阵列的法线形成的锐角大于10度。
3.根据权利要求1所述的凹面CMOS图像传感器,其特征在于,在所述多个分离的感光单元阵列中,一半以上的感光单元阵列中的每一个的行或列包括不多于16个感光单元。
4.根据权利要求1所述的凹面CMOS图像传感器,其特征在于,所述凹面CMOS图像传感器还包括位于所述多个分离的感光单元阵列之间的低透光率的介质。
5.根据权利要求1所述的凹面CMOS图像传感器,其特征在于,所述多个感光单元阵列通过金属线连通,其中一半以上的所述金属线的长度大于所述多个感光单元阵列间距的1.05倍。
6.根据权利要求1所述的凹面CMOS图像传感器,其特征在于,所述感光单元包括:
像素单元;
位于所述像素单元上的滤光膜;以及
位于所述滤光膜上的微透镜。
7.根据权利要求1所述的凹面CMOS图像传感器,其特征在于,所述凹面CMOS图像传感器是背照式CMOS图像传感器。
8.根据权利要求7所述的凹面CMOS图像传感器,其特征在于,所述多个分离的感光单元阵列中的每一个只包括一个感光单元,并且包括沿固定于所述基底上的平面,与所述平面相对的另一面,以及垂直于所述基底的侧面分布的掺杂区域,所述掺杂区域是通过侧向离子注入形成的。
9.根据权利要求7所述的凹面CMOS图像传感器,其特征在于,所述基底包含导电的多个分离的第一区域以及不导电的第二区域,其中所述多个分离的第一区域使得图像传感器中至少部分引线块与图像传感器封装中对应的管脚连通。
10.根据权利要求7所述的凹面CMOS图像传感器,其特征在于,所述基底包括各向异性导电材料,所述各向异性导电材料在垂直于所述基底的方向导电,以使得图像传感器中至少部分引线块与图像传感器封装中对应的管脚连通。
11.一种摄像头,包括权利要求1-10中任一项所述的凹面CMOS图像传感器。
12.根据权利要求11所述的摄像头,其特征在于,所述摄像头包括手机摄像头。
13.一种凹面CMOS图像传感元件,包括:
基底,所述基底包括可弯曲的材料;
位于所述基底上的多个分离的感光单元阵列,所述多个分离的感光单元阵列中的每一个包括至少一个感光单元;以及
支撑,所述支撑包括弯曲的支撑面,
其中,所述基底是可弯曲的,并且固定于所述支撑的支撑面上,所述支撑面的曲率使得所述多个分离的感光单元阵列形成面向镜头的凹面。
14.根据权利要求13所述的凹面CMOS图像传感元件,其特征在于,在所述多个分离的感光单元阵列中,存在两个感光单元阵列的法线形成的锐角大于10度。
15.根据权利要求13所述的凹面CMOS图像传感元件,其特征在于,在所述多个分离的感光单元阵列中,一半以上的感光单元阵列中的每一个的行或列包括不多于16个感光单元。
16.根据权利要求13所述的凹面CMOS图像传感元件,其特征在于,所述凹面CMOS图像传感元件还包括位于所述多个分离的感光单元阵列之间的低透光率的介质。
17.根据权利要求13所述的凹面CMOS图像传感元件,其特征在于,所述凹面CMOS图像传感元件是背照式CMOS图像传感元件。
18.根据权利要求17所述的凹面CMOS图像传感元件,其特征在于,所述多个分离的感光单元阵列中的每一个只包括一个感光单元,并且包括沿固定于所述基底上的平面,与所述平面相对的另一面,以及垂直于所述基底的侧面分布的掺杂区域,所述掺杂区域是通过侧向离子注入形成的。
19.根据权利要求17所述的凹面CMOS图像传感元件,其特征在于,所述基底包含导电的多个分离的第一区域与不导电的第二区域,其中所述多个分离的第一区域使得所述凹面CMOS图像传感元件中的至少部分引线块与所述支撑中对应的管脚连通。
20.根据权利要求17所述的凹面CMOS图像传感元件,其特征在于,所述基底包括各向异性导电材料,所述各向异性导电材料在垂直于所述基底的方向导电,以使得所述凹面CMOS图像传感元件中的至少部分引线块与所述支撑中对应的管脚连通。
21.根据权利要求13所述的凹面CMOS图像传感元件,其特征在于,所述多个感光单元阵列通过金属线连通,其中一半以上的所述金属线的长度大于所述多个感光单元阵列间距的1.05倍。
22.一种摄像头,包括权利要求13-21中任一项所述的凹面CMOS图像传感元件。
CN2011201275944U 2011-04-26 2011-04-26 凹面cmos图像传感器、凹面cmos图像传感元件及摄像头 Expired - Lifetime CN202549843U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011201275944U CN202549843U (zh) 2011-04-26 2011-04-26 凹面cmos图像传感器、凹面cmos图像传感元件及摄像头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011201275944U CN202549843U (zh) 2011-04-26 2011-04-26 凹面cmos图像传感器、凹面cmos图像传感元件及摄像头

Publications (1)

Publication Number Publication Date
CN202549843U true CN202549843U (zh) 2012-11-21

Family

ID=47170429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011201275944U Expired - Lifetime CN202549843U (zh) 2011-04-26 2011-04-26 凹面cmos图像传感器、凹面cmos图像传感元件及摄像头

Country Status (1)

Country Link
CN (1) CN202549843U (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106236011A (zh) * 2015-09-17 2016-12-21 北京智谷睿拓技术服务有限公司 眼底图像获取方法和装置、眼底相机
CN106236009A (zh) * 2015-09-17 2016-12-21 北京智谷睿拓技术服务有限公司 眼底图像获取方法和装置、眼底相机
CN106716639A (zh) * 2014-09-19 2017-05-24 微软技术许可有限责任公司 使用张力的图像传感器弯曲
CN107872630A (zh) * 2017-12-25 2018-04-03 信利光电股份有限公司 一种图像传感器
US10304900B2 (en) 2015-04-02 2019-05-28 Microsoft Technology Licensing, Llc Bending semiconductor chip in molds having radially varying curvature
CN111092126A (zh) * 2019-12-12 2020-05-01 浙江大立科技股份有限公司 红外探测器及其形成方法、红外探测器封装结构及其方法
CN112532942A (zh) * 2020-11-30 2021-03-19 黑龙江合师惠教育科技有限公司 一种基于摄像头的教育行为分析监控设备及其制造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716639A (zh) * 2014-09-19 2017-05-24 微软技术许可有限责任公司 使用张力的图像传感器弯曲
US10373995B2 (en) 2014-09-19 2019-08-06 Microsoft Technology Licensing, Llc Image sensor bending using tension
US10304900B2 (en) 2015-04-02 2019-05-28 Microsoft Technology Licensing, Llc Bending semiconductor chip in molds having radially varying curvature
CN106236011A (zh) * 2015-09-17 2016-12-21 北京智谷睿拓技术服务有限公司 眼底图像获取方法和装置、眼底相机
CN106236009A (zh) * 2015-09-17 2016-12-21 北京智谷睿拓技术服务有限公司 眼底图像获取方法和装置、眼底相机
CN107872630A (zh) * 2017-12-25 2018-04-03 信利光电股份有限公司 一种图像传感器
CN111092126A (zh) * 2019-12-12 2020-05-01 浙江大立科技股份有限公司 红外探测器及其形成方法、红外探测器封装结构及其方法
CN111092126B (zh) * 2019-12-12 2021-12-10 浙江大立科技股份有限公司 红外探测器及其形成方法、红外探测器封装结构及其方法
CN112532942A (zh) * 2020-11-30 2021-03-19 黑龙江合师惠教育科技有限公司 一种基于摄像头的教育行为分析监控设备及其制造方法

Similar Documents

Publication Publication Date Title
CN102201422B (zh) 凹面cmos图像传感器及其制造方法
CN202549843U (zh) 凹面cmos图像传感器、凹面cmos图像传感元件及摄像头
CN103311256B (zh) 改进的背面照明图像传感器架构及其制造方法
EP1705706B1 (en) Solid-state imaging device
US10707253B2 (en) Image sensor
US20120187463A1 (en) Cmos image sensors including backside illumination structure and method of manufacturing image sensor
US7550797B2 (en) Photoelectric conversion layer stack type color solid-state image sensing device
US20090189055A1 (en) Image sensor and fabrication method thereof
CN109065555B (zh) 图像传感器及其制造方法
US20100207226A1 (en) Image sensor and method of fabricating the same
US20050224694A1 (en) High efficiency microlens array
US20100225791A1 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
CN103579272A (zh) 成像装置、成像系统和成像装置的制造方法
JP2008052004A (ja) レンズアレイ及び固体撮像素子の製造方法
CN107154414A (zh) 背照式cmos图像传感器及其制作方法
KR20220038222A (ko) 이미지 센서
US11600095B2 (en) Optical fingerprint sensors
CN101359673B (zh) 影像感测器
US20150185380A1 (en) Color Filter Arrays, And Image Sensors And Display Devices Including Color Filter Arrays
CN100459103C (zh) 图像传感器的制造方法
KR101571353B1 (ko) 이미지 센서 및 그의 제조 방법
CN110634897B (zh) 一种背照式近红外像素单元及其制备方法
CN111199167B (zh) 光学感测结构及其形成方法
US20240120357A1 (en) Image sensor
CN101236978B (zh) 感光式芯片封装构造及其制造方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20121121

CX01 Expiry of patent term