CN201714377U - Controllable signal emitter capable of being loaded with pseudorandom code - Google Patents
Controllable signal emitter capable of being loaded with pseudorandom code Download PDFInfo
- Publication number
- CN201714377U CN201714377U CN2010201572698U CN201020157269U CN201714377U CN 201714377 U CN201714377 U CN 201714377U CN 2010201572698 U CN2010201572698 U CN 2010201572698U CN 201020157269 U CN201020157269 U CN 201020157269U CN 201714377 U CN201714377 U CN 201714377U
- Authority
- CN
- China
- Prior art keywords
- signal
- circuit
- pseudo
- random
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
能加载伪随机编码的可控信号发射仪,用于油田勘探,包括输出电路,输出信号控制电路,频率和/或时域信号产生电路,以及发射极;其中伪随机编码发生单元产生伪随机编码并传输至中央控制器,由中央控制器处理并传输至输出信号控制电路,输出信号控制电路将处理后的伪随机编码加到输出电路的控制信号中,形成伪随机编码控制信号发送至发射极。输出信号控制电路还可接收频率和/或时域信号产生电路生成的频率和/或时域信号并加到输出电路的控制信号中;因此本发射仪可发射三种信号,使用非常灵活,本实用新型特有的伪随机编码控制信号向地层加载后,可在接收仪端只接收这种伪随机信号,从而避免其他信号的干扰,达到清晰分辨深层低阻异常体的目的。
A controllable signal transmitter capable of loading pseudo-random codes for oil field exploration, including an output circuit, an output signal control circuit, a frequency and/or time-domain signal generation circuit, and an emitter; wherein the pseudo-random code generation unit generates pseudo-random codes And transmitted to the central controller, processed by the central controller and transmitted to the output signal control circuit, the output signal control circuit adds the processed pseudo-random code to the control signal of the output circuit to form a pseudo-random code control signal and send it to the emitter . The output signal control circuit can also receive the frequency and/or time domain signal generated by the frequency and/or time domain signal generation circuit and add it to the control signal of the output circuit; therefore, the transmitter can transmit three kinds of signals, and the use is very flexible. After the unique pseudo-random coding control signal of the utility model is loaded into the formation, only this pseudo-random signal can be received at the receiver end, so as to avoid the interference of other signals and achieve the purpose of clearly distinguishing deep low-resistance abnormal bodies.
Description
技术领域technical field
本实用新型涉及油田勘探技术领域,尤其是一种能加载伪随机编码的可控信号发射仪,主要应用于油田勘探开发中的压裂、注水、调剖过程监测,能够在施工过程中根据需要向地层加载伪随机编码的大功率可控电场信号。The utility model relates to the technical field of oil field exploration, in particular to a controllable signal transmitter capable of loading pseudo-random codes, which is mainly used in the process monitoring of fracturing, water injection, and profile control in oil field exploration and development, and can be used during construction according to needs. Pseudo-random coded high-power controllable electric field signals are loaded into the formation.
背景技术Background technique
油气开采生产井压裂作业后基本上都需要裂缝方位监测,深层气井也需要进行压裂裂缝监测。目前,应用于油田勘探开发的电法接收仪在地面测试人工电位场时,由于强干扰背景,致使其不能提取微弱电信号,而实际应用中要达到清晰分辨深层低阻异常体的目的,必须使仪器达到微伏级的测量精度,现有发射仪器采用频域或者时域信号发射,在采集过程中无法排除干扰信号的影响,因此需要可排除干扰背景的、可加载伪随机编码的大功率可控信号发射仪,配合电法信号接收仪(已经另行申请专利)共同使用。Oil and gas production wells basically require fracture azimuth monitoring after fracturing operations, and deep gas wells also need fracturing fracture monitoring. At present, when the electrical receiver used in oilfield exploration and development tests the artificial potential field on the ground, it cannot extract weak electrical signals due to the strong interference background. Make the instrument reach the measurement accuracy of microvolt level. The existing transmitting instruments use frequency domain or time domain signal transmission, and the influence of interference signals cannot be eliminated during the acquisition process. The controllable signal transmitter is used together with the electrical signal receiver (a patent has been applied for separately).
实用新型内容Utility model content
本实用新型的目的是提供一种能加载伪随机编码的可控信号发射仪,在油田勘探开发中当井内深层发射,在地面测试人工电场时,能够排除干扰背景,使得地面接收设备可达到清晰分辨深层低阻异常体的目的。The purpose of this utility model is to provide a controllable signal transmitter capable of loading pseudo-random codes, which can eliminate the interference background when deep in the well and test the artificial electric field on the ground during oilfield exploration and development, so that the ground receiving equipment can achieve clear The purpose of distinguishing deep low-resistance abnormal bodies.
实现本实用新型目的的技术方案是:The technical scheme that realizes the utility model purpose is:
1、一种能加载伪随机编码的可控信号发射仪,用于油田勘探,至少包括:1. A controllable signal transmitter capable of loading pseudo-random codes, used for oil field exploration, at least including:
输出电路,输出信号控制电路,频率信号产生电路和/或时域信号产生电路,以及发射极;an output circuit, an output signal control circuit, a frequency signal generating circuit and/or a time domain signal generating circuit, and an emitter;
其中所述输出信号控制电路与所述输出电路、所述频率信号产生电路和/或时域信号产生电路连接,接收所述频率信号产生电路和/或时域信号产生电路生成的频率信号和/或时域信号,并将该频率信号和/或时域信号加到所述输出电路的控制信号中,形成控制信号经所述发射极发射给被测目标;Wherein the output signal control circuit is connected with the output circuit, the frequency signal generating circuit and/or the time domain signal generating circuit, and receives the frequency signal generated by the frequency signal generating circuit and/or the time domain signal generating circuit and/or or a time-domain signal, and add the frequency signal and/or time-domain signal to the control signal of the output circuit to form a control signal and transmit it to the target through the emitter;
其中所述可控信号发射仪还包括中央控制器以及伪随机编码发生单元,与所述输出信号控制电路相连接,所述伪随机编码发生单元产生伪随机编码并传输至所述中央控制器,由所述中央控制器处理并传输至所述输出信号控制电路,所述输出信号控制电路将所述处理后的伪随机编码加到所述输出电路的控制信号中,形成伪随机编码控制信号发送至所述发射极。Wherein the controllable signal transmitter also includes a central controller and a pseudo-random code generation unit, which is connected to the output signal control circuit, and the pseudo-random code generation unit generates a pseudo-random code and transmits it to the central controller, Processed by the central controller and transmitted to the output signal control circuit, the output signal control circuit adds the processed pseudo-random code to the control signal of the output circuit to form a pseudo-random code control signal to send to the emitter.
2、所述可控信号发射仪还包括一个外同步接口,与所述输出信号控制电路相连接,接收所述中央控制器处理后的伪随机编码并传输至所述输出信号控制电路。2. The controllable signal transmitter also includes an external synchronization interface connected to the output signal control circuit, receiving the pseudo-random code processed by the central controller and transmitting it to the output signal control circuit.
3、所述伪随机编码控制信号是一种方波直流电源信号。3. The pseudo-random coded control signal is a square wave DC power signal.
4、所述伪随机编码发生单元包括计算机和电平转换电路,所述中央控制器包括单片机和通讯电路;4. The pseudo-random code generation unit includes a computer and a level conversion circuit, and the central controller includes a single-chip microcomputer and a communication circuit;
其中所述计算机发出的所述伪随机编码由所述电平转换电路传输至所述单片机,由所述单片机处理转化为电压变化信号,再由所述通讯电路通过所述外同步接口发送至所述输出信号控制电路。The pseudo-random code sent by the computer is transmitted to the single-chip microcomputer by the level conversion circuit, processed by the single-chip microcomputer and converted into a voltage change signal, and then sent by the communication circuit to the external synchronous interface. The above output signal control circuit.
5、所述单片机型号为C8051F236,所述单片机转化生成的电压变化信号为±5V电压变化信号;所述通讯电路采用MAX485电路,所述电平转换电路采用MAX232电路。5. The model of the single-chip microcomputer is C8051F236, and the voltage change signal converted and generated by the single-chip microcomputer is a ±5V voltage change signal; the communication circuit adopts a MAX485 circuit, and the level conversion circuit adopts a MAX232 circuit.
6、所述伪随机编码发生单元产生的伪随机编码为15位。6. The pseudo-random code generated by the pseudo-random code generating unit is 15 bits.
7、所述MAX232电路和所述MAX485电路通过串行口进行驱动和通信。7. The MAX232 circuit and the MAX485 circuit are driven and communicated through a serial port.
8、所述输出信号控制电路包括IGBT驱动电路和信号输出电路。8. The output signal control circuit includes an IGBT drive circuit and a signal output circuit.
本实用新型具有积极的效果:The utility model has positive effects:
本实用新型的能加载伪随机编码的可控信号发射仪可发射三种信号:伪随机编码控制信号、时域信号或者频域信号,使用非常灵活,能为电法勘探寻找地下深部地质构造、了解地质结构提供大功率可控信号源,尤其是本实用新型特有的伪随机编码的大功率可控电场信号向地层加载后,可在接收仪端只接收这种伪随机信号,从而避免其他信号的干扰,达到清晰分辨深层低阻异常体的目的,解决了油田压裂井裂缝方位监测、注水井水驱范围监测、调剖井调剖效果评价以及蒸汽驱井汽驱范围等问题。The controllable signal transmitter capable of loading pseudo-random codes of the utility model can transmit three kinds of signals: pseudo-random code control signals, time-domain signals or frequency-domain signals. Understand the geological structure and provide a high-power controllable signal source, especially after the high-power controllable electric field signal of the unique pseudo-random code of the utility model is loaded to the formation, only this pseudo-random signal can be received at the receiver end, thereby avoiding other signals In order to achieve the purpose of clearly distinguishing low-resistivity anomalies in deep formations, it solves problems such as fracture azimuth monitoring of oil field fracturing wells, water flooding range monitoring of water injection wells, profile control effect evaluation of profile control wells, and steam flooding range of steam flooding wells.
附图说明Description of drawings
图1是本实用新型能加载伪随机编码的可控信号发射仪的电路功能方块图;Fig. 1 is the circuit functional block diagram of the controllable signal transmitter of the utility model that can load pseudo-random coding;
图2是本实用新型一个实施例的中央控制器的功能框图;Fig. 2 is the functional block diagram of the central controller of an embodiment of the present utility model;
图3是本实用新型一个实施例的中央控制器详细电路图;Fig. 3 is the detailed circuit diagram of the central controller of an embodiment of the utility model;
图4是本实用新型一个实施例的外同步接口详细电路图;Fig. 4 is the detailed circuit diagram of the external synchronization interface of an embodiment of the present invention;
图5A是本实用新型一个实施例的IGBT驱动电路的详细电路图;Fig. 5A is a detailed circuit diagram of an IGBT drive circuit of an embodiment of the present invention;
图5B是本实用新型一个实施例的信号输出电路的详细电路图;Fig. 5B is a detailed circuit diagram of the signal output circuit of an embodiment of the present invention;
图6是本实用新型一个实施例的时域信号电路的详细电路图;Fig. 6 is the detailed circuit diagram of the time domain signal circuit of an embodiment of the present invention;
图7是本实用新型一个实施例的频域信号电路的详细电路图。FIG. 7 is a detailed circuit diagram of a frequency domain signal circuit according to an embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图并以具体实施方式为例,对本实用新型进行详细说明。但是,本领域技术人员应该知晓的是,本实用新型不限于所列出的具体实施方式,只要符合本实用新型的精神,都应该包括于本实用新型的保护范围内。The utility model will be described in detail below in conjunction with the accompanying drawings and by taking the specific implementation as an example. However, those skilled in the art should know that the utility model is not limited to the specific embodiments listed, as long as it conforms to the spirit of the utility model, it should be included in the protection scope of the utility model.
本实用新型的原理为:除了能向被测目标发射常规的时域和/频域信号外,还能够发射伪随机编码控制信号,三种不同方式的控制信号通过信号输出控制单元控制高压发射电源,使发射电源信号成为与它们一致的高压时域和/或频域信号、或伪随机编码控制信号,这种高压信号能够在施工过程中根据需要向地层加载。本实用新型特有的伪随机编码的大功率可控电场信号向地层加载后,可在接收仪端只接收这种伪随机信号,从而避免其他信号的干扰,达到清晰分辨深层低阻异常体的目的。因此本实用新型的创新在于利用外同步接口引入与接收端一致的伪随机信号来控制发射电源信号,使发射信号与接收信号一致,排除了随机信号的干扰,同时又保留了原有技术上所用的时域和频域信号方式。The principle of the utility model is: in addition to transmitting conventional time-domain and/frequency-domain signals to the measured target, it can also transmit pseudo-randomly coded control signals, and the control signals of three different modes control the high-voltage transmitting power supply through the signal output control unit , so that the transmitting power signal becomes a high-voltage time-domain and/or frequency-domain signal consistent with them, or a pseudo-randomly coded control signal. This high-voltage signal can be loaded to the formation as required during the construction process. After the unique pseudo-random coded high-power controllable electric field signal of the utility model is loaded to the formation, only this pseudo-random signal can be received at the receiver end, thereby avoiding the interference of other signals and achieving the purpose of clearly distinguishing deep low-resistance abnormal bodies . Therefore, the innovation of this utility model is to use the external synchronization interface to introduce a pseudo-random signal consistent with the receiving end to control the transmitting power signal, so that the transmitting signal is consistent with the receiving signal, eliminating the interference of random signals, while retaining the original technology. time and frequency domain signals.
请参考图1,为本实用新型的能加载伪随机编码的可控信号发射仪的功能原理框图;如图1所示,首先由工作电源100向整流滤波电路200提供电源信号,在本实用新型的一个实施例中,工作电源为220v、50Hz的交流电,经过整流滤波电路200的处理生成直流电源信号,然后传输至电压调节电路300,电压调节电路300的作用是移相,最后产生线性直流电源信号给输出电路400,经过输出电路400的处理,形成特定的伪随机编码控制信号给发射机500,该伪随机编码控制信号是一种方波直流电源信号,最后由发射机500发射给被测目标。Please refer to Fig. 1, it is the function principle block diagram of the controllable signal transmitter that can load the pseudo-random code of the present utility model; In one embodiment, the working power supply is 220v, 50Hz alternating current, which is processed by the rectification and filtering
在传统的可控信号发射仪中,一般在输出电路400上连接有输出信号控制电路600,用于接收频率信号产生电路603和/或时域信号产生电路604传输来的频率信号和/或时域信号,然后把该频率信号和/或时域信号加到输出电路400的控制信号中,形成一种与该频率信号和/或时域信号一致的高压时域控制信号和/或高压频域控制信号并传输给发射极500,在施工过程中根据实际需要,由发射极500将这种高压时域控制信号和/或高压频域信号向地层加载。上述过程中的各电路单元均为本领域技术人员周知,如图6是本实用新型一个实施例的时域信号电路的详细电路图;图7是本实用新型一个实施例的频域信号电路的详细电路图,不再赘述。In a traditional controllable signal transmitter, an output
如图5A和图5B所示,在本实用新型中,输出信号控制电路600包括IGBT驱动电路和信号输出电路两部分,其中图5A是本实用新型一个实施例的IGBT驱动电路的详细电路图;输出级采用IGBT大功率场效应器件,输出电流的控制采用恒流和恒压控制模块,完成对输出电流的跟踪调节。时域与频域信号的产生,采用集成电路精密振荡器和精密分频器,频率精度可以达到1/106。使系统输出频率、时间的精度及稳定性大大提高。对输出电流的高次及低次谐波,采用电感和电容组成π型滤波器,以满足滤波效果。图5B是本实用新型一个实施例的信号输出电路的详细电路图;利用这两部分电路可实现小功率控制大功率,使电压调节电路300输出的高压直流电加载伪随机编码后,由发射极500将这种加载了随机编码信号的控制信号发射给地下被测地质体。As shown in Figure 5A and Figure 5B, in the utility model, the output
本实用新型能加载伪随机编码的可控信号发射仪,除了频率信号产生电路603和/或时域信号产生电路604以外,在输出信号控制电路600上还连接有一个中央控制器700以及伪随机编码发生单元710,伪随机编码发生单元710的功能是根据测量精度的要求产生不同的伪随机编码并传输至中央控制器700,伪随机编码位数越长,测量精度越高。而中央控制器700的功能是对伪随机编码进行电路变换,转化为±5V电压变化的信号,并传输给输出信号控制电路600。在一个实施例中,如图2所示,中央控制器700采用了单片机C8051F236,伪随机编码发生单元710由计算机担任,发生了一个15位的伪随机编码序列:{A15}=1000100110101111000100110101111…,该伪随机编码经过MAX232电平转换电路705和中央控制器700后,处理转化为±5V电压变化的信号,然后通过通讯电路传输到输出信号控制电路600。再经过输出电路400的处理,形成特定的伪随机编码控制信号给发射机500,该伪随机编码控制信号是一种方波直流电源信号,最后由发射机500发射给被测目标。The utility model can load the controllable signal transmitter of pseudo-random code, in addition to the frequency
在上述图2所示的本实用新型的一个优选实施例中,中央控制器700包括了一个MAX485通讯电路,负责发送单片机C8051F236生成的±5V电压变化的信号。MAX485通讯电路通过本实用新型的可控信号发射仪上的同步接口720将信号送入。图4是本实用新型一个实施例的外同步接口720的详细电路图。In a preferred embodiment of the present invention shown in FIG. 2 above, the
在一个具体实施例中,MAX485通讯电路采用MAX485接口芯片,它是Maxim公司的一种RS一485芯片,其采用单一电源+5V工作,额定电流为300μA,采用半双工通讯方式,它完成将TTL电平转换为RS-485电平的功能,MAX485芯片的结构和引脚都非常简单,内部含有一个驱动器和接收器,RO和DI端分别为接收器的输出和驱动器的输入端,与单片机连接时只需分别与单片机的RXD和TXD相连即可;/RE和DE端分别为接收和发送的使能端,当/RE为逻辑0时,器件处于接收状态;当DE为逻辑1时,器件处于发送状态,因为MAX485工作在半双工状态,所以只需用单片机的一个管脚控制这两个引脚即可;A端和B端分别为接收和发送的差分信号端,当A引脚的电平高于B时,代表发送的数据为1;当A的电平低于B端时,代表发送的数据为0。在与单片机连接时接线非常简单。只需要一个信号控制MAX485的接收和发送即可。同时将A和B端之间加匹配电阻,一般可选100Ω的电阻。In a specific embodiment, the MAX485 communication circuit adopts the MAX485 interface chip, which is a kind of RS-485 chip of Maxim Company, which adopts a single power supply +5V work, and the rated current is 300μA. It adopts a half-duplex communication mode, and it completes the The function of TTL level conversion to RS-485 level. The structure and pins of MAX485 chip are very simple. It contains a driver and receiver inside. The RO and DI terminals are the output of the receiver and the input of the driver respectively. When connecting, you only need to connect to the RXD and TXD of the single-chip microcomputer; /RE and DE terminals are respectively the enabling terminals for receiving and transmitting. When /RE is logic 0, the device is in the receiving state; when DE is
在本实用新型的一个实施例中,采用串行口取电,可以驱动MAX232与MAX485实现通信。没加负载时电压为5.16V,加负载后降到3V左右。In one embodiment of the present invention, the serial port is used to take power, and the MAX232 and MAX485 can be driven to realize communication. The voltage is 5.16V when no load is added, and it drops to about 3V when the load is added.
本实施例的MAX485通讯电路发送的信号就是伪随机编码控制信号,用它来控制发射机发送此类信号,控制发射机时由外同步接口720接入;同时用它控制接收机只接收此类信号,因而就可以排除外界干扰信号,提高仪器精度。The signal sent by the MAX485 communication circuit of the present embodiment is exactly a pseudo-random code control signal, which is used to control the transmitter to send this type of signal, and is accessed by the
本实用新型的能加载伪随机编码的可控信号发射仪,除了能向被测目标发射常规的时域和/频域信号外,还能够发射伪随机编码控制信号,使用灵活,能为电法勘探寻找地下深部地质构造、了解地质结构提供大功率可控信号源,可使接收仪接收到的电信号能清晰分辨深层低阻异常体,解决了油田压裂井裂缝方位监测、注水井水驱范围监测、调剖井调剖效果评价以及蒸汽驱井汽驱范围等问题。The controllable signal transmitter capable of loading pseudo-random codes of the utility model, in addition to transmitting conventional time domain and/frequency domain signals to the measured target, can also transmit pseudo-random code control signals, which is flexible in use and can be used for electrical methods. Exploration, looking for deep underground geological structures, and understanding geological structures provide high-power controllable signal sources, so that the electrical signals received by the receiver can clearly distinguish deep low-resistance anomalies, and solve the problems of oil field fracturing well fracture azimuth monitoring and water injection well water flooding. Range monitoring, profile control effect evaluation of profile control wells, and steam drive range of steam drive wells.
应该注意的是上述实施例是示例而非限制本实用新型,本领域技术人员将能够设计很多替代实施例而不脱离本实用新型的范围。It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010201572698U CN201714377U (en) | 2010-04-12 | 2010-04-12 | Controllable signal emitter capable of being loaded with pseudorandom code |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010201572698U CN201714377U (en) | 2010-04-12 | 2010-04-12 | Controllable signal emitter capable of being loaded with pseudorandom code |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201714377U true CN201714377U (en) | 2011-01-19 |
Family
ID=43460375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010201572698U Expired - Lifetime CN201714377U (en) | 2010-04-12 | 2010-04-12 | Controllable signal emitter capable of being loaded with pseudorandom code |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201714377U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101798920A (en) * | 2010-04-12 | 2010-08-11 | 大港油田集团有限责任公司 | Controllable signal transmitter capable of loading pseudo random code |
CN102891645A (en) * | 2011-07-19 | 2013-01-23 | 中国石油天然气集团公司 | Constant current inversion method and constant current inversion system |
-
2010
- 2010-04-12 CN CN2010201572698U patent/CN201714377U/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101798920A (en) * | 2010-04-12 | 2010-08-11 | 大港油田集团有限责任公司 | Controllable signal transmitter capable of loading pseudo random code |
CN102891645A (en) * | 2011-07-19 | 2013-01-23 | 中国石油天然气集团公司 | Constant current inversion method and constant current inversion system |
CN102891645B (en) * | 2011-07-19 | 2015-07-08 | 中国石油天然气集团公司 | Constant current inversion method and constant current inversion system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104131808B (en) | A kind of device based on transient electromagnetic method coordinate detection accident well | |
CN105432151B (en) | Multi-standard lighting control interface circuit | |
CN104481519B (en) | Electromagnetic logging signal launching electronics system between a kind of well | |
CN201714377U (en) | Controllable signal emitter capable of being loaded with pseudorandom code | |
CN206313786U (en) | MBUS principal and subordinate's monitoring devices | |
CN201306166Y (en) | Signal simulator for mud logging unit | |
CN203161209U (en) | Gamma multi-term detection cement density logger | |
CN102510326A (en) | Full-duplex communication method based on single-core electric cables | |
CN105979257B (en) | A kind of VGA signal measurement apparatus and method | |
CN201763321U (en) | Drift azimuth logging instrument | |
CN204129163U (en) | Seismoreceiver polarity tester | |
CN103780279A (en) | Indoor energy efficiency management terminal communication module | |
CN101799557B (en) | Controllable signal receiver capable of loading pseudo random code | |
CN101798920A (en) | Controllable signal transmitter capable of loading pseudo random code | |
CN205246716U (en) | Control formula signal generator outward | |
CN106448120A (en) | A wireless relay transmission system for downhole temperature and pressure detection | |
CN206020363U (en) | Two-wire bus detector | |
CN211648120U (en) | Ground control device for coiled tubing drilling | |
CN104790942B (en) | An Ultrasonic Logging Tool Using Ultrasonic Transmitting Power Line to Realize Carrier Communication | |
CN102955061A (en) | Multi-frequency alternating-current signal measuring method | |
CN205656301U (en) | Index debugging and automatic testing arrangement of radar driving source class plug -in components | |
CN203675104U (en) | Communication module of indoor energy efficiency management terminal | |
CN206788387U (en) | A kind of wide investigative range and multichannel, the transient electromagnetic reception device of synchronous acquisition | |
Han et al. | Research on downhole multi-parameters monitoring system | |
CN203759279U (en) | Acoustic logging transmitting transducer excitation testing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20110119 |
|
CX01 | Expiry of patent term |