CN202290071U - 用于产生连续浓度梯度和输出独立浓度的微流控芯片 - Google Patents

用于产生连续浓度梯度和输出独立浓度的微流控芯片 Download PDF

Info

Publication number
CN202290071U
CN202290071U CN2011202535351U CN201120253535U CN202290071U CN 202290071 U CN202290071 U CN 202290071U CN 2011202535351 U CN2011202535351 U CN 2011202535351U CN 201120253535 U CN201120253535 U CN 201120253535U CN 202290071 U CN202290071 U CN 202290071U
Authority
CN
China
Prior art keywords
micro
concentration
fluidic chip
concentration gradient
independent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011202535351U
Other languages
English (en)
Inventor
李卓荣
易长青
肖来龙
岳振峰
沈金灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Shenzhen Academy of Inspection and Quarantine
Original Assignee
South China University of Technology SCUT
Shenzhen Academy of Inspection and Quarantine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, Shenzhen Academy of Inspection and Quarantine filed Critical South China University of Technology SCUT
Priority to CN2011202535351U priority Critical patent/CN202290071U/zh
Application granted granted Critical
Publication of CN202290071U publication Critical patent/CN202290071U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本实用新型涉及一种用于产生连续浓度梯度和输出独立浓度的微流控芯片,其特征在于:包括二个进样微流管道,一个微流池和若干个输出独立浓度的微流管道。所述微流控芯片中微流池的最优横切面设置是等腰三角形。本微流控芯片的三角形结构有利于减小扩散混和效率,使得在低流速下也能够获得很宽的浓度梯度。本微流控芯片还具有制作简单、操作方便、体积小和微型化等优点。

Description

用于产生连续浓度梯度和输出独立浓度的微流控芯片
技术领域
本实用新型涉及微流控技术领域,具体涉及一种用于产生连续浓度梯度和输出独立浓度的微流控芯片。 
背景技术
化合物的浓度是所有化学和生物反应中的重要参数。一般而言,要测定化合物作用于一个生物体系的有效浓度时,需要制备一系列递升或递降的浓度,并对每个浓度进行测试。由于递升或递降的浓度均以串行形式产生,且最高与最低浓度往往相差几个数量级,因此化合物浓度梯度的制备对化学和生物实验影响非常大。 
微流控芯片能实现浓度梯度的并行生成,且具有自动化和高重复性等性质,所以一直备受关注。以微流控芯技术产生浓度梯度的代表结构有T型微流管。该结构有两个进样和一个出样口,化合物与缓冲液在T型管交叉点接触后沿出样管下游以扩散作用混合,由于出样管的管径不变,因此T型管的扩散距离不变。 
在对现有技术的研究和实践过程中,本实用新型的发明人发现,在低流速的条件下,T型管所产生的浓度梯度只集中在仅仅数百微米内,难以有效地利用。提升流速虽然有助于增宽T型管的浓度梯度,但对于脆弱的生物细胞而言,提升流速所增加的剪切力对细胞活性有不良影响。因此以T型微流管进行的细胞实验通量也一般较低。由于溶液的高效扩散混和使得宽的浓度梯度很难获得,而形成特定的浓度梯度在很多生物和化学研究过程中具有极其重要的作用。 
实用新型内容
本实用新型实施例提供种用于产生连续浓度梯度和输出独立浓度的微流控芯片。 
一种用于产生连续浓度梯度和输出独立浓度的微流控芯片,包括:二个进 样微流管道,一个微流池和若干个输出独立浓度的微流管道;所述进样微流管道和输出浓度的微流管道均直接与微流池相连接。 
可选的,所述的微流控芯片中的微流池的横切面可以是等腰三角形;可选的,所述的二个进样微流管道直接与等腰三角形样品池的底边相连接;所述的输出浓度的微流管道直接与等腰三角形样品池的两个侧边相连接。 
在本实用新型提供的微流控芯片中,由于微流池的横切面是一等腰三角形且二个进样管从三角形的底部进样,增大了溶质扩散的距离,而这距离是由等腰三角形的底部至顶部逐渐减少,因而在低流速情况下也能降低混合效率,使整个微流池的两等边都维持着一定的浓度差,有效地增加浓度梯度的覆盖率。本微流控芯片的微流池两侧边与输出独立浓度的多支管相接可进一步增加浓度梯度的覆盖率,因为一部份的水流经支管离开微流池时把一部份溶质一并带走,能增加微流池中浓度梯度与起始浓度之间的差距,是一种基于对流运输达到生成更宽的浓度梯度的设置。而传统T形微流管道只有一个既短且不变的扩散距离,在低流速下溶质仅能够在数百微米内混合,即使T形管道的下流管道长度增加也无法获得更宽的浓度梯度。 
本实用新型的有益效果是:微流控芯片的三角形结构有利于减小扩散混和效率,使得在低流速下也能够获得很宽的浓度梯度。微流池两侧边接上的支管能通过对流运输进一步扩宽浓度梯度。由于三角形微流池的面积有限,获得的连续性浓度梯度较难被充分利用,支管能从微流池中引出连续性浓度并混合成多个独立浓度,随着支管的延伸运输至芯片其他区域,更有效地利用生成的浓度梯度。本微流控芯片还具有制作简单、微型化、操作方便且不须依赖主动式器件产生浓度梯度等优点。 
本实用新型提供的微流控芯片可以与现有的用于细胞固定的微流控芯片整合,通过固定神经细胞瘤细胞,以实现高通量麻痹性贝类毒素的检测。 
附图说明
图1是本实用新型实施例提供的微流控芯片中等腰三角形微流池及出入口的位置图; 
图2是本实用新型实施例提供的微流控芯片中产生的浓度梯度经过支管后 形成独立浓度的实验数据; 
图3是在于图2相同实验条件下利用软件Fluent 6.0生成的数学模拟图。 
具体实施方式
本实用新型实施例提供一种用于产生连续浓度梯度和输出独立浓度的微流控芯片,以下进行详细说明。 
理论上,三角形微流管的两侧边能产生无限个连续性浓度,实际上可用的独立浓度数目则受三角形的几何尺度所限。要进一步提升独立浓度的数目可以增大等腰三角形结构和/或缩小输出微流管的宽度。本实用新型实施例以八个输出管道为例,进一步阐述本实用新型内容。 
请参见图1,图1所示的是微流控芯片中等腰三角形微流池及出入口的位置图:微流控芯片由缓冲液入口,试剂入口及A-H八个出口组成,微流控芯片是用聚二甲基硅氧烷注塑成型。试剂入口可以输入单一或多种溶质的混合液,本实施例以荧光素与Cy5-dUTP的混合试剂液为例:在二个进样口分别加入缓冲液和荧光素(10μM)与Cy5-dUTP(10μM)的混合试剂。以共聚焦荧光显微镜观察,其中荧光素激发波长为488nm,发射滤光片选择为505-530nm,Cy5-dUTP激发波长为633nm,发射滤光片选择为LP 650nm,并以光电倍增管拍摄记录。如图1的显微镜照片(只显示荧光素的荧光信号)所示,三角形微流管的两等边能产生浓度梯度。图1中的荧光强度与距离关系图是沿显微镜照片中两条白色虚线处读取芯片内不同且连续的浓度梯度分布情况,可见靠近混合试剂进口端的浓度最高,浓度沿三角形底端往顶端方向续渐下降,与由缓冲液端往顶端方向的浓度分布情况成镜像关系。 
请参阅图2,图2是芯片中产生的浓度梯度经过支管后形成独立浓度的实验数据,图2所示为图1中连续性浓度经过支管A-H后形成的不连续独立浓度,信号读取位置处于距微流池等边1mm的各条支管下游。由支管B可见,利用不同溶质的扩散系数差异,微流池对荧光素与Cy5-dUTP的输出作出了一定程度的分馏。图3是在于图2相同实验条件下生成的数学模拟图:利用Fluent6.0构建最少有300000结节的等腰三角形池及相关支管模型,并设定三个维度方向的流速、试剂浓度、连续性参数的收敛准则为10-5。图3可证明实验和模 拟结果中的分馏及浓度梯度趋势均一致。 
以上对本实用新型实施例所提供的用于产生连续浓度梯度和输出独立浓度的微流控芯片进行了详细介绍,本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想;同时,对于本领域的一般技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本实用新型的限制。 

Claims (5)

1.一种用于产生连续浓度梯度和输出独立浓度的微流控芯片,其特征在于,包括:二个进样微流管道,一个微流池和若干个输出独立浓度的微流管道;所述进样微流管道和输出浓度的微流管道均直接与微流池相连接。
2.根据权利要求1所述的用于产生连续浓度梯度和输出独立浓度的微流控芯片,其特征在于:所述微流池的横切面是等腰三角形的。
3.根据权利要求1所述的用于产生连续浓度梯度和输出独立浓度的微流控芯片,其特征在于:所述二个进样微流管道直接与等腰三角形样品池的底边相连接。
4.根据权利要求1所述的用于产生连续浓度梯度和输出独立浓度的微流控芯片,其特征在于:所述输出浓度的微流管道直接与等腰三角形样品池的两个侧边相连接。
5.根据权利要求1~4中任一项所述的用于产生连续浓度梯度和输出独立浓度的微流控芯片,其特征在于:所述微流控芯片是用聚二甲基硅氧烷注塑成型。 
CN2011202535351U 2011-07-18 2011-07-18 用于产生连续浓度梯度和输出独立浓度的微流控芯片 Expired - Fee Related CN202290071U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011202535351U CN202290071U (zh) 2011-07-18 2011-07-18 用于产生连续浓度梯度和输出独立浓度的微流控芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011202535351U CN202290071U (zh) 2011-07-18 2011-07-18 用于产生连续浓度梯度和输出独立浓度的微流控芯片

Publications (1)

Publication Number Publication Date
CN202290071U true CN202290071U (zh) 2012-07-04

Family

ID=46359054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011202535351U Expired - Fee Related CN202290071U (zh) 2011-07-18 2011-07-18 用于产生连续浓度梯度和输出独立浓度的微流控芯片

Country Status (1)

Country Link
CN (1) CN202290071U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032511A (zh) * 2015-08-25 2015-11-11 辽宁中医药大学 一种可控化产生稳定浓度梯度的微流控芯片
CN114931988A (zh) * 2022-06-28 2022-08-23 苏州大学 纳升级分子浓度梯度液滴生成微流控芯片及其使用方法
WO2023101954A1 (en) * 2021-11-30 2023-06-08 Massachusetts Institute Of Technology On-site growth of halide perovskite micro and nanocrystals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032511A (zh) * 2015-08-25 2015-11-11 辽宁中医药大学 一种可控化产生稳定浓度梯度的微流控芯片
WO2023101954A1 (en) * 2021-11-30 2023-06-08 Massachusetts Institute Of Technology On-site growth of halide perovskite micro and nanocrystals
CN114931988A (zh) * 2022-06-28 2022-08-23 苏州大学 纳升级分子浓度梯度液滴生成微流控芯片及其使用方法
CN114931988B (zh) * 2022-06-28 2024-03-29 苏州蜜思肤化妆品股份有限公司 纳升级分子浓度梯度液滴生成微流控芯片及其使用方法

Similar Documents

Publication Publication Date Title
Li et al. Shape-based separation of microalga Euglena gracilis using inertial microfluidics
CN202290071U (zh) 用于产生连续浓度梯度和输出独立浓度的微流控芯片
Zhang et al. Design of a single-layer microchannel for continuous sheathless single-stream particle inertial focusing
CN102284262A (zh) 一种微流控微球制备装置
Fan et al. Effect of pore shape and spacing on water droplet dynamics in flow channels of proton exchange membrane fuel cells
WO2020248473A1 (zh) 一种基于微流控芯片的纳米微晶纤维素制备方法
Lombodorj et al. High-throughput white blood cell (leukocyte) enrichment from whole blood using hydrodynamic and inertial forces
CN106190829A (zh) 一种用于细胞高精度排列及检测的微流控生物芯片
Wang et al. A microfluidic prototype system towards microalgae cell separation, treatment and viability characterization
Feng et al. Viscoelastic particle focusing and separation in a spiral channel
CN103331121A (zh) 微型流体混合系统
Shen et al. Multi-vortex regulation for efficient fluid and particle manipulation in ultra-low aspect ratio curved microchannels
Tayeb et al. Evaluation of hydrodynamic and thermal behaviour of non-newtonian-nanofluid mixing in a chaotic micromixer
Omrani et al. High-throughput isolation of cancer cells in spiral microchannel by changing the direction, magnitude and location of the maximum velocity
CN206701180U (zh) 三维螺旋被动式微混合器
Chen et al. Numerical analysis of mixing performance in an electroosmotic micromixer with cosine channel walls
Xu et al. A microfluidic chip with double-slit arrays for enhanced capture of single cells
Zhao et al. Double-mode microparticle manipulation by tunable secondary flow in microchannel with arc-shaped groove arrays
CN206382026U (zh) 一种细胞脂肪颗粒检测芯片
Zhang et al. A novel microparticle size sorting technology based on sheath flow stable expansion regimes
Chen et al. A 3D-Printed Standardized Modular Microfluidic System for Droplet Generation
Sun et al. A resistance-based Microfluidic chip for deterministic single cell trapping followed by immunofluorescence staining
Tokihiro et al. Enhanced capillary pumping using open-channel capillary trees with integrated paper pads
EP3723906A1 (en) Inertial cell focusing and sorting
CN205382177U (zh) 一种内置细胞拦截器的高通量多单元微流控芯片装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20160718

CF01 Termination of patent right due to non-payment of annual fee