一种四转子活塞发动机
技术领域
本实用新型主要涉及到发动机领域,特指一种可应用于活塞式内燃机、外燃机等领域的四转子活塞发动机。
背景技术
活塞式发动机主要有往复活塞式发动机和旋转活塞式发动机两类。大多数往复活塞式发动机上都利用曲柄连杆机构进行功率传输。100多年来科研人员围绕曲柄连杆机构展开了广泛的研究,同时致力于通过添置一些辅助机构来减小惯性负荷和侧压力、克服运动死点、提高发动机传动效率。这些研究虽然在一定程度上使得往复活塞式发动机的动力性能得到改善,但由于功率传输部分的固有缺陷,未能从根本上改变发动机功率密度低的现状。旋转活塞式发动机研制并应用成功的是1957年由德国人汪克尔(Wankel)实用新型的三角转子旋转活塞发动机,此发动机功率密度相对较大,应用前景可观,但由于转子形状复杂导致制造成本高昂,并且存在密封困难、低速时动力性能差、燃油经济性差等难以解决的问题,使得旋转活塞式发动机理论上的优越性到目前为止未能得到充分发挥。
较低的功率密度不仅制约着活塞式发动机性能的进一步提高,而且限制了活塞式发动机在许多场合的应用。上述两类活塞式发动机受功率传输部分固有缺陷的限制,功率密度很难达到1(Kw/Kg)。动力源功率密度低已经成为一些装备技术发展的瓶颈。
为了改善传统活塞式发动机的特性,人们提出了多种解决方案,其中双转子活塞发动机是一个非常热门的研究方向,多年来,国内外进行了大量的研究,这些研究都力图在双转子活塞发动机上取得突破,但现有的双转子活塞发动机研究存在如下三个问题难以解决。
首先,约束转子运动的差速驱动组件较复杂。在已查到的文献里,一部分人利用椭圆齿轮、变速齿轮、非圆齿轮、卵圆齿轮等难加工零部件实现差速驱动转子,这些方案不仅成本高,而且可靠性较差,尤其是为了实现发动机的高功率密度而要求动力轴每转作功次数较多时,这些特型部件的形状会变得十分复杂,加工难度太大;另一部分人采用单向器、棘轮、弹簧等非常规部件实现差速驱动转子,众所周知,这些部件作发动机功率传输用的部件时不具备实用价值,在转子作非匀速转动时会有很大冲击,而且运行噪声很大;也有一部分人采用的是齿轮、连杆等常规部件实现差速驱动转子,但机构方案要么过于复杂、不紧凑、难以实施,要么可调参数少,难以产生符合发动机热动力学要求的差速规律。
其次,难以实现发动机的动力轴每转一圈的作功次数在10次以上,保证不了发动机的高功率密度。
再次,国内外的所有研究没有考虑消除转子非匀速转动时带来的扭转惯性力问题。这个惯性力在转子速度较高时会给发动机整体尤其是动力轴轴承带来较大冲击,因此迫切需要一个解决方案。
实用新型内容
本实用新型要解决的技术问题在于:针对现有技术存在的技术问题,本实用新型提供一种结构简单、传动平稳、运行可靠、能够容易保证发动机的动力轴每转一圈的作功次数在10次以上,并能消除由于转子作非匀速转动而带来的固有扭转惯性力的四转子活塞发动机。
为解决上述技术问题,本实用新型采用以下技术方案:
一种四转子活塞发动机,包括动力轴、反转动力轴以及两个动力缸组件,所述每个动力缸组件均包括外端盖、气缸体、内端盖以及转子Ⅱ和转子Ⅰ,所述气缸体、外端盖和内端盖组合构成缸体,所述转子Ⅱ和转子Ⅰ呈交错状安装于缸体内并在缸体内转动,其特征在于:还包括反向同步组件和两个差速驱动组件,所述一个差速驱动组件和一个动力缸组件连接并形成一套双转子活塞动力单元,所述反向同步组件设于两套双转子活塞动力单元之间。
作为本实用新型的进一步改进:
所述差速驱动组件包括齿圈壳体、第一曲轴行星轮、第二曲轴行星轮、第一差速摇杆Ⅰ以及第一差速摇杆Ⅱ,所述第一差速摇杆Ⅱ与转子Ⅱ固定连接,所述第一差速摇杆Ⅰ与转子Ⅰ固定连接,所述第一曲轴行星轮和第二曲轴行星轮通过第一支架与齿圈壳体啮合并可围绕齿圈壳体作行星周转运动;所述第一曲轴行星轮和第一差速摇杆Ⅰ之间设有第一连杆,所述第二曲轴行星轮和第一差速摇杆Ⅱ之间设有第二连杆。
所述第一支架与动力轴固定连接,所述第二支架与反转动力轴固定连接。
所述第一差速摇杆Ⅱ与转子Ⅱ之间为键连接,所述第一差速摇杆Ⅰ与转子Ⅰ之间通过花键轴和键连接。
所述气缸体、齿圈壳体和内端盖依次固定连接,所述气缸体与内端盖之间、所述齿圈壳体与内端盖之间均设有密封件。
所述反向同步组件包括锥齿轮架、锥齿轮、第一锥齿轮盘、第二锥齿轮盘以及锥齿轮轴,所述锥齿轮轴装设于锥齿轮架上,所述锥齿轮套设于锥齿轮轴上,所述第一锥齿轮盘与第一差速摇杆Ⅱ固定连接,所述第二锥齿轮盘与第二差速摇杆Ⅱ固定连接,所述第一锥齿轮盘、第二锥齿轮盘与锥齿轮之间通过啮合连接。
所述差速驱动组件与齿圈壳体连接并形成有一安装腔,所述锥齿轮架设于所述安装腔内。
所述动力缸组件还包括大密封圈、小密封圈和门形密封圈,所述大密封圈设于气缸体与外端盖、内端盖之间,所述小密封圈设于转子Ⅰ和转子Ⅱ上叶片根部的环形凹槽内,所述门形密封圈设于转子Ⅰ和转子Ⅱ上叶片侧面的门形凹槽内。
所述动力缸组件的外端盖上还设有端盖,所述端盖与动力轴之间设有唇形密封圈。
与现有技术相比,本实用新型的优点在于:
1、本实用新型的四转子活塞发动机通过在两个由动力缸组件和差速驱动组件的动力单元之间设置一个反向同步组件,解决了转子非匀速转动带来的固有扭转惯性力问题;
2、本实用新型的差速驱动组件的结构简单、可靠,采用齿轮、连杆等普通零部件进行常规的组合即可实现转子的差速运动要求,并且本实用新型发动机的动力轴每转一圈,总作功次数为36次。作功次数多带来的一个明显优点是,与其他活塞式发动机比较,在相同的设计重量下,功率密度、升功率等有大幅度的提升,这一优点将有着广泛的应用前景;
3、本实用新型的差速驱动组件的机构方案简单,可调参数多,通过调节齿数比和四杆机构的尺寸参数可以轻易实现符合发动机热力学要求的差速规律,并且发动机的作功次数是齿数比的平方倍,因此可以在不显著改变发动机整体尺寸、重量以及制造成本的前提下,能够实现转子旋转一周,作功次数随齿数比成平方倍变化,从而适应各种不同的应用场合;
4、本实用新型的转子的平均转速与发动机的动力轴相同,即动力轴每旋转一周,转子也完成一个回转运动,同时每一瞬间都有3个工作腔处于作功冲程,作功频率也高于其他活塞式发动机,故理论上本实用新型工作更为平稳,从而有效地降低各机械零件的磨损,并延长发动机的使用寿命;
5、本实用新型的动力输出形式多样,采用反向同步组件后,既可以消除单组转子作差速运动时所产生的扭转惯性力,并将功率进行汇流后由动力轴输出,也可以采用嵌套的动力轴和反转动力轴分别输出以实现对转驱动,其中对转输出形式尤其适用于大型运输机、直升机、鱼雷等需要对转螺旋桨输出的场合;
6、本实用新型采取模块化设计,将动力缸组件和差速驱动组件分离布置,既可保护让差速驱动组件远离高温、高压等复杂环境,又便于拆装和维修,还可沿轴向上方便地组合成多缸工作形式,适应特殊应用场合;
7、本实用新型结构对称布置,且零件数目少、工作腔便于密封、无复杂配气机构。
附图说明
图1是本实用新型的二维结构组成示意图;
图2是本实用新型的三维结构组成示意图;
图3是发动机具体实施例中的装配结构示意图;
图4是图3中A-A处的剖视结构示意图;
图5是具体实施例中动力缸组件的二维构成结构示意图;
图6是具体实施例中动力缸组件的三维分解结构示意图;
图7是具体实施例中差速驱动组件三维分解结构示意图;
图8是具体实施例中转子Ⅰ与差速摇杆Ⅰ的连接方式示意图;
图9是具体实施例中转子Ⅱ与差速摇杆Ⅱ的连接方式示意图;
图10是具体实施例中反向同步组件的三维结构示意图。
图例说明:
100、动力缸组件;200、差速驱动组件;300、反向同步组件;1、动力轴;2外端盖;3气缸体;4内端盖;5、销;6、O型密封圈;7、齿圈壳体;8、通气帽;9、纸垫;10、键;11、锥齿轮架;12、锥齿轮;13、曲轴行星轮;131、第一曲轴行星轮;132、第二曲轴行星轮;14、连杆;141、第一连杆;142、第二连杆; 151、第一支架;152、第二支架;161、第一差速摇杆Ⅰ;162、第二差速摇杆Ⅰ;171、第一差速摇杆Ⅱ;172、第二差速摇杆Ⅱ;18、转子Ⅱ;19、转子Ⅰ;20、键;21、端盖;22、唇形密封圈;23、反转动力轴;24、小承磨垫;25、大承磨垫;26、花键轴;27、键; 281、第一锥齿轮盘;282、第二锥齿轮盘;29、锥齿轮轴;101、大密封圈;102、小密封圈;103、门形密封圈;301、进气口;302、排气口;303、火花塞。
具体实施方式
以下将结合附图和具体实施例对本实用新型作进一步详细说明。
如图1至图3所示,本实用新型为一种无惯性力的高功率密度四转子活塞发动机,包括动力轴1、反转动力轴23以及两个动力缸组件100,每个动力缸组件100均包括外端盖2、气缸体3、内端盖4以及转子Ⅱ18和转子Ⅰ19,气缸体3、外端盖2和内端盖4组合构成缸体,转子Ⅱ18和转子Ⅰ19呈交错状安装于缸体内并在缸体内转动。本实用新型还进一步包括反向同步组件300和两个差速驱动组件200,一个差速驱动组件200和一个动力缸组件100连接并形成一套双转子活塞动力单元,反向同步组件300设于两套双转子活塞动力单元之间。即,发动机整体由动力缸组件100、差速驱动组件200、反向同步组件300、差速驱动组件200、动力缸组件100依次连接组合而成。通过在两套动力单元之间设置一个反向同步组件300,在实现发动机高功率密度输出的同时,还解决了转子非匀速转动带来的固有扭转惯性力问题。采用反向同步组件300后,既可以消除单组转子作差速运动时所产生的扭转惯性力,并将功率进行汇流后由动力轴输出,也可以采用嵌套的动力轴和反转动力轴分别输出以实现对转驱动,其中对转输出形式尤其适用于大型运输机、直升机、鱼雷等需要对转螺旋桨输出的场合。
如图5和图6所示,本实用新型四转子活塞发动机的动力缸组件100与现有技术的双转子活塞发动机基本一致,动力缸组件100包括气缸体3、外端盖2、内端盖4以及转子Ⅱ18和转子Ⅰ19,气缸体3、外端盖2和内端盖4组合构成缸体,转子Ⅱ18和转子Ⅰ19呈交错状(也可为交叉状)安装在缸体中并可在缸体的圆柱形腔内转动。其中,转子Ⅱ18和转子Ⅰ19均为六叶片转子,两个六叶片转子形成12个工作腔。动力缸组件100的气缸上均布有3个进气口301、3个排气口302和3个火花塞303。本实施例中,动力缸组件100还包括大密封圈101、小密封圈102和门形密封圈103,大密封圈101设于气缸体3与外端盖2、内端盖4之间开设的安装槽内,小密封圈102设于转子Ⅱ18和转子Ⅰ19上叶片根部的环形凹槽内。其中,转子Ⅱ18和转子Ⅰ19之间、转子Ⅱ18与外端盖2之间和转子Ⅰ19与内端盖4之间均设有小密封圈102,门形密封圈103设于转子Ⅱ18和转子Ⅰ19上叶片侧面的门形凹槽内,保证了动力缸组件100的密封可靠性。
进一步,在动力缸组件100的外端盖2上还设有端盖21,端盖21与动力轴1之间设有唇形密封圈22,进一步保证的整个发动机密封的可靠性。
参见图3、图4和图7,本实施例中,差速驱动组件200包括齿圈壳体7、第一曲轴行星轮131、第二曲轴行星轮132、第一连杆141、第二连杆142、第一支架151、第一差速摇杆Ⅰ161以及第一差速摇杆Ⅱ171,其中齿圈壳体7连接在动力缸组件100的内端盖4上。如图3所示,气缸体3、齿圈壳体7和内端盖4依次固定连接,气缸体3与内端盖4之间和齿圈壳体7与内端盖4之间均设有密封件,密封件为O型密封圈6,动力轴1与第一支架151固定连接并可随第一支架151转动。如图3、图8和图9所示,第一差速摇杆Ⅱ171开设有凸台,凸台上开设有键槽,转子Ⅱ18的安装部设有键槽,第一差速摇杆Ⅱ171与转子Ⅱ18通过平键固定连接,第一差速摇杆Ⅰ161上开设有花键槽,转子Ⅰ19的安装部设有键槽,第一差速摇杆Ⅰ161与转子Ⅰ19之间通过一花键轴26连接,花键轴26的一端开有键槽并通过平键与转子Ⅰ19固定连接,另一端开设有花键并通过花键连接与第一差速摇杆Ⅰ161固定连接,第一曲轴行星轮131和第二曲轴行星轮132通过第一支架151与齿圈壳体7啮合并可围绕齿圈壳体7作行星周转运动,第一曲轴行星轮131的曲轴和第一差速摇杆Ⅰ161之间设有第一连杆141,第二曲轴行星轮132和第一差速摇杆Ⅱ171之间设有第二连杆142,第一连杆141的一端与第一差速摇杆Ⅰ161铰接连接,另一端与第一曲轴行星轮131的曲轴铰接连接,第二连杆142的一端与第一差速摇杆Ⅱ171铰接连接,另一端与第二曲轴行星轮132的曲轴铰接连接。
如图3和图10所示,本实施例众,反向同步组件300包括锥齿轮架11、锥齿轮12、第一锥齿轮盘281、第二锥齿轮盘282以及锥齿轮轴29,锥齿轮架11装设于两套差速驱动组件200中齿圈壳体7相互连接并形成的安装腔内。锥齿轮轴29沿锥齿轮架11径向固定装设于锥齿轮架11上,锥齿轮12套设于锥齿轮轴29上,第一锥齿轮盘281和第一差速摇杆Ⅱ171固定连接,第二锥齿轮盘282和第二差速摇杆Ⅱ172固定连接。参见图8,本实施例中,第一锥齿轮盘281和第二锥齿轮盘282通过螺栓固定在第一差速摇杆Ⅱ171和第二差速摇杆Ⅱ172的安装部靠近锥齿轮12的一端上,空间利用合理,结构更加紧凑。左、右两个第一锥齿轮盘281和第二锥齿轮盘282均与锥齿轮12啮合连接,如图1至3所示,第一锥齿轮盘281和第二锥齿轮盘282以发动机的动力轴转动中心线为转动中心轴线,锥齿轮12以锥齿轮架11上垂直于发动机动力轴转动中心线的任意径向线为转动中心轴线。本实施例中,锥齿轮架11的周向上均布有4个锥齿轮12,由此保证,第一锥齿轮盘281、第二锥齿轮盘282和锥齿轮12之间的受力更加均匀,传动也更加平稳。
发动机是一种(由)许多机构和系统组成的复杂机器。要完成能量转换,实现工作循环,保证长时间连续正常工作,必须具备必备的一些机构和系统。本实用新型发动机属于活塞式发动机,基本原理类同其他活塞式发动机,因此,除本实用新型着重修改的功率传输部分外,还须配置燃料供给系,润滑系,冷却系,起动系等,这些系统的技术可以完全参考现有往复活塞式或三角转子旋转活塞式发动机的技术,在此就不再赘述。另外,本实用新型作为发动机的一种,类属容积式机器,其机构部分稍作修改也可用于气动机、压缩机、泵等领域。
工作原理:
发动机的动力轴1匀速转动时,在自由度为1的差速驱动组件200的约束下,两个转子均以周期性波动的角速度作变速转动,使得两个转子间的工作腔容积周期性增大、减小。反之,燃料工作腔内爆炸,爆炸压力推动两个转子转动,并在差速驱动组件200的约束下,转子的差速转动转化为发动机动力轴1的匀速转动。
本实用新型所应用的发动机在一个缸体中的工作腔数目是前述齿圈壳体7和曲轴行星轮(131或132)的齿数比的两倍,而且在转子旋转一周过程中每一个工作腔的作功次数是齿数比的一半,也就是转子旋转一周本实用新型发动机的作功次数是齿数比的平方倍,本实施例的作功次数为36次,因此可以实现连续,高密度地输出动力。在保证发动机在相同的设计重量前提下,本实用新型发动机与其他(所有)活塞式发动机比较,在相同的设计重量下,功率密度、升功率等有大幅度的提升,这一特性有着广泛的应用前景,采用普通的直齿轮、连杆机构实现双转子的差速运动,无需采用椭圆齿轮、非圆齿轮等外形复杂的特种零部件,制造加工简易,也没有凸轮等易磨损件,并且可直接在缸体上加工出内齿圈,这样整个结构的布置将更紧凑,也更容易布置润滑、冷却等系统。更重要的是,差速驱动组件机构原理方案简单,可调参数多,通过调节齿数比和四杆机构的尺寸参数可以轻易实现符合发动机热力学要求的差速规律,并且发动机的作功次数是齿数比的平方倍,因此可以在不显著改变发动机整体尺寸、重量以及制造成本的前提下,能够实现转子旋转一周,作功次数随齿数比成平方倍变化,从而适应各种不同的应用场合。
以上所述仅是本实用新型的优选实施方式,本实用新型的保护范围并不仅局限于上述实施例,凡属于本实用新型思路下的技术方案均属于本实用新型的保护范围。应该提出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理前提下的改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。