CN201656805U - Inverter without transformer - Google Patents
Inverter without transformer Download PDFInfo
- Publication number
- CN201656805U CN201656805U CN2009201999953U CN200920199995U CN201656805U CN 201656805 U CN201656805 U CN 201656805U CN 2009201999953 U CN2009201999953 U CN 2009201999953U CN 200920199995 U CN200920199995 U CN 200920199995U CN 201656805 U CN201656805 U CN 201656805U
- Authority
- CN
- China
- Prior art keywords
- power switch
- switch pipe
- diode
- inverter
- drain electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 230000005669 field effect Effects 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 3
- 230000009471 action Effects 0.000 abstract description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 239000010949 copper Substances 0.000 abstract description 3
- 230000007423 decrease Effects 0.000 abstract 2
- 239000003990 capacitor Substances 0.000 abstract 1
- 230000002459 sustained effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 210000003850 cellular structure Anatomy 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
- H02M1/123—Suppression of common mode voltage or current
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
The utility model discloses an inverter without transformer, including an input capacitor, six power switching tubes, six anti-parallel diodes, two filter inductors. The utility model performs on-off action by using the six power switching tubes and their anti-parallel diodes, so that the output alternating-current side and the input direct current side of the inverter are at decoupling status, to ensure that the output voltage of the inverter realizes three-level modulation and simultaneously its common-mode voltage is sustained as a constant, to completely eliminate the common mode current; the switch voltage on the power switching tubes is changed into one half of the direct-current input voltage, to reduce the switching loss of the power switching tubes; the frequency multiplication type pulse duration modulation further decreases the ripple of the output current of the inverter, improves the output electric energy quality of the inverter, decreases the volume of the filter inductors, to further reduce the copper loss and magnetic loss produced on the filter inductors.
Description
Technical field
The utility model relates to a kind of inverter in power electronic technology direct-current-alternating-current converter field, especially relates to a kind of transless type inverter.
Background technology
Inverter is meant the effect that turns on and off by semiconductor power switch device, direct current energy is converted to a kind of converters of AC energy, its effect is, the relatively poor original electric energy of direct current of the quality of power supply that obtains from storage battery, solar cell, fuel cell etc., be transformed to the quality of power supply higher, can satisfy the AC energy of user load to voltage and frequency requirement.One of significant problem that serious day by day along with world energy sources shortage and problem of environmental pollution, the energy and environment have become that the 21st century mankind face, the development of the regenerative resource of cleaning and application more and more are subjected to the extensive concern of countries in the world.What a large amount of regenerative resources was sent all is direct current, must use inverter that it is transformed into industrial-frequency alternating current and could widely apply.Therefore, inversion transformation technique has crucial effects in the development and utilization field of regenerative resource.
Generally speaking, different according to the inverter applications occasion with control mode, inverter system can be divided into self inverter and grid type inverter; According to transformer configuration difference in the inverter, inverter system can be divided into band Industrial Frequency Transformer type, band high frequency transformer type and transless type inverter.Industrial Frequency Transformer and high frequency transformer all can be realized the function of boosting and isolating, yet Industrial Frequency Transformer is bulky, and weight increases, and price is more expensive, and inconvenience is installed by system; Though the high frequency transformer volume and weight reduces greatly, this class inverter system often is made up of multistage, causes the system configuration complexity, and system effectiveness reduces.And transless type inverter is simple owing to system configuration, the efficient height, and volume is little, and low cost and other advantages has worldwide obtained development fast.For example, (transless type combining inverter has become the main flow of middle low power grid-connected photovoltaic system (referring generally to the system smaller or equal to 10kW) to the photovoltaic in Europe for Photovoltaic, PV) power field.
But, owing to do not had isolating transformer to carrying out electrical isolation between direct current input source and the AC load, the technical barrier that will exist common mode current to disturb in the transless type inverter.Particularly when transless type inverter applications is in grid-connected photovoltaic system, on the one hand, transless type photovoltaic combining inverter in the system does not carry out electrical isolation to photovoltaic cell component and utility grid, on the other hand, photovoltaic cell component has one along with external environment condition changes and excursion parasitic capacitance over the ground very greatly, parasitic capacitance that it is generally acknowledged the polycrystal silicon cell assembly is 50-150 nF/kWp, film battery assembly can reach 1 μ F/kWp, therefore the parasitic capacitance over the ground of the photovoltaic array that is made of numerous photovoltaic module connection in series-parallel will become bigger, and the scope that changes with external environment condition is also bigger.So, this of photovoltaic battery array over the ground in parasitic capacitance and the transless type inverter circuit assembly inductance, the electric capacity of various filters constituted an electric pathway by earth-return, thereby formed a resonant circuit, thereby may produce sizable common mode current over the ground.Bigger common mode current over the ground can influence the mode of operation of inverter circuit on the one hand, thereby reduces the quality of power supply and the generating efficiency of system; Can bring serious threat to personal safety on the other hand.Therefore, effectively suppressing even eliminate common mode current fully is the key issue that transless type inverter need solve.
Current, the general full-bridge inverter and the half-bridge inverter of the modulation of band bipolarity of adopting solves the common mode current problem, yet this class inverter structure can only be realized two level modulation modes of output voltage, cause output current ripple bigger, the corresponding increase of output inductor volume, thus make the quality and the efficient of inverter generating all can't improve.The inverter structure of half-bridge mid point clamp can be realized three level modulation of output voltage when eliminating Ground leakage current, but the size of its DC side input voltage of this structural requirement is the twice of full-bridge inverter, the corresponding ratio of boosting and the design difficulty that has increased the quantity of prime direct current input source series connection or improved prime DC/DC booster circuit.
Summary of the invention
The purpose of this utility model provides a kind of simple in structure, can realize the transless type inverter of output voltage three level modulation modes when eliminating common mode current.
Transless type inverter of the present utility model, it is characterized in that comprising an input capacitance, six power switch pipes, six anti-and diodes, two filter inductances, first power switch pipe, the first anti-and diode, second power switch pipe, the second anti-and diode, the 3rd power switch pipe, the 3rd anti-and diode and the 4th power switch pipe, the 4th anti-also diode constitutes the full bridge structure circuit jointly, the drain electrode of the 5th power switch pipe, the anode of input capacitance links to each other with the positive pole of input dc terminal, the source electrode of the 5th power switch pipe, the drain electrode of first power switch pipe links to each other with the drain electrode of the 3rd power switch pipe, the source electrode of first power switch pipe, the drain electrode of second power switch pipe links to each other with an end of first filter inductance, the source electrode of the 3rd power switch pipe, the drain electrode of the 4th power switch pipe links to each other with an end of second filter inductance, the source electrode of second power switch pipe, the source electrode of the 4th power switch pipe links to each other with the drain electrode of the 6th power switch pipe, the source electrode of the 6th power switch pipe, the negative terminal of input capacitance links to each other with the negative pole of input dc terminal, first, second, the 3rd, the 4th, the the 5th and the 6th power switch pipe is respectively with first, second, the 3rd, the 4th, the 5th and diode anti-with the 6th with anti-and form link to each other, the negative electrode that is the drain electrode of the power switch pipe anti-and diode corresponding with it links to each other, the anode of the anti-and diode that the source electrode of power switch pipe is corresponding with it links to each other, first, second, the 3rd, the 4th, the grid of the 5th and the 6th power switch pipe is respectively by corresponding driving drives separately, thus the switch motion of power controlling switching tube.
Described power switch pipe and anti-and diode thereof constitute after by independent switch transistor and separate diode inverse parallel, or are made of the switching transistor that its inside carries anti-and diode.
Described power switch pipe is high voltage metal oxide silicon field effect transistor or insulation bipolar transistor.
The filter that described filter inductance constitutes is L mode filter structure, LC mode filter structure or LCL mode filter structure.
Transless type inverter of the present utility model has two kinds of modulation systems: unipolar pulse width modulated (PWM) and the pulse width modulation of frequency multiplication formula.When adopting the unipolar pulse width modulation mode, the brachium pontis that first power switch pipe and second power switch pipe or the 3rd power switch pipe and the 4th power switch pipe are formed carries out switch motion (for example 50Hz) with power frequency period, corresponding another brachium pontis carries out switch motion (for example 20kHz) with high frequency period, and the 5th power switch pipe and the 6th power switch pipe then alternately carry out switch motion with power frequency period and high frequency period; When adopting frequency multiplication formula pulse width modulation, first power switch pipe, second power switch pipe, the 3rd power switch pipe and the 4th power switch pipe all carry out switch motion with high frequency period, but the modulating wave of first power switch pipe and second power switch pipe is opposite with the modulating wave phase place of the 3rd power switch pipe and the 4th power switch pipe, the 5th power switch pipe and the 6th power switch pipe also carry out switch motion with high frequency period, but its modulating wave alternate between the modulating wave of the modulating wave of first power switch pipe and second power switch pipe and the 3rd power switch pipe and the 4th power switch pipe.
When transless type inverter of the present utility model is worked, because the full-bridge circuit that the 5th power switch pipe and the 6th power switch pipe and other power switch pipes constitute coordinates to carry out switch motion, make inverter output voltage when zero level, inverter output AC side and input DC side are in the decoupling zero state, thereby guaranteed in whole modulated process, when inverter output voltage is realized three level, the common-mode voltage of inverter outlet side remains a constant, and then has eliminated common mode current fully; Carry out simultaneously voltage on the power switch pipe of switch motion in the inverter and become half of input direct voltage, reduced the switching loss of power switch pipe greatly, thereby improved inverter efficiency; The realization of frequency multiplication formula pulse width modulation makes the inverter output current ripple further reduce, and has improved the output quality of power supply of inverter, can reduce the volume of filter inductance simultaneously, thereby be reduced in copper loss and the magnetic loss that produces on the filter inductance.Transless type inverter of the present utility model is applicable to self inverter and grid type inverter system, and is particularly suitable for being applied in the grid-connected photovoltaic system.
The utility model utilizes six power switch pipes and anti-also diode thereof to coordinate to carry out switch motion, has eliminated common mode current fully; Switching voltage on the power switch pipe becomes half of DC input voitage, has reduced the switching loss of power switch pipe; The pulse width modulation of frequency multiplication formula further reduces the inverter output current ripple, has improved the output quality of power supply of inverter, has reduced the volume of filter inductance, thereby has reduced copper loss and the magnetic loss that produces on the filter inductance.The utility model is simple in structure, can realize output voltage three level modulation modes when eliminating common mode current.
Description of drawings
Fig. 1 is the circuit diagram of the utility model transless type inverter.
Fig. 2 is the waveform schematic diagram that the utility model adopts the unipolarity pulse width modulation mode.
Fig. 3 is the waveform schematic diagram that the utility model adopts frequency multiplication formula pulse width modulation mode.
Fig. 4 a-Fig. 4 h is eight kinds of mode of operation schematic diagrames of the utility model transless type inverter.
Embodiment
Referring to accompanying drawing 1, transless type inverter of the present utility model comprises an input capacitance C
Dc, six power switch pipes, six anti-and diodes, two filter inductance L
1And L
2First power switch tube S
1, the first anti-and diode D
1, second power switch tube S
2, the second anti-and diode D
2, the 3rd power switch tube S
3, the 3rd anti-and diode D
3With the 4th power switch tube S
4, the 4th anti-and diode D
4Common formation full bridge structure circuit, the 5th power switch tube S
5Drain electrode, input capacitance C
DcAnode with the input dc terminal positive pole link to each other the 5th power switch tube S
5Source electrode, first power switch tube S
1Drain electrode and the 3rd power switch tube S
3Drain electrode link to each other first power switch tube S
1Source electrode, second power switch tube S
2The drain electrode and the first filter inductance L
1An end link to each other the 3rd power switch tube S
3Source electrode, the 4th power switch tube S
4The drain electrode and the second filter inductance L
2An end link to each other second power switch tube S
2Source electrode, the 4th power switch tube S
4Source electrode and the 6th power switch tube S
6Drain electrode link to each other the 6th power switch tube S
6Source electrode, input capacitance C
DcNegative terminal with the input dc terminal negative pole link to each other first power switch tube S
1, second power switch tube S
2, the 3rd power switch tube S
3, the 4th power switch tube S
4, the 5th power switch tube S
5With the 6th power switch tube S
6Respectively with the first anti-also diode D
1, the second anti-and diode D
2, the 3rd anti-and diode D
3, the 4th anti-and diode D
4, the 5th anti-and diode D
5With the 6th anti-and diode D
6With anti-and form link to each other, i.e. the negative electrode of the anti-and diode that the drain electrode of power switch pipe is corresponding with it links to each other, the anode of the anti-and diode that the source electrode of power switch pipe is corresponding with it links to each other first power switch tube S
1, second power switch tube S
2, the 3rd power switch tube S
3, the 4th power switch tube S
4, the 5th power switch tube S
5With the 6th power switch tube S
6Grid respectively by corresponding driving drives separately, thereby the switch motion of power controlling switching tube.
Transless type inverter of the present utility model has two kinds of modulation systems: unipolar pulse width modulated and the pulse width modulation of frequency multiplication formula.Accompanying drawing 2 is the waveform schematic diagram that adopts the unipolarity pulse width modulation mode, wherein u
cBe high frequency carrier (for example 20kHz), u
gBe power frequency modulating wave (for example 50Hz), first power switch tube S
1With second power switch tube S
2Do complementary power frequency switch motion, the 3rd power switch tube S
3With the 4th power switch tube S
4Do complementary HF switch action, as modulating wave u
gWhen being in positive half period, the 5th power switch tube S
5With the 4th power switch tube S
4Switch motion identical, the 6th power switch tube S
6With first power switch tube S
1Switch motion identical, as modulating wave u
gWhen being in negative half-cycle, the 5th power switch tube S
5With second power switch tube S
2Switch motion identical, the 6th power switch tube S
6With the 3rd power switch tube S
3Switch motion identical; Accompanying drawing 3 is the oscillogram that adopts frequency multiplication formula pulse width modulation mode, wherein u
cBe high frequency carrier (for example 20kHz), u
G1And u
G2Be the opposite power frequency modulating wave of phase place (for example 50Hz), first power switch tube S
1With second power switch tube S
2Do complementary HF switch action, modulating wave is u
G1, the 3rd power switch tube S
3With the 4th power switch tube S
4Do complementary HF switch action equally, modulating wave is u
G2, modulating wave u
G1With modulating wave u
G2Phase place is opposite, as modulating wave u
G1When being in positive half period, the 5th power switch tube S
5With the 4th power switch tube S
4Switch motion identical, the 6th power switch tube S
6With first power switch tube S
1Switch motion identical, as modulating wave u
G1When being in negative half-cycle, the 5th power switch tube S
5With second power switch tube S
2Switch motion identical, the 6th power switch tube S
6With the 3rd power switch tube S
3Switch motion identical.
Referring to accompanying drawing 4a-accompanying drawing 4h, there are 8 kinds of mode of operations at most in transless type inverter of the present utility model in entire work process, and wherein: when mode of operation 1, electric current flows through the 5th power switch tube S
5, first power switch tube S
1, the 4th power switch tube S
4With the 6th power switch tube S
6, inverter output positive voltage; When mode of operation 2, electric current flows through the 5th power switch tube S
5, the 3rd power switch tube S
3, second power switch tube S
2With the 6th power switch tube S
6, inverter output negative voltage; When mode of operation 3, electric current flows through first power switch tube S
1With the 3rd anti-and diode D
3, when mode of operation 4, electric current flows through the 3rd power switch tube S
3With the first anti-and diode D
1, mode of operation 3 and 4 o'clock, the 5th power switch tube S
5With the 5th anti-and diode D
5All be in off state, make inverter output AC side and input DC side be in the decoupling zero state; When mode of operation 5, electric current flows through second power switch tube S
2With the 4th anti-and diode D
4, when mode of operation 6, electric current flows through the 4th power switch tube S
4With the second anti-and diode D
2, mode of operation 5 and 6 o'clock, the 6th power switch tube S
6With the 6th anti-and diode D
6All be in off state, make inverter output AC side and input DC side be in the decoupling zero state; Mode of operation 3,4,5 and 6 o'clock, inverter output no-voltage; When mode of operation 7, electric current flows through the 6th anti-and diode D
6, the second anti-and diode D
2, the 3rd anti-and diode D
3With the 5th anti-and diode D
5, inverter output negative voltage; When mode of operation 8, electric current flows through the 6th anti-and diode D
6, the 4th anti-and diode D
4, the first anti-and diode D
1With the 5th anti-and diode D
5, inverter output negative voltage.
Described power switch pipe of present embodiment and anti-also diode thereof can carry the anti-also switching transistor of diode by its inside and constitute, also can be by constituting after independent switch transistor and the separate diode inverse parallel; Described power switch pipe can be high voltage metal oxide silicon field effect transistor (MetalOxide Semiconductor Field-effect Transistor, MOSFET) or the insulation bipolar transistor (Insulated Gate Bipolar Transistor, IGBT) etc.; Described filter inductance L
1And L
2The L mode filter structure that constitutes can be substituted by LC mode filter or LCL mode filter structure; The described transless type of present embodiment inverter structure both had been applicable to that the grid type inverter also was applicable to the self inverter structure.
Claims (4)
1. a transless type inverter comprises an input capacitance (C
Dc), six power switch pipe (S
1, S
2, S
3, S
4, S
5, S
6), six anti-and diode (D
1, D
2, D
3, D
4, D
5, D
6), two filter inductance (L
1, L
2), it is characterized in that: the first power switch pipe (S
1), the first anti-and diode (D
1), the second power switch pipe (S
2), the second anti-and diode (D
2), the 3rd power switch pipe (S
3), the 3rd anti-and diode (D
3) and the 4th power switch pipe (S
4), the 4th anti-and diode (D
4) constitute full bridge structure circuit, the 5th power switch pipe (S jointly
5) drain electrode, input capacitance (C
Dc) anode with the input dc terminal positive pole link to each other the 5th power switch pipe (S
5) source electrode, the first power switch pipe (S
1) drain electrode and the 3rd power switch pipe (S
3) drain electrode link to each other the first power switch pipe (S
1) source electrode, the second power switch pipe (S
2) the drain electrode and the first filter inductance (L
1) an end link to each other the 3rd power switch pipe (S
3) source electrode, the 4th power switch pipe (S
4) the drain electrode and the second filter inductance (L
2) an end link to each other the second power switch pipe (S
2) source electrode, the 4th power switch pipe (S
4) source electrode and the 6th power switch pipe (S
6) drain electrode link to each other the 6th power switch pipe (S
6) source electrode, input capacitance (C
Dc) negative terminal with the input dc terminal negative pole link to each other the first power switch pipe (S
1), the second power switch pipe (S
2), the 3rd power switch pipe (S
3), the 4th power switch pipe (S
4), the 5th power switch pipe (S
5) and the 6th power switch pipe (S
6) the anti-and diode (D with first respectively
1), the second anti-and diode (D
2), the 3rd anti-and diode (D
3), the 4th anti-and diode (D
4), the 5th anti-and diode (D
5) and the 6th anti-and diode (D
6) link to each other with antiparallel form, the negative electrode that is the drain electrode of the power switch pipe anti-and diode corresponding with it links to each other, the anode of the anti-and diode that the source electrode of power switch pipe is corresponding with it links to each other, the grid of each power switch pipe connects control signal separately respectively, the switch motion of power controlling switching tube.
2. transless type inverter according to claim 1 is characterized in that: described power switch pipe (S
1, S
2, S
3, S
4, S
5, S
6) and anti-and diode (D
1, D
2, D
3, D
4, D
5, D
6) by constituting after independent switch transistor and the separate diode inverse parallel, or constitute by the switching transistor that its inside carries anti-and diode.
3. transless type inverter according to claim 1 is characterized in that: described power switch pipe (S
1, S
2, S
3, S
4, S
5, S
6) be high voltage metal oxide silicon field effect transistor or insulation bipolar transistor.
4. transless type inverter according to claim 1 is characterized in that: described filter inductance (L
1, L
2) filter that constitutes is L mode filter structure, LC mode filter structure or LCL mode filter structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201999953U CN201656805U (en) | 2009-11-16 | 2009-11-16 | Inverter without transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201999953U CN201656805U (en) | 2009-11-16 | 2009-11-16 | Inverter without transformer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201656805U true CN201656805U (en) | 2010-11-24 |
Family
ID=43122035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009201999953U Expired - Fee Related CN201656805U (en) | 2009-11-16 | 2009-11-16 | Inverter without transformer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201656805U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102088252A (en) * | 2011-02-21 | 2011-06-08 | 浙江大学 | Inverter without transformer realized by switched capacitor and applications of inverter |
CN103746591A (en) * | 2013-12-20 | 2014-04-23 | 北京交通大学 | H6 one-phase non-isolated photovoltaic grid-connected inverter and modulation method thereof |
CN106451533A (en) * | 2016-09-09 | 2017-02-22 | 河海大学 | Quasi single-stage transformerless grid-connected inverter and control circuit thereof |
-
2009
- 2009-11-16 CN CN2009201999953U patent/CN201656805U/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102088252A (en) * | 2011-02-21 | 2011-06-08 | 浙江大学 | Inverter without transformer realized by switched capacitor and applications of inverter |
CN103746591A (en) * | 2013-12-20 | 2014-04-23 | 北京交通大学 | H6 one-phase non-isolated photovoltaic grid-connected inverter and modulation method thereof |
CN103746591B (en) * | 2013-12-20 | 2015-12-02 | 北京交通大学 | A kind of single-phase non-isolated grid-connected inverter of H6 and modulator approach thereof |
CN106451533A (en) * | 2016-09-09 | 2017-02-22 | 河海大学 | Quasi single-stage transformerless grid-connected inverter and control circuit thereof |
CN106451533B (en) * | 2016-09-09 | 2019-05-03 | 河海大学 | Quasi-single-stage transless gird-connected inverter and its control circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101707442A (en) | Transformer-free inverter | |
CN102185514B (en) | Single-phase three-level inverter | |
CN108702104B (en) | Five-level inverter topology circuit and three-phase five-level inverter topology circuit | |
CN103051233B (en) | Non-isolated single-phase photovoltaic grid-connected inverter and on-off control timing sequence thereof | |
CN102005958B (en) | Photovoltaic grid-connected three-level inverter | |
WO2012163235A1 (en) | Inverter topology circuit, inversion method and inveter | |
CN202535290U (en) | Photovoltaic inverter circuit | |
CN103023362A (en) | Bridgeless inverter circuit and solar bridgeless inverter | |
CN205647288U (en) | Non - isolated form photovoltaic grid -connected inverter | |
CN101895223A (en) | Double-Cuk buck-boost output parallel-type converter | |
CN102088252B (en) | Inverter without transformer realized by switched capacitor and applications of inverter | |
CN102255544A (en) | DC (direct current)/AC (alternating current) inverter circuit | |
CN103956927A (en) | Voltage-active-clamping non-transformer-type single-phase photovoltaic inverter | |
CN108141147B (en) | The five-electrical level inverter topological circuit of high voltage gain | |
CN101635528B (en) | Forward single-stage isolated inverter | |
CN104158427B (en) | Single-phase transless isolated form Z source photovoltaic combining inverter and modulator approach | |
CN102347697B (en) | Direct DC-AC (direct current-alternating current) converting circuit for low-voltage input full bridge inverter | |
CN203398799U (en) | Photovoltaic inverter employing hybrid power device | |
CN104065293A (en) | Transformer-free type single-phase photovoltaic inverter with mixed voltage clamping | |
CN102195507A (en) | Transformer-less grid-connected inverting circuit | |
CN104682762B (en) | Low-leakage-current grid-connected inverter | |
CN201656805U (en) | Inverter without transformer | |
CN106899203B (en) | Forward five-level inverter | |
CN102231606A (en) | Transformerless gird-connected inverter circuit | |
CN102163934A (en) | Efficient grid-connected inverter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101124 Termination date: 20151116 |
|
EXPY | Termination of patent right or utility model |