CN201747365U - 复杂结构井井筒固液两相变质量流动模拟系统 - Google Patents

复杂结构井井筒固液两相变质量流动模拟系统 Download PDF

Info

Publication number
CN201747365U
CN201747365U CN2010202499098U CN201020249909U CN201747365U CN 201747365 U CN201747365 U CN 201747365U CN 2010202499098 U CN2010202499098 U CN 2010202499098U CN 201020249909 U CN201020249909 U CN 201020249909U CN 201747365 U CN201747365 U CN 201747365U
Authority
CN
China
Prior art keywords
liquid
solid
phase
pipe
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010202499098U
Other languages
English (en)
Inventor
汪志明
王小秋
魏建光
李帮民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CN2010202499098U priority Critical patent/CN201747365U/zh
Application granted granted Critical
Publication of CN201747365U publication Critical patent/CN201747365U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本实用新型为一种复杂结构井井筒固液两相变质量流动模拟系统,包括一模拟井筒,模拟井筒由多段管体固定连通构成;模拟井筒的入口端连接有主流固液两相流体供给装置,模拟井筒的出口端连接有固液两相流体分离装置;模拟井筒上由入口端至出口端依次设为入口段、实验测量段和出口段;实验测量段的管体由内管和外管套设构成,内管和外管之间形成环形密闭空腔,内管的管壁上均布有多个渗流孔,外管的管壁上设有多个入流孔,多个入流孔连接有入流固液两相流体供给装置;所述入口管路、出口管路和入流管路上设有流体流量、压力采集及处理装置。由此可在实验室中通过该模拟系统进一步深入研究疏松砂岩油藏开发中砂粒随产出液进入管路以及被携带至井口的整个过程。

Description

复杂结构井井筒固液两相变质量流动模拟系统
技术领域
本实用新型是关于石油工业中一种室内模拟试验装置,尤其涉及一种复杂结构井井筒固液两相变质量流动模拟系统。
背景技术
在疏松砂岩油藏开发过程中,适度出砂技术的应用提高了油井产能,但与传统防砂方法相比,适度出砂技术允许一定粒径的地层砂进入防砂筛管,并通过保持一定的产量,使进入防砂管路的砂粒被携带出井筒。在垂直和井斜角较小的井中,可在Stokes准则理论基础上建立理论模型。但在定向井、水平井和近于水平的井中,砂粒间的相互作用使得原有的理论模型不再适用,定量描述仍处于理论研究阶段,并限于理论模型中的部分参数是由前人通过实验结果回归得到,并不一定适用。
2006年,中国石油大学(北京)邓金根、王治中等人设计了井筒砂粒运移规律室内模拟实验装置9(如图9所示),该室内模拟实验装置9由水箱91、泵体92、垂直设置的实验管体93以及水管94、流量计95、多个阀体96构成,所述实验管体93的长度为4.2m、内径为63mm,在实验管体93入口处设置一承托盘97,固相为预先放在实验管体底部的承托盘97中的砂粒。该室内模拟实验装置存在的缺点是:(1)由于在实验段管体的管壁上没有设计入流孔,故该实验过程实际为定质量流动,不能模拟实际生产过程中产层变质量流动规律;(2)由于固相为预先放在实验管体底部的承托盘中的砂粒,所以在该实验过程中,固相砂粒为后混合式,通过实验流体流动以使固相砂粒流动,势必会造成液固掺混的不均匀,对实验结果会产生一定影响。
2001年,上海理工大学胡寿根、白晓宁等人设计并制作了固液管道输送实验装置8(如图8所示),该实验装置8由贮浆桶801、泥浆泵802、清水桶803、压力表804、阀门805、软管806、观测管807、快卸接头808、测试管809、系统管810、差压变送器811、压差信号数字显示仪812、计算机813、电磁流量计814、流量信号数字显示仪815和分流换向器816等构成。其中,实验管路总长50m,工作台为水平布置的金属台架,长8m、宽1m,整个工作台靠设置在中间部位的主支座来支撑重量,由销轴进行连接,通过螺旋变坡机构工作台可在0°到16°范围内作任意角度的调整。但是该实验装置存在的缺点是:(1)该实验装置在实验过程中可通过螺旋变坡机构改变管路倾角,但由于螺旋变坡机构特性和支撑点位于管路中间部位等结构方面限制,该实验装置只能模拟0°到16°倾角下流体流动情况;(2)该实验过程中,采用预混合压力输送方式,但由于动力泵采用离心式渣浆泵,在输送过程中,由于离心泵的运动方式,必然引起动力泵出口固液掺混不均匀;(3)该实验装置的实验段也未设置入流孔,故只能模拟定质量流动,不能模拟存在壁面入流情况下壁面入流对圆管固液两相流流动的影响规律。
有鉴于此,为了进一步深入研究疏松砂岩油藏开发过程中砂粒随产出液进入管路以及被携带至井口的整个过程,模拟固液两相变质量流的流动情况,本发明人提出一种复杂结构井井筒固液两相变质量流动模拟系统。
实用新型内容
本实用新型的目的在于提供一种复杂结构井井筒固液两相变质量流动模拟系统,可模拟油气开采过程中地层砂粒随产出液(石油)进入井筒的固液两相变质量流动过程,以及地层砂粒与产出液在井筒中的固液两相定质量流动过程,由此可进一步深入研究疏松砂岩油藏开发中砂粒进入管路以及被携带至井口的整个过程。
本实用新型的另一目的在于提供一种复杂结构井井筒固液两相变质量流动模拟系统,可实现模拟井筒的0°-90°的调节,以模拟不同角度的目标井段。
本实用新型的目的是这样实现的,一种复杂结构井井筒固液两相变质量流动模拟系统,该模拟系统包括一模拟井筒,所述模拟井筒是由多段两端设有法兰盘的管体固定连通构成;该模拟井筒的入口端通过入口管路连接有主流固液两相流体供给装置,该模拟井筒的出口端通过出口管路连接有固液两相流体分离装置;所述模拟井筒上由入口端至出口端依次设为入口段、实验测量段和出口段,所述入口段长度大于出口段长度;所述实验测量段的管体由内管和外管套设构成,所述内管和外管之间形成环形密闭空腔,所述内管的管壁上均布有多个渗流孔,所述外管的管壁上设有多个入流孔,所述多个入流孔通过入流管路连接有入流固液两相流体供给装置;在所述入口管路、出口管路和入流管路上设有流体流量、压力采集及处理装置。
在本实用新型的一较佳实施方式中,所述主流固液两相流体供给装置由第一储浆桶和连接在该第一储浆桶出口的第一螺杆泵构成;所述入流固液两相流体供给装置由第二储浆桶和连接在该第二储浆桶出口的第二螺杆泵构成。
在本实用新型的一较佳实施方式中,所述第一储浆桶和第二储浆桶分别由桶体和设于桶体内的搅拌器构成;所述桶体为底部呈锥形的圆桶。
在本实用新型的一较佳实施方式中,所述固液两相流体分离装置由固液分离器和与该固液分离器连接的沉沙池构成。
在本实用新型的一较佳实施方式中,所述流体流量、压力采集及处理装置包括有设置在第一螺杆泵出口的第一流量计和浓度计、设置在第二螺杆泵出口的第二流量计、以及并联设置在实验测量段两端的压差传感器。
在本实用新型的一较佳实施方式中,所述模拟井筒入口端的入口管路上设有一取样处。
在本实用新型的一较佳实施方式中,所述内管管壁的一侧均布有多个渗流孔。
在本实用新型的一较佳实施方式中,所述内管管壁的相对应的两侧分别均布有多个渗流孔。
在本实用新型的一较佳实施方式中,所述内管管壁上下左右四侧分别均布有多个渗流孔。
在本实用新型的一较佳实施方式中,所述模拟井筒固定架设在一工作台上,所述工作台一端设有支撑架,另一端设有长度能伸缩并固定的定位架,在所述支撑架与定位架之间设有液压升降器。
由上所述,本实用新型的复杂结构井井筒固液两相变质量流动模拟系统在使用时,由主流固液两相流体供给装置提供的流体从模拟井筒的入口端进入模拟井筒中,由入流固液两相流体供给装置提供的流体从实验测量段的多个入流孔流入环形密闭空腔,再由多个渗流孔进入模拟井筒中,从而模拟油气开采过程中地层砂粒随产出液进入井筒的固液两相变质量流动过程,以及地层砂粒与产出液在井筒中的固液两相定质量流动过程,由此可在实验室中通过该模拟系统进一步深入研究疏松砂岩油藏开发中砂粒进入管路以及被携带至井口的整个过程。
附图说明
以下附图仅旨在于对本实用新型做示意性说明和解释,并不限定本实用新型的范围。其中,
图1:为本实用新型复杂结构井井筒固液两相变质量流动模拟系统的结构示意图。
图2:为本实用新型中模拟井筒的结构示意图。
图3A:为本实用新型中第一储浆桶的结构示意图。
图3B:为本实用新型中第二储浆桶的结构示意图。
图4A:为本实用新型模拟井筒中实验测量段的结构示意图一。
图4B:为图4A中A-A剖视示意图。
图5A:为本实用新型模拟井筒中实验测量段的结构示意图二。
图5B:为图5A中B-B剖视示意图。
图6A:为本实用新型模拟井筒中实验测量段的结构示意图三。
图6B:为图6A中C-C剖视示意图。
图7:为本实用新型中工作台的结构示意图。
图8:为一现有技术的结构示意图。
图9:为另一现有技术的结构示意图。
具体实施方式
为了对本实用新型的技术特征、目的和效果有更加清楚的理解,现对照附图说明本实用新型的具体实施方式。
如图1所示,本实用新型提供一种复杂结构井井筒固液两相变质量流动模拟系统100,该模拟系统100包括一模拟井筒1;所述模拟井筒1是由多段两端设有法兰盘的管体固定连通构成(如图2所示);该模拟井筒1的入口端通过入口管路连接有主流固液两相流体供给装置2,该模拟井筒1的出口端通过出口管路连接有固液两相流体分离装置3;所述模拟井筒1上由入口端至出口端依次设为入口段11、实验测量段12和出口段13,所述入口段11的长度大于出口段13的长度;所述实验测量段12的管体121由内管1211和外管1212套设构成,所述内管1211和外管1212之间形成环形密闭空腔1213,所述内管1211的管壁上均布有多个渗流孔12111,所述外管1212的管壁上设有多个入流孔12121,所述多个入流孔12121通过入流管路连接有入流固液两相流体供给装置4;在所述入口管路、出口管路和入流管路上设有流体的流量、压力采集及处理装置。
本实用新型的复杂结构井井筒固液两相变质量流动模拟系统在使用时,由主流固液两相流体供给装置2提供的流体从模拟井筒1的入口端进入模拟井筒1中,由入流固液两相流体供给装置4提供的流体从实验测量段12的多个入流孔12121流入环形密闭空腔1213,再由多个渗流孔12111进入模拟井筒1中,从而模拟油气开采过程中地层砂粒随产出液(石油)进入井筒的固液两相变质量流动过程,以及地层砂粒与产出液在井筒中的固液两相定质量流动过程,由此可在实验室中通过该模拟系统进一步深入研究疏松砂岩油藏开发中砂粒随产出液进入管路以及被携带至井口的整个过程。
在本实施方式中,所述用以测量和观察固液两相流动的模拟井筒1总长为8m,由1m一段的八段管体连通构成,各管体之间通过法兰盘螺钉固定;为便于观察实验过程中固相运移过程,模拟井筒材质采用透明有机玻璃管,在机玻璃管外侧表面上还可沿其径向方向设置刻度线,可方便观察砂粒在模拟井筒中的沉积情况。所述模拟井筒1的入口段11长度为5m,出口段13长度为1m,可由此消除入口效应和出口效应;实验测量段12长度为2m,每段实验测量段的外管上均匀开三个入流孔。
进一步,在本实施方式中,如图1所示,所述主流固液两相流体供给装置2由第一储浆桶21和连接在该第一储浆桶21出口的第一螺杆泵22构成;所述入流固液两相流体供给装置4由第二储浆桶41和连接在该第二储浆桶41出口的第二螺杆泵42构成。本实用新型中选择螺杆泵提供流体的动力输出,可避免固相与实验流体掺混过程中不均匀以及泵出口波动压力的现象,可以在实验段入口之前做到均匀混合。
如图3A、图3B所示,所述第一储浆桶21和第二储浆桶41分别由桶体211、411和设于桶体内的搅拌器212、412构成;所述桶体211、411为底部呈锥形的圆桶。由于第一储浆桶21的容量较大,故在本实施方式中,在第一储浆桶21中分别设置了一个正转和一个反转两个搅拌器。
根据实验流体的特殊性,储浆桶不能简单的设计为长方形或正方形,因为这些形状易在储浆桶内壁的直角部位形成“死区”,使混合液流动缓慢或产生滞流,故储浆桶设计为一底部带有15°锥度的斗状钢制圆桶。
固液混合物是一种容易分离和沉降的混合物,因此一定要在储浆桶内不停的转动使浆体保持流动,才能使其浓度保持均匀,这就需要进行浆体的搅拌。在本实施方式中,采用浸入式搅拌器进行机械搅拌,搅拌器是由相应的电机、减速机、旋转轴、动叶片等组成。
如图1所示,在本实施方式中,所述固液两相流体分离装置3由固液分离器31和与该固液分离器31连接的沉沙池32构成,所述固液分离器31为一振动筛。
由于试验介质为液固两相流体,流体必然携带大部分砂粒至实验管路末端,并携带出实验段,为了重复利用实验流体,故设置震动筛以使固相从流体中分离,但由于振动筛的工作特性决定了在振动筛出口处必然存在细小颗粒的固相,故设置沉沙池,用于进一步进行固液分离,以回收利用实验流体。
在本实施方式中,如图1所示,所述流体的流量、压力采集及处理装置包括有设置在第一螺杆泵22出口的第一流量计51和浓度计52、设置在第二螺杆泵42出口的第二流量计53、以及并联设置在实验测量段12两端的压差传感器54;调节实验流体主流流量,通过压差传感器54来测量并记录实验段流动压降。
所述模拟井筒1入口端的入口管路上还设有一取样处55,可由该取样处55取出流体样品并测得样品的浓度值,由此来校正浓度计52的值;在所述入口管路和入流管路上还分别设有控制实验段主流流量的节流阀56和控制实验测量段入流流量的节流阀57;所述节流阀56与第一储浆桶21的进口之间设有第一分流支路58;所述节流阀57与第二储浆桶41的进口之间设有第二分流支路59。当流量较大时,可以由分流支路将部分流体导引流回相应的储浆桶中。
进一步,本实用新型的模拟系统100中,实验测量段12的内管1211管壁上设置的渗流孔12111可有多种不同的设置和分布方式,由此,用于模拟不同完井方式(射孔完井、割缝筛管完井等)下固液两相变质量流动规律。
如图4A、图4B所示,第一种分布方式为多个渗流孔12111均布在内管1211管壁的一侧。第二种分布方式为,如图5A、图5B所示,所述多个渗流孔12111均布在内管1211管壁的相对应的两侧。第三种分布方式为,如图6A、图6B所示,所述多个渗流孔12111均布在内管1211管壁的上下左右四侧。由此,可制作出不同管径、不同入流面的实验测量段管体。由于模拟井筒是通过各管体的法兰盘进行连接的,故可较为方便的更换不同管径、不同入流面的实验测量段的配套管路。
如图1、图7所示,在本实施方式中,所述模拟井筒1固定架设在一工作台6上,所述工作台6一端设有支撑架61,另一端设有长度能伸缩并固定的定位架62,在所述支撑架61与定位架62之间设有液压升降器63。工作台6通过支撑架61进行支撑,通过调节液压升降器63调节工作台角度,同时在调整好角度后通过定位架62来定位支撑。通过该工作台6可实现模拟井筒的0°-90°的调节,以模拟不同角度的目标井段。
综上所述,本实用新型的复杂结构井井筒固液两相变质量流动模拟系统用于模拟油气开采过程中,地层砂粒随产出液(石油)进入井筒的固液两相变质量流动过程,及地层砂粒与产出液在井筒中的固液两相定质量流动过程,实验过程中可针对固液两相、单相(石油)变质量流动压降分布规律,固液两相定质量压降分布规律等内容进行测量,同时本实用新型实验测量段可以更换不同入流方式的实验管路,用于模拟不同完井方式(射孔完井、割缝筛管完井等)下,固液两相(或单相)变质量流动规律。
以上所述仅为本实用新型示意性的具体实施方式,并非用以限定本实用新型的范围。任何本领域的技术人员,在不脱离本实用新型的构思和原则的前提下所作出的等同变化与修改,均应属于本实用新型保护的范围。

Claims (10)

1.一种复杂结构井井筒固液两相变质量流动模拟系统,该模拟系统包括一模拟井筒,所述模拟井筒是由多段两端设有法兰盘的管体固定连通构成;该模拟井筒的入口端通过入口管路连接有主流固液两相流体供给装置,该模拟井筒的出口端通过出口管路连接有固液两相流体分离装置;所述模拟井筒上由入口端至出口端依次设为入口段、实验测量段和出口段,所述入口段长度大于出口段长度;其特征在于:所述实验测量段的管体由内管和外管套设构成,所述内管和外管之间形成环形密闭空腔,所述内管的管壁上均布有多个渗流孔,所述外管的管壁上设有多个入流孔,所述多个入流孔通过入流管路连接有入流固液两相流体供给装置;在所述入口管路、出口管路和入流管路上设有流体流量、压力采集及处理装置。
2.如权利要求1所述的复杂结构井井筒固液两相变质量流动模拟系统,其特征在于:所述主流固液两相流体供给装置由第一储浆桶和连接在该第一储浆桶出口的第一螺杆泵构成;所述入流固液两相流体供给装置由第二储浆桶和连接在该第二储浆桶出口的第二螺杆泵构成。
3.如权利要求2所述的复杂结构井井筒固液两相变质量流动模拟系统,其特征在于:所述第一储浆桶和第二储浆桶分别由桶体和设于桶体内的搅拌器构成;所述桶体为底部呈锥形的圆桶。
4.如权利要求1所述的复杂结构井井筒固液两相变质量流动模拟系统,其特征在于:所述固液两相流体分离装置由固液分离器和与该固液分离器连接的沉沙池构成。
5.如权利要求1所述的复杂结构井井筒固液两相变质量流动模拟系统,其特征在于:所述流体流量、压力采集及处理装置包括有设置在第一螺杆泵出口的第一流量计和浓度计、设置在第二螺杆泵出口的第二流量计、以及并联设置在实验测量段两端的压差传感器。
6.如权利要求1所述的复杂结构井井筒固液两相变质量流动模拟系统,其特征在于:所述模拟井筒入口端的入口管路上设有一取样处。
7.如权利要求1所述的复杂结构井井筒固液两相变质量流动模拟系统,其特征在于:所述内管管壁的一侧均布有多个渗流孔。
8.如权利要求1所述的复杂结构井井筒固液两相变质量流动模拟系统,其特征在于:所述内管管壁的相对应的两侧分别均布有多个渗流孔。
9.如权利要求1所述的复杂结构井井筒固液两相变质量流动模拟系统,其特征在于:所述内管管壁上下左右四侧分别均布有多个渗流孔。
10.如权利要求1所述的复杂结构井井筒固液两相变质量流动模拟系统,其特征在于:所述模拟井筒固定架设在一工作台上,所述工作台一端设有支撑架,另一端设有长度能伸缩并固定的定位架,在所述支撑架与定位架之间设有液压升降器。
CN2010202499098U 2010-06-25 2010-06-25 复杂结构井井筒固液两相变质量流动模拟系统 Expired - Fee Related CN201747365U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010202499098U CN201747365U (zh) 2010-06-25 2010-06-25 复杂结构井井筒固液两相变质量流动模拟系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010202499098U CN201747365U (zh) 2010-06-25 2010-06-25 复杂结构井井筒固液两相变质量流动模拟系统

Publications (1)

Publication Number Publication Date
CN201747365U true CN201747365U (zh) 2011-02-16

Family

ID=43582048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010202499098U Expired - Fee Related CN201747365U (zh) 2010-06-25 2010-06-25 复杂结构井井筒固液两相变质量流动模拟系统

Country Status (1)

Country Link
CN (1) CN201747365U (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296946A (zh) * 2010-06-25 2011-12-28 中国石油大学(北京) 复杂结构井井筒固液两相变质量流动模拟系统
CN103510950A (zh) * 2013-10-15 2014-01-15 西南石油大学 一种复杂结构井地层流动与管内流动耦合流动实验系统
CN104975845A (zh) * 2015-06-29 2015-10-14 中国石油天然气股份有限公司 一种干扰条件下测量生产井管流压降实验装置
CN107448194A (zh) * 2017-04-28 2017-12-08 中国石油大学(华东) 一种水平井出水井段压力变化模拟试验装置
CN108518205A (zh) * 2018-06-05 2018-09-11 西南石油大学 一种可视化模拟过筛管防砂工艺的实验装置及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296946A (zh) * 2010-06-25 2011-12-28 中国石油大学(北京) 复杂结构井井筒固液两相变质量流动模拟系统
CN103510950A (zh) * 2013-10-15 2014-01-15 西南石油大学 一种复杂结构井地层流动与管内流动耦合流动实验系统
CN104975845A (zh) * 2015-06-29 2015-10-14 中国石油天然气股份有限公司 一种干扰条件下测量生产井管流压降实验装置
CN107448194A (zh) * 2017-04-28 2017-12-08 中国石油大学(华东) 一种水平井出水井段压力变化模拟试验装置
CN108518205A (zh) * 2018-06-05 2018-09-11 西南石油大学 一种可视化模拟过筛管防砂工艺的实验装置及方法

Similar Documents

Publication Publication Date Title
CN102296946A (zh) 复杂结构井井筒固液两相变质量流动模拟系统
CN201747365U (zh) 复杂结构井井筒固液两相变质量流动模拟系统
CN106153833B (zh) 一种压裂液携砂效果评价装置及方法
CN106053183B (zh) 对接室内岩土力学试验机的泡沫混凝土样制备装置及方法
CN102979504B (zh) 复杂结构井井筒油气水三相流体变质量流动的模拟装置
CN105464606A (zh) 一种模拟钻采双工况井筒携砂多相流动实验装置及方法
CN109209343A (zh) 粗糙裂缝液固两相径向流动可视化模拟实验装置及方法
CN111119990B (zh) 一种工业级多功能膏体充填试验平台及测试方法
CN101270652A (zh) 水平井筒中连续管液体携带和孔眼分流模拟装置
CN112121471B (zh) 一种差异性全尾砂最优浓密方式确定方法及系统
CN109187309A (zh) 一种研究断层弱胶结破碎岩体的试验装置和试验方法
CN109406092A (zh) 一种泥水盾构机环流系统模拟实验台
CN207795101U (zh) 石油地质录井洗砂装置
CN113218801A (zh) 用于充填料浆输送管道磨损测试的试验装置及其试验方法
CN107238553B (zh) 充填料浆临界流速与沉降速率检测装置及用其检测的方法
CN107941562B (zh) 一种水利工程水质含沙量取样装置
CN209145582U (zh) 粗糙裂缝液固两相径向流动可视化模拟实验装置
CN105651675A (zh) 油田用防砂筛管防砂介质挡砂精度检测系统
CN205941079U (zh) 一种容积恒定的废浆浓度检测装置
CN202814822U (zh) 一种气固液三相流冲蚀试验机
CN115931943B (zh) 一种现场取样、混样、检测及高精度缩分一体化装置
CN203097864U (zh) 复杂结构井井筒油气水三相流体变质量流动的模拟装置
CN103979777A (zh) 一种淤泥快速脱水固化方法
CN206573437U (zh) 一种模拟天然气水合物不同转速钻杆偏心对环空携岩影响的实验装置
CN202578658U (zh) 一种实验用自动添加支撑剂的装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110216

Termination date: 20120625