CN202413981U - 多足步行机器人平底式脚结构 - Google Patents

多足步行机器人平底式脚结构 Download PDF

Info

Publication number
CN202413981U
CN202413981U CN2012200239199U CN201220023919U CN202413981U CN 202413981 U CN202413981 U CN 202413981U CN 2012200239199 U CN2012200239199 U CN 2012200239199U CN 201220023919 U CN201220023919 U CN 201220023919U CN 202413981 U CN202413981 U CN 202413981U
Authority
CN
China
Prior art keywords
column
sole
pressure sensor
cover plate
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN2012200239199U
Other languages
English (en)
Inventor
金波
陈刚
陈诚
陈鹰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2012200239199U priority Critical patent/CN202413981U/zh
Application granted granted Critical
Publication of CN202413981U publication Critical patent/CN202413981U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

本实用新型公开了多足步行机器人平底式脚结构,现有多足步行机器人平底式脚结构缺乏约束易绊倒,且缺乏减震、缓冲设计。本实用新型包括脚底部分、脚底姿态测量部分、小腿连接件和数据采集处理器,具体包括下脚底板、上脚底板、球面副盖板、第一立柱、第二立柱、第三立柱、第一立柱弹簧、第二立柱弹簧、第三立柱弹簧、第一立柱螺母、第二立柱螺母、第三立柱螺母、第一压力传感器、第二压力传感器、第三压力传感器、第一压垫、第二压垫和第三压垫、中间连接件、第一位移测量装置、第二位移测量装置和第三位移测量装置。本实用新型采用平底式脚结构,简单可靠;能实现对落足后的多足步行机器人脚底姿态的测量,实时感知地形状况,且增强了平稳性。

Description

多足步行机器人平底式脚结构
技术领域
本实用新型属于机器人技术领域,具体涉及一种多足步行机器人平底式脚结构。
背景技术
多足步行机器人是一种模仿多足动物运动形式具有冗余驱动、多支链、时变拓扑运动机构的足式运动机构。通常多足步行机器人具有四个或四个以上的运动足,常见的多足步行机器人有四足步行机器人、六足步行机器人、八足步行机器人等。多足步行机器人所具有的地面离散接触的足运动方式具有独特的优越性能,其可以更好的在地面崎岖的非结构化环境下运动。与轮式和履带式移动机器人相比,多足步行机器人在非结构化环境中有明显的优势。自然界中,大部分地面为非平坦地形,地球上近一半的地面不能为传统的轮式或履带式的车辆所到达,因此多足步行机器人有其广阔的应用发展空间。特别是近年来随着空间探测、抗险救灾、军事侦察、深海研究等领域的迫切需求,移动机器人的研究开始向着在地形复杂、障碍丛生的非结构化环境中高机动自主智能化运动的研究方向发展,多足步行机器人因其独特的优越性而得到众多科学家的关注。
自20世纪80年代机器人学开拓者、美国著名机器人学家R.B.McGhee等开始研究四足步行机器人以来,多足步行机器人一直是科学界的研究热点。在国外,2001年,Kenzo Nonami 开发出了可用于矿藏探测的六足机器人COMET-Ⅱ;2002年,Atsushi Konno 等人研制了一种新型的四足步行机器人 JROB-2;Dillmann等人研制成功了仿哺乳动物四足步行机器人BISAM;日本东京工业大学Shigeo Hirose教授团队研制了TITAN系列四足步行机器人;西班牙CSIC研究议会的IAI研究中心Gonzalez de Santos团队长期从事扫雷步行机器人方面的研究工作,相继研制了扫雷机器人Silo4 和Silo6;美国Boston Dynamics公司开发了BigDog军用机器人和小型四足步行机器人LittleDog。在国内关于步行机器人的研究起步相对较晚,但是经过科研工作者的不懈努力也取得了长足的进步。其中具有代表性的研究成果有:上海交通大学研发的四足行走机器人JTUWM;华中科技大学的陈学东等人研制的具有腿/臂融合机构的“4+2”多足步行机器人;哈尔滨工程大学在两栖仿生机器蟹和多足机器人领域做了大量的工作。
在以上所提及的多足步行机器人中,COMET-Ⅱ六足机器人、JROB-2四足步行机器人、TITAN系列四足步行机器人、Silo4扫雷机器人、“4+2”多足步行机器人都采用了平底式脚结构设计。虽然现有的多足步行机器人大量采用平底足端式脚结构,但是现有的平底式脚结构也存在一些亟待解决的问题,如有些平底式脚结构缺乏约束从而造成多足步行机器人行走过程中机器人脚产生晃动;一些平底足端式脚采用被动关节容易造成多足步行机器人在行走的过程中被绊倒;平底式脚结构设计中缺乏减震、缓冲设计;平底式脚结构中对脚力的测量过于复杂。平底式脚结构需要进一步研究优化。
发明内容
本实用新型的目的在于针对现有技术的不足,提供一种多足步行机器人平底式脚结构。
本实用新型包括脚底部分、脚底姿态测量部分、小腿连接件和数据采集处理器。
脚底部分包括下脚底板、上脚底板、球面副盖板、第一立柱、第二立柱、第三立柱、第一立柱弹簧、第二立柱弹簧、第三立柱弹簧、第一立柱螺母、第二立柱螺母、第三立柱螺母、第一压力传感器、第二压力传感器、第三压力传感器、第一压垫、第二压垫和第三压垫。上脚底板位于下脚底板的正上方,球面副盖板位于上脚底板的正上方,球面副盖板与上脚底板都开有三个通孔,下脚底板开有三个圆孔,且通孔与圆孔位置相对应,球面副盖板与上脚底板之间通过三个螺钉螺纹固定。下脚底板与第一立柱、第二立柱和第三立柱的下端通过螺纹连接;第一立柱、第二立柱和第三立柱的上端依次穿过上脚底板和球面副盖板上的通孔,并分别与第一立柱螺母、第二立柱螺母和第三立柱螺母通过螺纹连接,第一立柱、第二立柱和第三立柱与上脚底板和球面副盖板的通孔之间为间隙配合。第一立柱弹簧、第二立柱弹簧和第三立柱弹簧分别套在第一立柱、第二立柱和第三立柱上;第一立柱弹簧、第二立柱弹簧和第三立柱弹簧的外径小于上脚底板上通孔直径和下脚底板上圆孔直径,大于球面副盖板上通孔直径,第一立柱弹簧、第二立柱弹簧和第三立柱弹簧的上端部分位于上脚底板的三个通孔中,第一立柱弹簧、第二立柱弹簧和第三立柱弹簧的下端部分位于下脚底板的三个圆孔中;第一立柱弹簧、第二立柱弹簧和第三立柱弹簧处于压缩状态,第一立柱螺母、第二立柱螺母和第三立柱螺母的下表面与球面副盖板的上表面相互接触压紧,下脚底板和上脚底板之间具有一定的间隙。下脚底板的上表面上设置三个凸台,同样上脚底板下表面上设置三个凸台,上脚底板下表面上的三个凸台位于下脚底板上表面上的三个凸台的正上方,第一压力传感器、第二压力传感器和第三压力传感器分别置于上脚底板下表面上的三个凸台上,第一压垫、第二压垫和第三压垫分别置于下脚底板上表面上的三个凸台上,第一压垫、第二压垫和第三压垫的上表面的面积与第一压力传感器、第二压力传感器和第三压力传感器的有效测量面积相同。上脚底板和球面副盖板上分别设置三个导线槽,球面副盖板上的三个导线槽位于上脚底板上的三个导线槽的正上方,第一压力传感器、第二压力传感器和第三压力传感器的信号线分别穿过上脚底板和球面副盖板上的导线槽与数据采集处理器连接。
脚底姿态测量部分包括中间连接件、第一位移测量装置、第二位移测量装置和第三位移测量装置。中间连接件的轴线与脚底部分轴线重合,中间连接件的下端通过球铰与脚底部分连接,中间连接件的上端圆盘位于球面副盖板的正上方并通过三个螺钉与小腿连接件下端圆盘连接固定。第一位移测量装置、第二位移测量装置和第三位移测量装置结构相同,设置在中间连接件周围,其中中间连接件的轴线、第一位移测量装置的轴线和第三位移测量装置的轴线共面,中间连接件的轴线与第二位移测量装置的轴线所在的面,与中间连接件的轴线、第一位移测量装置的轴线和第三位移测量装置的轴线所在的面垂直,以第一位移测量装置为例对其结构进行说明。第一位移测量装置的下端通过球铰与脚底部分连接,第一位移测量装置的上端通过球铰与中间连接件上端圆盘和小腿连接件下端圆盘连接。第一位移测量装置、第二位移测量装置和第三位移测量装置的信号线分别穿过其上的线槽与数据采集处理器连接。脚底姿态测量部分具有三个转动自由度。 
本实用新型可以达到的有益效果:
(1)本实用新型采用平底式脚结构,多足步行机器人落足时平底足端与地面之间的接触面积大,特别对于在松软地面环境中平底式脚结构可以有效的解决多足步行机器人脚的下陷问题;
(2)本实用新型采用三个压力传感器实现脚力的测量,简单可靠,同时通过三个压力传感器所测力值可以得到作用于脚底的地面反力的集中作用点从而对脚力的测量更为准确,可以实现多足步行机器人动态稳定运动的规划与控制;
(3)本实用新型通过脚底姿态测量部分可以实现对落足后的多足步行机器人脚底姿态的测量,从而使多足步行机器人在行走过程中实时感知地形状况,同时可以得到作用于脚底的地面反力的合力的作用方向,进而可以对多足步行机器人的受力状况进行综合精确分析;
(4)本实用新型在脚底部分设置三个弹簧,可以有效的减小多足步行机器人在行走过程中与地面之间相互作用而造成的震动和冲击,可以显著提高多足步行机器人行走过程中的平稳性。
附图说明
图1本实用新型的三维结构示意图;
图2本实用新型的前视图;
图3本实用新型的A-A剖视图;
图4本实用新型的B-B剖视图;
图5本实用新型的多足步行机器人脚底姿态计算示意图。
图中:1.下脚底板,2.上脚底板,3.球面副盖板,4.第一立柱,5.第二立柱,6.第三立柱,7.第一立柱弹簧,8.第二立柱弹簧,9.第三立柱弹簧,10.第一立柱螺母,11.第二立柱螺母,12.第三立柱螺母,13.第一压力传感器,14.第二压力传感器,15.第三压力传感器,16.第一压垫,17.第二压垫,18.第三压垫,19.数据采集处理器,20.中间连接件,21.第一位移测量装置,22.第二位移测量装置,23.第三位移测量装置,24.小腿连接件,25.导线槽。
具体实施方式
下面结合附图对本实用新型作进一步说明。
本实用新型包括脚底部分、脚底姿态测量部分、小腿连接件24和数据采集处理器19。
如图1、2、3、4所示,脚底部分包括下脚底板1、上脚底板2、球面副盖板3、第一立柱4、第二立柱5、第三立柱6、第一立柱弹簧7、第二立柱弹簧8、第三立柱弹簧9、第一立柱螺母10、第二立柱螺母11、第三立柱螺母12、第一压力传感器13、第二压力传感器14、第三压力传感器15、第一压垫16、第二压垫17和第三压垫18。上脚底板2位于下脚底板1的正上方,球面副盖板3位于上脚底板2的正上方,球面副盖板3与上脚底板2都开有三个通孔,下脚底板1开有三个圆孔,且通孔与圆孔位置相对应,球面副盖板3与上脚底板2之间通过三个螺钉螺纹固定。下脚底板1与第一立柱4、第二立柱5和第三立柱6的下端通过螺纹连接;第一立柱4、第二立柱5和第三立柱6的上端依次穿过上脚底板2和球面副盖板3上的通孔,并分别与第一立柱螺母10、第二立柱螺母11和第三立柱螺母12通过螺纹连接,第一立柱4、第二立柱5和第三立柱6与上脚底板2和球面副盖板3的通孔之间为间隙配合。第一立柱弹簧7、第二立柱弹簧8和第三立柱弹簧9分别套在第一立柱4、第二立柱5和第三立柱6上;第一立柱弹簧7、第二立柱弹簧8和第三立柱弹簧9的外径小于上脚底板2上通孔直径和下脚底板1上圆孔直径,大于球面副盖板3上通孔直径,因此,第一立柱弹簧7、第二立柱弹簧8和第三立柱弹簧9的上端部分位于上脚底板2的三个通孔中,第一立柱弹簧7、第二立柱弹簧8和第三立柱弹簧9的下端部分位于下脚底板1的三个圆孔中;第一立柱弹簧7、第二立柱弹簧8和第三立柱弹簧9处于压缩状态,在第一立柱弹簧7、第二立柱弹簧8和第三立柱弹簧9的作用下,第一立柱螺母10、第二立柱螺母11和第三立柱螺母12的下表面与球面副盖板3的上表面相互接触压紧,下脚底板1和上脚底板2之间具有一定的间隙。下脚底板1的上表面上设置三个凸台,同样上脚底板2下表面上设置三个凸台,上脚底板2下表面上的三个凸台位于下脚底板1上表面上的三个凸台的正上方,第一压力传感器13、第二压力传感器14和第三压力传感器15分别置于上脚底板2下表面上的三个凸台上,第一压垫16、第二压垫17和第三压垫18分别置于下脚底板1上表面上的三个凸台上,第一压垫16、第二压垫17和第三压垫18的上表面的面积与第一压力传感器13、第二压力传感器14和第三压力传感器15的有效测量面积相同。上脚底板2和球面副盖板3上分别设置三个导线槽25,球面副盖板3上的三个导线槽位于上脚底板2上的三个导线槽的正上方,第一压力传感器13、第二压力传感器14和第三压力传感器15的信号线分别穿过上脚底板2和球面副盖板3上的导线槽与数据采集处理器19连接。
如图1、2所示,脚底姿态测量部分包括中间连接件20、第一位移测量装置21、第二位移测量装置22和第三位移测量装置23。中间连接件20的轴线与脚底部分轴线重合,中间连接件20的下端通过球铰与脚底部分连接,中间连接件20的上端圆盘位于球面副盖板3的正上方并通过三个螺钉与小腿连接件24下端圆盘连接固定。第一位移测量装置21、第二位移测量装置22和第三位移测量装置23结构相同,设置在中间连接件20周围,其中中间连接件20的轴线、第一位移测量装置21的轴线和第三位移测量装置23的轴线共面,中间连接件20的轴线和第二位移测量装置22的轴线所在的面,与中间连接件20的轴线、第一位移测量装置21的轴线和第三位移测量装置23的轴线所在的面垂直,以第一位移测量装置21为例对其结构进行说明。第一位移测量装置21的下端通过球铰与脚底部分连接,第一位移测量装置21的上端通过球铰与中间连接件20上端圆盘和小腿连接件24下端圆盘连接。第一位移测量装置21、第二位移测量装置22和第三位移测量装置23的信号线分别穿过其上的线槽与数据采集处理器19连接。脚底姿态测量部分具有三个转动自由度。
多足步行机器人平底式脚落地时,首先下脚底板1压缩第一立柱弹簧7、第二立柱弹簧8和第三立柱弹簧9,同时第一立柱4、第二立柱5和第三立柱6沿球面副盖板3上的通孔向上滑动,第一立柱弹簧7、第二立柱弹簧8和第三立柱弹簧9进一步被压缩直到第一压垫16、第二压垫17和第三压垫18与第一压力传感器13、第二压力传感器14和第三压力传感器15相接触,多足步行机器人平底式脚所受到的地面作用力通过第一压垫16、第二压垫17和第三压垫18均匀作用于第一压力传感器13、第二压力传感器14和第三压力传感器15上从而可以精确的测得脚力,第一压力传感器13、第二压力传感器14和第三压力传感器15所测得的力信号输入到数据采集处理器19,数据采集处理器19对第一压力传感器13、第二压力传感器14和第三压力传感器15的信号进行采集分析得到第一压力传感器13、第二压力传感器14和第三压力传感器15测得的力值,并通过第一压力传感器13、第二压力传感器14和第三压力传感器15测得的力值得到作用于多足步行机器人平底式脚上的地面反力的合力及合力作用点的位置。第一位移测量装置21、第二位移测量装置22和第三位移测量装置23的三个位移测量量输入到数据采集处理器19中,经数据采集处理器19处理可以得到脚底部分相对于中间连接件20上端圆盘的姿态。从而使多足步行机器人在行走过程中实时感知地形状况,作用于多足步行机器人平底式脚的地面反力的合力的方向可以计算得到,进而可以对多足步行机器人的受力状况进行综合精确分析。
脚底姿态测量部分对多足步行机器人脚底姿态计算如下:
如图5所示,在坐标系                                               
Figure DEST_PATH_IMAGE002
中各点坐标为:
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE010
, 
Figure DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE018
其中,
Figure DEST_PATH_IMAGE020
为坐标系
Figure 930021DEST_PATH_IMAGE002
的坐标原点,
Figure DEST_PATH_IMAGE022
为坐标系
Figure DEST_PATH_IMAGE024
的坐标原点,
Figure DEST_PATH_IMAGE026
分别为球铰的球心,
Figure DEST_PATH_IMAGE028
的距离都为
Figure DEST_PATH_IMAGE032
Figure DEST_PATH_IMAGE034
为中间连接件的高度。
在坐标系
Figure 535618DEST_PATH_IMAGE024
中各点的坐标为:
Figure DEST_PATH_IMAGE036
Figure DEST_PATH_IMAGE038
Figure DEST_PATH_IMAGE040
在坐标系
Figure 146728DEST_PATH_IMAGE002
中,由两点间距离公式得:
Figure DEST_PATH_IMAGE042
                                (1)
其中,
Figure DEST_PATH_IMAGE044
分别为第一位移测量装置21、第二位移测量装置22和第三位移测量装置23的测量值。
设坐标系先绕
Figure DEST_PATH_IMAGE046
轴旋转角,然后绕
Figure DEST_PATH_IMAGE050
轴旋转
Figure DEST_PATH_IMAGE052
角,最后绕
Figure DEST_PATH_IMAGE054
轴旋转角,其姿态与坐标系
Figure 875704DEST_PATH_IMAGE024
姿态相同,则:
Figure DEST_PATH_IMAGE058
  其中, 
Figure DEST_PATH_IMAGE060
为绕
Figure 871342DEST_PATH_IMAGE046
轴旋转
Figure 602538DEST_PATH_IMAGE048
角的旋转矩阵。
Figure DEST_PATH_IMAGE062
  其中, 
Figure DEST_PATH_IMAGE064
为绕
Figure 923798DEST_PATH_IMAGE050
轴旋转
Figure 474865DEST_PATH_IMAGE052
角的旋转矩阵。
Figure DEST_PATH_IMAGE066
   其中,  
Figure DEST_PATH_IMAGE068
为绕
Figure 539773DEST_PATH_IMAGE054
轴旋转
Figure 125475DEST_PATH_IMAGE056
角的旋转矩阵。
Figure DEST_PATH_IMAGE070
 (2)
其中,
Figure DEST_PATH_IMAGE072
为先绕
Figure 352057DEST_PATH_IMAGE046
轴旋转
Figure 593682DEST_PATH_IMAGE048
角,再绕轴旋转
Figure 574594DEST_PATH_IMAGE052
角,最后绕轴旋转角的旋转矩阵。
Figure 107709DEST_PATH_IMAGE024
坐标系的变换矩阵为:
   (3)
则点D,E,F在坐标系
Figure 668003DEST_PATH_IMAGE002
中坐标为:
Figure DEST_PATH_IMAGE076
Figure DEST_PATH_IMAGE078
                           (4)
Figure DEST_PATH_IMAGE080
将公式(4)带入公式(1)得:
Figure DEST_PATH_IMAGE082
Figure DEST_PATH_IMAGE084
       (5)
其中,
Figure DEST_PATH_IMAGE086
简记为
Figure DEST_PATH_IMAGE088
,
Figure DEST_PATH_IMAGE090
简记为
Figure DEST_PATH_IMAGE092
,其余相同。
①式-③式得:
   ④
④式带入到①式中得:
Figure DEST_PATH_IMAGE096
②式得:
Figure DEST_PATH_IMAGE098
 。
由以上计算即可以得到多足步行机器人脚底部分相对于中间连接件20上端圆盘的姿态。

Claims (1)

1.多足步行机器人平底式脚结构,包括脚底部分、脚底姿态测量部分、小腿连接件和数据采集处理器,其特征在于:
脚底部分包括下脚底板、上脚底板、球面副盖板、第一立柱、第二立柱、第三立柱、第一立柱弹簧、第二立柱弹簧、第三立柱弹簧、第一立柱螺母、第二立柱螺母、第三立柱螺母、第一压力传感器、第二压力传感器、第三压力传感器、第一压垫、第二压垫和第三压垫,上脚底板位于下脚底板的正上方,球面副盖板位于上脚底板的正上方,球面副盖板与上脚底板都开有三个通孔,下脚底板开有三个圆孔,且通孔与圆孔位置相对应,球面副盖板与上脚底板之间通过三个螺钉螺纹固定,下脚底板与第一立柱、第二立柱和第三立柱的下端通过螺纹连接;第一立柱、第二立柱和第三立柱的上端依次穿过上脚底板和球面副盖板上的通孔,并分别与第一立柱螺母、第二立柱螺母和第三立柱螺母通过螺纹连接,第一立柱、第二立柱和第三立柱与上脚底板和球面副盖板的通孔之间为间隙配合,第一立柱弹簧、第二立柱弹簧和第三立柱弹簧分别套在第一立柱、第二立柱和第三立柱上;第一立柱弹簧、第二立柱弹簧和第三立柱弹簧的外径小于上脚底板上通孔直径和下脚底板上圆孔直径,大于球面副盖板上通孔直径,第一立柱弹簧、第二立柱弹簧和第三立柱弹簧的上端部分位于上脚底板的三个通孔中,第一立柱弹簧、第二立柱弹簧和第三立柱弹簧的下端部分位于下脚底板的三个圆孔中;第一立柱弹簧、第二立柱弹簧和第三立柱弹簧处于压缩状态,第一立柱螺母、第二立柱螺母和第三立柱螺母的下表面与球面副盖板的上表面相互接触压紧,下脚底板和上脚底板之间具有一定的间隙,下脚底板的上表面上设置三个凸台,同样上脚底板下表面上设置三个凸台,上脚底板下表面上的三个凸台位于下脚底板上表面上的三个凸台的正上方,第一压力传感器、第二压力传感器和第三压力传感器分别置于上脚底板下表面上的三个凸台上,第一压垫、第二压垫和第三压垫分别置于下脚底板上表面上的三个凸台上,第一压垫、第二压垫和第三压垫的上表面的面积与第一压力传感器、第二压力传感器和第三压力传感器的有效测量面积相同,上脚底板和球面副盖板上分别设置三个导线槽,球面副盖板上的三个导线槽位于上脚底板上的三个导线槽的正上方,第一压力传感器、第二压力传感器和第三压力传感器的信号线分别穿过上脚底板和球面副盖板上的导线槽与数据采集处理器连接;
脚底姿态测量部分包括中间连接件、第一位移测量装置、第二位移测量装置和第三位移测量装置,中间连接件的轴线与脚底部分轴线重合,中间连接件的下端通过球铰与脚底部分连接,中间连接件的上端圆盘位于球面副盖板的正上方并通过三个螺钉与小腿连接件下端圆盘连接固定,第一位移测量装置、第二位移测量装置和第三位移测量装置结构相同,设置在中间连接件周围,其中中间连接件的轴线、第一位移测量装置的轴线和第三位移测量装置的轴线共面,中间连接件的轴线与第二位移测量装置的轴线所在的面,与中间连接件的轴线、第一位移测量装置的轴线和第三位移测量装置的轴线所在的面垂直,以第一位移测量装置为例对其结构进行说明,第一位移测量装置的下端通过球铰与脚底部分连接,第一位移测量装置的上端通过球铰与中间连接件上端圆盘和小腿连接件下端圆盘连接,第一位移测量装置、第二位移测量装置和第三位移测量装置的信号线分别穿过其上的线槽与数据采集处理器连接,脚底姿态测量部分具有三个转动自由度。
CN2012200239199U 2012-01-19 2012-01-19 多足步行机器人平底式脚结构 Withdrawn - After Issue CN202413981U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012200239199U CN202413981U (zh) 2012-01-19 2012-01-19 多足步行机器人平底式脚结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012200239199U CN202413981U (zh) 2012-01-19 2012-01-19 多足步行机器人平底式脚结构

Publications (1)

Publication Number Publication Date
CN202413981U true CN202413981U (zh) 2012-09-05

Family

ID=46738768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012200239199U Withdrawn - After Issue CN202413981U (zh) 2012-01-19 2012-01-19 多足步行机器人平底式脚结构

Country Status (1)

Country Link
CN (1) CN202413981U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102556201A (zh) * 2012-01-19 2012-07-11 浙江大学 一种多足步行机器人平底式脚结构
CN103264734A (zh) * 2013-04-22 2013-08-28 浙江大学 一种腿式机器人足底触地感知机构
CN105501325A (zh) * 2015-12-17 2016-04-20 常州大学 仿人机器人两自由度并联减振机械足
CN111924020A (zh) * 2020-08-11 2020-11-13 腾讯科技(深圳)有限公司 用于机器人的腿部组件及设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102556201A (zh) * 2012-01-19 2012-07-11 浙江大学 一种多足步行机器人平底式脚结构
CN103264734A (zh) * 2013-04-22 2013-08-28 浙江大学 一种腿式机器人足底触地感知机构
CN103264734B (zh) * 2013-04-22 2015-06-17 浙江大学 一种腿式机器人足底触地感知机构
CN105501325A (zh) * 2015-12-17 2016-04-20 常州大学 仿人机器人两自由度并联减振机械足
CN111924020A (zh) * 2020-08-11 2020-11-13 腾讯科技(深圳)有限公司 用于机器人的腿部组件及设备
WO2022033044A1 (zh) * 2020-08-11 2022-02-17 腾讯科技(深圳)有限公司 用于机器人的腿部组件及设备

Similar Documents

Publication Publication Date Title
CN102556201B (zh) 一种多足步行机器人平底式脚结构
CN102530121B (zh) 一种多足步行机器人脚
CN202413981U (zh) 多足步行机器人平底式脚结构
CN102556197B (zh) 一种多足步行机器人单腿实验平台
CN102556198A (zh) 一种六足步行机器人
CN103625572B (zh) 带有弹性四杆机构的四足机器人腿
CN105172933B (zh) 一种仿蜘蛛的多足机器人平台
CN203946189U (zh) 一种用于步行机器人的足部模块
US8977397B2 (en) Method for controlling gait of robot
CN202378989U (zh) 多足步行机器人脚
CN106828643B (zh) 一种全方向运动球形机器人
CN104071250A (zh) 一种模块化的十自由度双足步行机器人
CN103481964A (zh) 一种具有越障能力的六足步行机器人
CN101570219A (zh) 具有三维力感知及空间表面自适应能力的仿生腿
CN103487194A (zh) 正交解耦六维力传感器
CN100523753C (zh) 上下预紧式并联结构六维力传感器
CN204110199U (zh) 一种运动装置及采用该装置的仿生机器人
CN104742151A (zh) 模块化双自由度球形关节及蛇形机器人及运动控制方法
CN106737669A (zh) 考虑外力冲击干扰和阻尼的多足机器人能量裕度计算方法
CN109911052B (zh) 一种轮腿式多模式巡检搜救机器人
CN109733500B (zh) 一种可重构六足机器人装置
CN102431027B (zh) 一种运动完全解耦的空间三自由度并联机器人机构
CN206039291U (zh) 一种兼具自主导航及远程遥控的六足机器人
CN101927793B (zh) 匍匐与直立运动互变的变结构四足机器人结构
CN111439320A (zh) 一种可变曲度的混合弹性缓冲机器人仿生小腿及调节方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20120905

Effective date of abandoning: 20130807

RGAV Abandon patent right to avoid regrant