CN201648119U - Composite Constructed Wetland Sewage Treatment System - Google Patents

Composite Constructed Wetland Sewage Treatment System Download PDF

Info

Publication number
CN201648119U
CN201648119U CN2010201208131U CN201020120813U CN201648119U CN 201648119 U CN201648119 U CN 201648119U CN 2010201208131 U CN2010201208131 U CN 2010201208131U CN 201020120813 U CN201020120813 U CN 201020120813U CN 201648119 U CN201648119 U CN 201648119U
Authority
CN
China
Prior art keywords
pool
water
artificial
constructed wetland
pond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2010201208131U
Other languages
Chinese (zh)
Inventor
王崇宇
贾柠宁
苏航
沈文佳
李楠
王寅
陈寅嵩
吕康乐
卢丽杰
邢文超
马文瀚
路雯潇
司墨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heibei Agricultural University
Original Assignee
Heibei Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heibei Agricultural University filed Critical Heibei Agricultural University
Priority to CN2010201208131U priority Critical patent/CN201648119U/en
Application granted granted Critical
Publication of CN201648119U publication Critical patent/CN201648119U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本实用新型公开了一种复合人工湿地污水处理系统,包括:预处理池,预处理池连通垂直流人工湿地池,垂直流人工湿地池下部设有水平潜流人工湿地池,水平潜流人工湿地池设于地表面下,垂直流人工湿地池经由回流池连通水平潜流人工湿地池;所述垂直流人工湿地池内部的基质从上到下依次为粗砂层、人工混合层和砾石层,水平潜流人工湿地池两侧设有砾石区、中间为基质区,基质区从上到下依次为粗砂层、人工混合层、粗砂层,垂直流人工湿地池主要载植有浅根系植物,水平潜流人工湿地池主要栽植有深根系植物;垂直流人工湿地池上部设有布水管,下部设有泄流槽,水平潜流人工湿地池下部也设有泄流槽。本实用新型污水处理效率高、出水水质好、占地面积小。

Figure 201020120813

The utility model discloses a composite artificial wetland sewage treatment system, comprising: a pretreatment pool, the pretreatment pool is connected with a vertical flow artificial wetland pool, a horizontal underflow artificial wetland pool is arranged at the lower part of the vertical flow artificial wetland pool, and a horizontal underflow artificial wetland pool is arranged Under the ground surface, the vertical flow constructed wetland pool is connected to the horizontal subsurface flow constructed wetland pool through the return flow pool; the matrix inside the vertical flow constructed wetland pool is coarse sand layer, artificial mixed layer and gravel layer from top to bottom, and the horizontal subsurface flow artificial wetland pool There are gravel areas on both sides of the wetland pool, and the matrix area in the middle. The matrix area from top to bottom is coarse sand layer, artificial mixed layer, and coarse sand layer. The vertical flow artificial wetland pool mainly contains shallow root plants, and the horizontal subsurface flow artificial The wetland pool is mainly planted with deep-rooted plants; the upper part of the vertical flow constructed wetland pool is equipped with a water distribution pipe, and the lower part is provided with a discharge trough, and the lower part of the horizontal submerged flow constructed wetland pool is also provided with a discharge trough. The utility model has the advantages of high sewage treatment efficiency, good effluent quality and small occupied area.

Figure 201020120813

Description

复合人工湿地污水处理系统 Composite Constructed Wetland Sewage Treatment System

技术领域technical field

本实用新型涉及污水处理领域,尤其是一种复合人工湿地污水处理方法。The utility model relates to the field of sewage treatment, in particular to a compound artificial wetland sewage treatment method.

背景技术Background technique

随着我国社会经济的高速发展以及城市化进程的加快,一方面城镇用水供需矛盾日益突出,另一方面巨量废水污水的大量排放又使得供水水源不断地受到污染,进而使水质环境不断恶化。目前在我国600多个城市中,有400多个城市存在着不同程度的缺水问题,每年缺水量达60亿吨,由于缺水而造成的经济损失每年近3000亿元。与此同时,目前我国城市每年污水排放量达414亿吨,这些巨量的污水进入地表水体后,对我国有限的地表水体造成日益严重的危害,全国七大水系流域中50%以上的河段均存在着不同程度的污染问题,江苏、上海、广州等地一大批省市已经面临严重的水质污染型缺水问题,如太湖流域3000万人守着2300平方公里的太湖水,却出现了“水多难用”的尴尬局面。不管是原始资源型缺水还是水质污染型缺水均已严重影响和制约了我国社会经济的可持续发展。如何解决这个问题已经成为我国社会经济发展中的一个十分重要的研究课题,在“十五”计划纲要中,提出的污水资源化战略构思无疑是一个有效地手段之一,污水资源化不仅可以大幅度减少污水排放量,改善地表水体生态环境,减少排水工程投资及运行费用,而且也可以大幅度增加可供水量、降低给水处理和供水费用,降低因缺水而造成的经济损失,提高人民的生存健康环境,促进工业、旅游业和水产业的发展。然而我国污水资源化战略的实施却一直举步维艰,目前我国污水净化回用率依然很低。造成这种状况的原因虽然是多方面的,但是主要原因还是污水净化回用技术,还不能适应污水资源市场化的要求。过去传统的生物曝气池技术虽然较能有效地去除污水中的有机物,但对氮磷的去除能力较低,出水水质并不能达到中水回用标准;膜生物反应器技术出水水质虽然较高,但投资运行费用较高,限制了该技术的广泛应用,其他化学物理处理技术也均存在着投资运行费用高、出水水质不稳定和二次污染等问题。With the rapid development of my country's social economy and the acceleration of urbanization, on the one hand, the contradiction between urban water supply and demand has become increasingly prominent, and on the other hand, the massive discharge of huge amounts of waste water and sewage has continuously polluted water sources, further deteriorating the water quality environment. At present, among the more than 600 cities in our country, more than 400 cities have different degrees of water shortage problems. The annual water shortage reaches 6 billion tons, and the economic loss caused by water shortage is nearly 300 billion yuan per year. At the same time, the annual sewage discharge in my country's cities has reached 41.4 billion tons. After these huge amounts of sewage enter the surface water bodies, they will cause increasingly serious harm to my country's limited surface water bodies. More than 50% of the rivers in the seven major river basins There are different degrees of pollution problems. A large number of provinces and cities in Jiangsu, Shanghai, Guangzhou and other places are already facing serious water pollution and water shortage problems. The embarrassing situation of too much water is difficult to use”. Whether it is the original resource-based water shortage or the water pollution-based water shortage, it has seriously affected and restricted the sustainable development of my country's social economy. How to solve this problem has become a very important research topic in my country's social and economic development. In the outline of the "Tenth Five-Year Plan", the strategic conception of sewage resource utilization is undoubtedly one of the effective means. It can greatly reduce the amount of sewage discharge, improve the ecological environment of surface water bodies, reduce the investment and operation costs of drainage projects, and can also greatly increase the amount of water available, reduce water supply treatment and water supply costs, reduce economic losses caused by water shortages, and improve people's livelihood. Survive a healthy environment and promote the development of industry, tourism and aquaculture. However, the implementation of my country's sewage resource utilization strategy has been struggling. At present, my country's sewage purification and reuse rate is still very low. Although there are many reasons for this situation, the main reason is the sewage purification and reuse technology, which cannot meet the requirements of the marketization of sewage resources. Although the traditional biological aeration tank technology in the past can effectively remove organic matter in sewage, its ability to remove nitrogen and phosphorus is low, and the quality of effluent water cannot meet the standard for reclaimed water reuse; although the effluent water quality of membrane bioreactor technology is relatively high , but the high investment and operation costs limit the wide application of this technology. Other chemical and physical treatment technologies also have problems such as high investment and operation costs, unstable effluent quality, and secondary pollution.

现在正在运行的人工湿地污水处理技术具有高效率、低投资、低运转费用、低维持技术的特点,在全世界范围内受到越来越广泛的关注。但同时也存在着:不能直接处理污水,适应性差,只能针对初级或二级处理后的污水进行深度处理;对于重金属污染物吸收效率低;技术受环境温度影响大;夏季易孳生蚊虫等缺点。现有的人工湿地污水处理技术基本可分为表面流式、垂直流式和潜流式。表面流人工湿地是最原始的人工湿地,与自然湿地类似,水深较浅,一般在0.2-0.4米左右,废水从湿地表面流过。这种类型的人工湿地占地面积大,水力负荷率小,去污能力有限,氧气传输能力有限,受气候影响很大,夏季易孳生蚊蝇。垂直流湿人工地对于有机物的去除能力不足,夏季也有孳生蚊蝇的现象。潜流式人工湿地氧气供应不足,硝化作用不良。近几年人们提出了复合人工湿地污水处理方法,可综合各类型人工湿地的优点,但是也存在着占地面积大、污水处理效果不理想、无法很好的利用湿地基质的吸附和过滤等缺点,因此为了使我国污水资源化战略实施有长足的发展,开发和研究新型的生态污水净化回用技术具有十分重要的意义。The constructed wetland sewage treatment technology currently in operation has the characteristics of high efficiency, low investment, low operating cost, and low maintenance technology, and has received more and more attention worldwide. But at the same time, there are also: can not directly treat sewage, poor adaptability, can only carry out advanced treatment for sewage after primary or secondary treatment; low absorption efficiency for heavy metal pollutants; technology is greatly affected by ambient temperature; easy to breed mosquitoes in summer and other shortcomings . The existing constructed wetland sewage treatment technologies can basically be divided into surface flow, vertical flow and subsurface flow. Surface flow constructed wetlands are the most primitive constructed wetlands, similar to natural wetlands, with shallow water depth, generally around 0.2-0.4 meters, and wastewater flows through the wetland surface. This type of constructed wetland occupies a large area, has a small hydraulic load rate, limited decontamination capacity, limited oxygen transmission capacity, is greatly affected by climate, and is prone to breed mosquitoes and flies in summer. Vertical flow wet artificial land has insufficient ability to remove organic matter, and there is also a phenomenon of breeding mosquitoes and flies in summer. Subsurface flow constructed wetlands have insufficient oxygen supply and poor nitrification. In recent years, people have proposed composite constructed wetland sewage treatment methods, which can combine the advantages of various types of constructed wetlands, but there are also disadvantages such as large area, unsatisfactory sewage treatment effect, and inability to make good use of the adsorption and filtration of wetland substrates. Therefore, in order to make great progress in the implementation of my country's sewage resource utilization strategy, it is of great significance to develop and research new ecological sewage purification and reuse technologies.

实用新型内容Utility model content

本实用新型要解决的技术问题是提供一种污水处理效率高、单位面积污水净化效率高、出水水质好的复合人工湿地污水处理系统。The technical problem to be solved by the utility model is to provide a composite artificial wetland sewage treatment system with high sewage treatment efficiency, high sewage purification efficiency per unit area, and good effluent quality.

为解决上述技术问题,本实用新型所采取的技术方案是:一种复合人工湿地污水处理系统,包括:预处理池,预处理池连通垂直流人工湿地池,垂直流人工湿地池下部设有水平潜流人工湿地池,水平潜流人工湿地池设于地表面下,垂直流人工湿地池经由回流池连通水平潜流人工湿地池;所述垂直流人工湿地池内部的基质从上到下依次为粗砂层、人工混合层和砾石层,所述水平潜流人工湿地池两侧设有砾石区、中间为基质区,水平潜流人工湿地池的基质区从上到下依次为粗砂层、人工混合层、粗砂层,垂直流人工湿地池载植有浅根系植物,水平潜流人工湿地池栽植有深根系植物;垂直流人工湿地池上部设有布水管,下部设有泄流槽,水平潜流人工湿地池下部亦设有泄流槽。In order to solve the above technical problems, the technical solution adopted by the utility model is: a composite constructed wetland sewage treatment system, including: a pretreatment pool, the pretreatment pool is connected to the vertical flow constructed wetland pool, and the lower part of the vertical flow constructed wetland pool is equipped with a horizontal The subsurface flow constructed wetland pool, the horizontal subsurface flow constructed wetland pool is set under the ground surface, and the vertical flow constructed wetland pool is connected to the horizontal subsurface flow constructed wetland pool through the return flow pool; the matrix inside the vertical flow constructed wetland pool is a coarse sand layer from top to bottom , artificial mixed layer and gravel layer, gravel areas are arranged on both sides of the horizontal subsurface flow constructed wetland pool, and the middle is a matrix area, and the matrix area of the horizontal subsurface flow constructed wetland pool is coarse sand layer, artificial mixed layer, coarse In the sand layer, shallow-rooted plants are planted in the vertical flow constructed wetland pool, and deep-rooted plants are planted in the horizontal submerged flow constructed wetland pool; the upper part of the vertical flow constructed wetland pool is equipped with water distribution pipes, and the lower part is equipped with discharge channels, and the lower part of the horizontal submerged flow constructed wetland pool There is also a drain tank.

进一步的改进还设有用于污水二次处理的集水池,集水池内设有污水泵,污水泵连通设于垂直流人工湿地池上部的布水管,水平潜流人工湿地池的泄水槽通过管路连通集水池。A further improvement is also provided with a sump for secondary treatment of sewage. There is a sewage pump in the sump. The sewage pump is connected to the water distribution pipe on the upper part of the vertical flow artificial wetland pool, and the drainage tank of the horizontal submerged flow artificial wetland pool is connected through pipelines. Sump.

进一步的改进还设有用于将经过处理的污水进行生态复原性处理的尾水净水剂投料系统,尾水净水剂投料系统通过管路连接集水池。A further improvement is also provided with a tail water purifying agent feeding system for ecologically restorative treatment of the treated sewage, and the tail water purifying agent feeding system is connected to the sump through pipelines.

进一步的改进还设有保温动力系统,保温动力系统包括太阳能温室和定位于太阳能温室外壁的太阳能电池板,太阳能温室的主体结构为钢结构,太阳能温室的外壁由透光玻璃组成封闭空间。A further improvement is also provided with a thermal insulation power system. The thermal insulation power system includes a solar greenhouse and a solar panel positioned on the outer wall of the solar greenhouse. The main structure of the solar greenhouse is a steel structure, and the outer wall of the solar greenhouse is a closed space composed of light-transmitting glass.

优选的,上述回流池内设有污水泵,污水泵通过管路连通水平潜流人工湿地池的入水出砾石区,回流池通过管路连通垂直流人工湿地池的泄流槽,回流池内设有潜水曝气机,潜水曝气机连通设于水平潜流人工湿地池池底的微孔曝气管。Preferably, a sewage pump is provided in the above-mentioned backflow pool, and the sewage pump is connected to the water inlet and out of the gravel area of the horizontal submerged flow artificial wetland pool through pipelines, and the backflow pool is connected to the discharge tank of the vertical flow artificial wetland pool through pipelines, and the backflow pool is provided with submersible exposure. The submersible aerator is connected to the microporous aeration pipe arranged at the bottom of the horizontal submerged flow constructed wetland pool.

优选的,上述预处理池设有进水口与出水口,预处理池内设有用于对污水的杂质进行初步过滤的格栅,格栅的一侧由栅条和横向肋条构成,另一侧设有筛网。Preferably, the above-mentioned pretreatment tank is provided with a water inlet and a water outlet, and a grid for preliminary filtering of impurities in the sewage is provided in the pretreatment tank. One side of the grid is composed of grid bars and transverse ribs, and the other side is provided with sieve.

优选的,上述垂直流人工湿地池与水平潜流人工湿地池的人工复合层均由蛭石、沸石、煤渣混配而成,其高度至少为20cm。Preferably, the artificial composite layers of the vertical flow constructed wetland pool and the horizontal subsurface flow constructed wetland pool are all made of vermiculite, zeolite, and coal cinder, and the height is at least 20 cm.

优选的,上述垂直流人工湿地池与水平潜流人工湿地池的泄流槽底部均设有防水层,垂直流人工湿地池泄流槽底部的防水层上面设有可容深根系富集植物茎杆通过的预制穴孔,预制穴孔内侧填充柔性可塑防水填料,垂直流人工湿地池的泄流槽上部设有透水板,水平潜流人工湿地池内设有导流隔板,导流隔板形成S型的水流通道。Preferably, the above-mentioned vertical flow constructed wetland pool and the bottom of the discharge tank of the horizontal subsurface constructed wetland pool are provided with a waterproof layer, and the waterproof layer at the bottom of the discharge tank of the vertical flow constructed wetland pool is provided with a plant stem that can accommodate deep root system enrichment. The inside of the prefabricated hole is filled with flexible plastic waterproof filler, the upper part of the discharge tank of the vertical flow constructed wetland pool is provided with a permeable plate, and the horizontal submerged flow artificial wetland pool is equipped with a diversion baffle, which forms an S shape of water flow channels.

采用上述技术方案所产生的有益效果在于:1、本实用新型综合各种人工湿地处理方式的优点,不仅可以对污水中的无机富营养化元素进行高效清除,还可以对污水中的有机物及重金属污染物进行有效分解吸附,使单位面积污水净化效率大幅度提高,从而让净化后出水水质达到深度处理标准,并且由于采用了上下式垂直复合结构,可节约占地面积。The beneficial effects produced by adopting the above technical scheme are: 1. The utility model integrates the advantages of various artificial wetland treatment methods, not only can efficiently remove the inorganic eutrophication elements in the sewage, but also can effectively remove the organic matter and heavy metals in the sewage Pollutants are effectively decomposed and adsorbed, which greatly improves the efficiency of sewage purification per unit area, so that the quality of the purified effluent can reach the advanced treatment standard, and because of the use of vertical composite structures, the floor area can be saved.

2、本实用新型综合利用了人工湿地的各类形式,使污水多方向多次流动净化,净化时间充足,更好的利用基质的截留、过滤、吸附等作用,同时也容易克服垂直流易堵塞的问题。2. The utility model comprehensively utilizes various forms of constructed wetlands, so that the sewage flows and purifies in multiple directions in multiple directions, the purification time is sufficient, and the interception, filtration, adsorption and other functions of the matrix are better utilized, and at the same time, it is easy to overcome the vertical flow and easy blockage The problem.

3、通过设置的曝气装置可以解决水平潜流层氧补偿量小的问题。3. The problem of small amount of oxygen compensation in the horizontal subsurface layer can be solved by setting the aeration device.

4、进一步改进设置的太阳能系统可使本实用新型不受季节温度的影响,不仅可以在春夏温度较高时运行,而且可以在秋冬季温度较低时正常运行,解决了北方冬季人工湿地处理效率降低的问题;且利用太阳能集热供电,对污水进行处理,可以大幅降低成本,同时提高污水处理效率。4. Further improving the installed solar system can make the utility model not affected by the seasonal temperature. It can not only operate when the temperature is high in spring and summer, but also can operate normally when the temperature is low in autumn and winter, which solves the problem of artificial wetland treatment in winter in the north. The problem of reduced efficiency; and the use of solar thermal power to treat sewage can greatly reduce costs and improve sewage treatment efficiency.

5、进一步的改进通过设置的尾水净水剂投料系统,可对经过处理且不回收利用的中水进行生态复原性处理,排入自然水系中不造成生态负担。5. Further improvement Through the setup of tail water purification agent feeding system, the treated and non-recycled reclaimed water can be treated with ecological restoration, and discharged into the natural water system without causing ecological burden.

6、本实用新型与传统的人工湿地处理技术相比,占地面积可以节约50%以上,单位面积处理效率可以提高60%以上,出水水质稳定;本实用新型完全采用自然式技术方法对污水进行净化处理,无二次污染。6. Compared with the traditional artificial wetland treatment technology, the utility model can save more than 50% of the floor area, increase the treatment efficiency per unit area by more than 60%, and stabilize the water quality of the effluent; the utility model completely adopts natural technology to treat sewage Purification treatment, no secondary pollution.

附图说明Description of drawings

图1是本实用新型的结构示意图;Fig. 1 is the structural representation of the utility model;

图2是水平潜流湿地池的示意图;Figure 2 is a schematic diagram of a horizontal subsurface flow wetland pool;

图3是图2的俯视图;Fig. 3 is the top view of Fig. 2;

图4是垂直流湿地池的示意图;Figure 4 is a schematic diagram of a vertical flow wetland pool;

图5是布水管的示意图;Fig. 5 is the schematic diagram of water distribution pipe;

图6是微孔曝气管的示意图;Fig. 6 is the schematic diagram of microporous aeration tube;

图7是垂直流湿地池的示意图;Figure 7 is a schematic diagram of a vertical flow wetland pool;

图8是格栅的示意图;Figure 8 is a schematic diagram of the grid;

图9是图8的俯视图;Figure 9 is a top view of Figure 8;

其中,1、地坪面;2、预处理池;3、格栅;4、太阳能电池板;5、浅根系植物;6、布水管;7、垂直流人工湿地池的粗砂层;8、垂直流人工湿地池的人工混合层;9、垂直流人工湿地池的砾石层;10、垂直流人工湿地池的泄流槽;11、尾水净水剂投料池;12、集水池;13、集水池内的污水泵;14、回流池内的污水泵;15、污水泵;16、潜水曝气机;17、回流池;19、粗砂层;20、泄流槽;21、人工混合层;22、粗砂层;23、导流隔板;24、污水泵;25、温室透光外壁;26、栅条;27、横向肋条;28、筛网;29、垂直流人工湿地池;30、水平潜流人工湿地池;31、布水主管;32、布水支管;33、入水处砾石区;34、出水处砾石区;35、微孔曝气管;36、泄流槽底部的防水层;37、泄流槽顶部的防水层;38、垂直流人工湿地池的防水层;39、垂直流人工湿地池的透水板;40、预置穴孔;41、柔性可塑防水填料。Among them, 1. Floor surface; 2. Pretreatment pool; 3. Grille; 4. Solar panels; 5. Shallow root plants; 6. Water distribution pipes; The artificial mixed layer of the vertical flow constructed wetland pool; 9. The gravel layer of the vertical flow constructed wetland pool; 10. The discharge trough of the vertical flow constructed wetland pool; 11. The tail water water purification agent feeding tank; 12. The sump; 13. Sewage pump in the sump; 14. Sewage pump in the reflux tank; 15. Sewage pump; 16. Submersible aerator; 17. Return tank; 19. Coarse sand layer; 20. Drainage tank; 21. Artificial mixing layer; 22. Coarse sand layer; 23. Diversion partition; 24. Sewage pump; 25. Greenhouse light-transmitting outer wall; 26. Grille; 27. Transverse rib; 28. Screen; Horizontal subsurface flow artificial wetland pool; 31. Water distribution main pipe; 32. Water distribution branch pipe; 33. Gravel area at the water inlet; 34. Gravel area at the water outlet; 35. Microporous aeration pipe; 36. Waterproof layer at the bottom of the discharge tank; 37. The waterproof layer on the top of the drainage tank; 38. The waterproof layer of the vertical flow constructed wetland pool; 39. The permeable plate of the vertical flow constructed wetland pool; 40. Pre-set holes; 41. Flexible plastic waterproof filler.

具体实施方式Detailed ways

下面结合附图和具体实施方式对本实用新型作进一步详细的说明。Below in conjunction with accompanying drawing and specific embodiment, the utility model is described in further detail.

参见附图1,待处理的污水先流入预处理池2,预处理池2安置格栅3,以便过滤大块的漂浮物和悬浮物,减少后续处理产生的浮渣,保证污水处理设备的正常运行,还可以采取投放净水剂或重力沉淀法进一步对其进行预处理。经过预处理的污水通过污水泵24经布水管6流入垂直流人工湿地池29,通过阀门控制流速。布水管6设于垂直流人工湿地池表面,由布水主管31和布水支管32组成,呈“王”字结构,可使布水均匀。垂直流人工湿地池29基质从上到下由粗砂层7、人工混合层8和砾石层9组成,人工混合层8由沸石、蛭石、煤渣混配而成,配填入湿地池中时,按照上面密实下面疏松,上面颗粒细小,下面颗粒粗大的原则。其中优选粒径为蛭石0.2~1.5cm,沸石1.4~2.5cm,煤渣3~7cm,粗砂层粒径2~7mm,底层砾石直径为4~8cm。污水通过层层基质垂直渗透吸附一部分重金属污染物,生长于基质中的植物根系及微生物菌群的硝化能力重点去除氮氨类无机物,经过垂直流人工湿地池29处理后的污水中悬浮颗粒物含量急剧降低,但污水中的各有机污染物和重金属污染物无大量降低。Referring to accompanying drawing 1, the sewage to be treated first flows into the pretreatment tank 2, and the pretreatment tank 2 is equipped with a grid 3 to filter large floating and suspended solids, reduce scum produced by subsequent treatment, and ensure the normal operation of the sewage treatment equipment. It can also be pretreated by adding water purifier or gravity sedimentation method. The pretreated sewage flows into the vertical flow artificial wetland pool 29 through the sewage pump 24 through the water distribution pipe 6, and the flow rate is controlled by the valve. The water distribution pipe 6 is arranged on the surface of the vertical flow artificial wetland pool, and is composed of a water distribution main pipe 31 and a water distribution branch pipe 32, which is in the shape of a "king" and can distribute water evenly. The matrix of the vertical flow constructed wetland pool 29 is composed of a coarse sand layer 7, an artificial mixed layer 8 and a gravel layer 9 from top to bottom. The artificial mixed layer 8 is made of zeolite, vermiculite, and cinder. , in accordance with the principles of dense top and loose bottom, fine particles on the top, and coarse particles on the bottom. Among them, the preferred particle size is 0.2-1.5 cm for vermiculite, 1.4-2.5 cm for zeolite, 3-7 cm for cinder, 2-7 mm for coarse sand layer, and 4-8 cm for bottom gravel. Sewage vertically infiltrates and adsorbs some heavy metal pollutants through layers of matrix. The nitrification ability of plant roots and microbial flora growing in the matrix focuses on the removal of nitrogen and ammonia inorganic substances. It decreased sharply, but the organic pollutants and heavy metal pollutants in the sewage did not decrease significantly.

污水通过垂直流人工湿地池29后,通过池底的泄水槽10流入回流池17,回流池17为经过垂直流人工湿地池29处理后的污水汇集处,之后通过污水泵14将污水流入水平潜流人工湿地池30,以阀门控制流入速度。水平潜流人工湿地池设有地坪面下,这样有利于冬季保温,提高北方冬季工作效率。水平潜流池中主要配置多种富集植物,如芦苇、桃金娘、菖蒲、水葱等等,综合配置超富集植物,通过各类富集植物对于重金属污染物的强力吸收功能实现污水中重金属污染物的去除目的,同时在水平潜流人工湿地池中,会形成植物——微生物群生态系统,在基质与根系中会出现大量的优势微生物群,依靠微生物菌群可以进一步分解有机污染物与重金属污染物。水平潜流人工湿地池30中布设有基质和微孔曝气管35,由潜水曝气机16通过微孔曝气管33向水平潜流人工湿地池供氧进行微曝气。通常的水平潜流湿地主要依靠植物运输作用实现竖向氧气补偿,补偿量小,而本发明中垂直流湿地池本身已经可以增加氧气垂直渗透量,再利用回流池17与微曝气装置可以更加有效增加系统含氧量,提高植物根系及微生物菌群的反应净化效率,高效处理吸收重金属污染物、分解有机污染物。污水经过水平潜流人工湿地池30后,有机污染物和重金属污染物会大量降低,无机污染物也会进一步降低,经处理后的水会流入集水池12,集水池12可以监控污水处理效果,并设有污水泵13及管道,可使污水回流进行二次处理,处理后的中水可以循环使用,还可以利用尾水净水剂投料系统对集水池中中水进行生态恢复性处理后排放。尾水净水剂投料系统,采用由硅藻土、海泡石、荷叶、芦苇、沸石等纯天然物料研磨混配制成的生态环保复合水处理剂,具有沉淀污染物,还原水体自然性成分的特点,对经过处理且不回收利用的中水进行生态复原性处理,排入自然水系中不造成生态负担,可参见公开号CN101003401A《一种生态环保复合水处理剂》的专利。After the sewage passes through the vertical flow artificial wetland pool 29, it flows into the backflow pool 17 through the drain tank 10 at the bottom of the pool. The backflow pool 17 is the collection place for the sewage treated by the vertical flow artificial wetland pool 29, and then the sewage pump 14 flows the sewage into the horizontal subsurface flow The constructed wetland pool 30 uses a valve to control the inflow rate. The horizontal underflow artificial wetland pool is provided under the floor surface, which is conducive to winter heat preservation and improves the work efficiency in winter in the north. The horizontal submerged flow pool is mainly equipped with a variety of enrichment plants, such as reed, myrtle, calamus, water onion, etc., and the super-enrichment plants are comprehensively configured. Through the strong absorption function of various enrichment plants for heavy metal pollutants, the sewage The purpose of removing heavy metal pollutants, at the same time, in the horizontal subsurface flow constructed wetland pool, a plant-microbiota ecosystem will be formed, and a large number of dominant microbial groups will appear in the substrate and root system, relying on the microbial flora to further decompose organic pollutants and heavy metal pollutants. Substrate and microporous aeration pipe 35 are arranged in the horizontal subsurface flow constructed wetland pool 30 , and the submersible aerator 16 supplies oxygen to the horizontal subsurface flow constructed wetland pool through the microporous aeration pipe 33 for micro-aeration. Ordinary horizontal subsurface flow wetlands mainly rely on plant transportation to realize vertical oxygen compensation, and the compensation amount is small. However, the vertical flow wetland pool itself in the present invention can increase the vertical oxygen infiltration, and then use the backflow pool 17 and the micro-aeration device to be more effective. Increase the oxygen content of the system, improve the reaction purification efficiency of plant roots and microbial flora, efficiently treat and absorb heavy metal pollutants, and decompose organic pollutants. After the sewage passes through the horizontal underflow artificial wetland pool 30, the organic pollutants and heavy metal pollutants will be greatly reduced, and the inorganic pollutants will be further reduced. The treated water will flow into the sump 12, which can monitor the sewage treatment effect and Sewage pump 13 and pipelines are provided to allow sewage to flow back for secondary treatment. The treated reclaimed water can be recycled, and the reclaimed water in the sump can be discharged after ecological restoration treatment by using the tail water purifying agent feeding system. The feeding system of tail water purifying agent adopts the ecological and environmental protection compound water treatment agent made of diatomite, sepiolite, lotus leaf, reed, zeolite and other pure natural materials, which can precipitate pollutants and restore the natural components of water body The characteristics of this method are to carry out ecological restoration treatment on the treated and non-recycled reclaimed water, and discharge it into the natural water system without causing ecological burden. Please refer to the patent of Publication No. CN101003401A "An Ecologically Environmentally Friendly Composite Water Treatment Agent".

参见附图1,本发明整个系统处于太阳能温室25中,太阳能电池板4挂于太阳能温室25外侧。环境温度较低时,太阳能温室25可以捕获太阳热能,提高室内温度,以保证水生植物在一年四季的正常生长,为微生物菌团提供良好的生存繁育环境;另一方面还可以转化太阳能,为潜水曝气机16提供工作动力,节约能源。如此可以解决通人工湿地污水处理技术在北方冬季寒冷情况下效率低下的问题。Referring to accompanying drawing 1, the whole system of the present invention is in the solar greenhouse 25, and the solar panel 4 is hung on the outside of the solar greenhouse 25. When the ambient temperature is low, the solar greenhouse 25 can capture solar heat and increase the indoor temperature to ensure the normal growth of aquatic plants throughout the year and provide a good living and breeding environment for microbial flora; on the other hand, it can also convert solar energy to provide The submersible aerator 16 provides working power and saves energy. This can solve the problem of low efficiency of the constructed wetland sewage treatment technology in cold winter conditions in the north.

参见附图2、附图3,水平潜流人工湿地池30的两侧为砾石区,其中一侧为入水处砾石区33,另一侧为出水处砾石区34,入水处砾石直径为8~15mm,出水处砾石直径为2~4cm,出水处砾石区34未填满由导水隔板23所围成的区域,而是添加了部分砾石,出水处添加部分砾石可以有效的防制堵塞,便于水更好的排出,出水处砾石区34下部设有透水板,泄流槽顶部除去出水处砾石区34部分的其余部位设有防水层37。基质自上而下由粗砂层22、人工混合层21、粗砂层19组成,人工混合层21由沸石、蛭石、煤渣混配而成,配填入湿地池中时,按照上面密实下面疏松,上面颗粒细小,下面颗粒粗大的原则。其中优选粒径为蛭石0.2~1.5cm,沸石1.4~2.5cm,煤渣3~7cm,粗砂层粒径2~7mm。设置的导流隔板23使水流形成类似S形的通道,可以增加污水的处理效果。Referring to accompanying drawings 2 and 3, both sides of the horizontal subsurface flow constructed wetland pool 30 are gravel areas, one side is the gravel area 33 at the water inlet, and the other side is the gravel area 34 at the water outlet, and the diameter of the gravel at the water inlet is 8-15mm The diameter of the gravel at the water outlet is 2-4 cm. The gravel area 34 at the water outlet does not fill the area surrounded by the water-conducting partition 23, but adds some gravel. Adding some gravel at the water outlet can effectively prevent clogging and facilitate Water is better discharged, and the lower part of the gravel area 34 at the water outlet is provided with a water-permeable plate, and the remaining position of the gravel area 34 at the water outlet is provided with a waterproof layer 37 at the top of the discharge groove. The matrix consists of a coarse sand layer 22, an artificial mixed layer 21, and a coarse sand layer 19 from top to bottom. The artificial mixed layer 21 is made of zeolite, vermiculite, and coal cinder. Loose, the principle of fine particles on the top and coarse particles on the bottom. Among them, the preferred particle size is 0.2-1.5 cm for vermiculite, 1.4-2.5 cm for zeolite, 3-7 cm for cinder, and 2-7 mm for coarse sand layer. The set guide partition 23 makes the water flow form an S-like channel, which can increase the sewage treatment effect.

参见附图4,垂直流湿地池29内栽植有浅根系植物5,该植物有富集作用,垂直流湿地池因在地表之上,所以选用的植物以浅根系或浮水植物为主,无机污染物处理能力强,同时兼具景观效果,如灯芯草、睡莲、千屈菜、花叶美人蕉等。污水经布水管6均匀流入垂直流人工湿地池29,最后通过垂直流人工湿地池29的泄水槽10上壁的透水板39汇入泄水槽,经过泄水管流入回流池17。垂直流人工湿地池的防水层38与透水板39均为方形蜂窝状结构,上面预留有穴孔以便使水平潜流湿地池的深根系植物的茎杆通过。防水层38为了防止正在处理的水直接流入水平潜流湿地池,同时为了保证植物正常的生长,会在穴孔和植物茎秆间敷设柔性可塑防水填料如塑胶等,不仅防止污水串池流通,还可尽量保证植物正常生长,不影响效率。透水板38直接接触的为大粒径的砾石,悬浮物少且直接接触的基质本身块大,不易堵塞,不需要特殊处理。Referring to accompanying drawing 4, shallow-rooted plants 5 are planted in the vertical flow wetland pool 29, and the plants have an enrichment effect. Because the vertical flow wetland pool is above the surface, the selected plants are mainly shallow-rooted or floating water plants, and inorganic pollutants It has strong processing ability and has landscape effects at the same time, such as rushes, water lilies, quinces, mosaic canna, etc. The sewage evenly flows into the vertical flow constructed wetland pool 29 through the water distribution pipe 6, and finally flows into the drain through the permeable plate 39 on the upper wall of the drain tank 10 of the vertical flow constructed wetland pool 29, and flows into the return pool 17 through the drain pipe. The waterproof layer 38 and the permeable plate 39 of the vertical flow constructed wetland pool are both square honeycomb structures, and holes are reserved above to allow the stems of deep-rooted plants in the horizontal subsurface flow wetland pool to pass through. In order to prevent the water being treated from flowing directly into the horizontal underflow wetland pool, and to ensure the normal growth of plants, the waterproof layer 38 will lay flexible plastic waterproof fillers such as plastic between the holes and plant stems, not only to prevent sewage from flowing into the pool, but also to It can try to ensure the normal growth of plants without affecting the efficiency. The permeable plate 38 is in direct contact with gravels of large particle size, with less suspended solids and the directly contacted matrix itself is large, not easy to block, and does not require special treatment.

参见附图5,布水管6为类似于“王”字形的布水管,设有布水主管31与布水支管32。参见附图6,微孔曝气管优选为多孔PVC曝气管,其形状也类似于“王”字形。Referring to accompanying drawing 5, the water distribution pipe 6 is a water distribution pipe similar to a "king" shape, and is provided with a water distribution main pipe 31 and a water distribution branch pipe 32. Referring to accompanying drawing 6, the microporous aeration pipe is preferably a porous PVC aeration pipe, and its shape is also similar to the shape of a "king".

参见附图7,垂直流人工湿地池的防水层为经过特殊处理的橡胶或塑胶类材料。预置孔穴40使深根系植物茎秆通过。Referring to Figure 7, the waterproof layer of the vertical flow constructed wetland pool is made of specially treated rubber or plastic materials. Pre-set holes 40 allow deep rooted plant stalks to pass through.

参见附图8、附图9,格栅由栅条26、横向肋条27、框架、筛网28组成,栅条可以预先阻挡过滤大块的悬浮物,如树枝、食品袋等,然后通过格栅后面的筛网进行进一步过滤。Referring to accompanying drawing 8, accompanying drawing 9, grid is made up of grid bar 26, transverse rib 27, frame, screen cloth 28, and grid bar can block and filter bulk suspended matter in advance, as branch, food bag etc., then pass grid The following sieves carry out further filtration.

本污水处理系统建成后,大约需要20-27天左右的时间让中心部分生物反应系统“预热”,使植物根系与优势微生物菌群繁育到一个可以稳定处理消化污水的阶段。After the sewage treatment system is completed, it will take about 20-27 days to "preheat" the central part of the biological reaction system, so that the plant roots and dominant microbial flora can grow to a stage where they can stably process and digest sewage.

在本发明的原理性试验中,曾分别针对保定市河道生活污水,某造纸厂污水和某电镀厂工业废水进行实验,获得实验数据如下:下述实施例中COD为化学需氧量,BOD为生化需氧量,SS为悬浮物,TP总磷。In the principle test of the present invention, experiment was carried out respectively for river course domestic sewage in Baoding City, certain paper mill sewage and certain electroplating plant industrial wastewater, and the experimental data obtained are as follows: COD is the chemical oxygen demand in the following examples, and BOD is Biochemical oxygen demand, SS for suspended solids, TP for total phosphorus.

表1Table 1

河道生活污水(单位mg/L)River domestic sewage (unit: mg/L)

  CODCOD   BODBOD   SSSS   氮氨Ammonia   TPTP   硫化物Sulfide   入水口 water inlet   157157   125125   73.773.7   27.827.8   3.93.9   2.72.7   尾水投料后After tail water feeding   1919   7.87.8   3.33.3   6.16.1   0.210.21   0.180.18   净化比率Purification ratio   87.90%87.90%   93.76%93.76%   98.93%98.93%   78.06%78.06%   94.62%94.62%   93.33%93.33%

表2Table 2

造纸厂污水(单位mg/L)Sewage from paper mills (unit: mg/L)

  CODCOD   SSSS   硫化物Sulfide   色度Chroma   挥发酚Volatile phenol   入水口 water inlet   48004800   10771077   15.115.1   9696   1.71.7

  尾水投料后After tail water feeding   5858   27.727.7   0.40.4   1212   0.160.16   净化比率Purification ratio   98.79%98.79%   97.43%97.43%   97.35%97.35%   87.5%87.5%   90.59%90.59%

在造纸厂污水处理实验中因为污水中含的污染物水平太高,在第一次集水池抽检中,残留量很高,开启了回流再次处理功能之后,重复两次处理,使尾水达到了国家污水二级排放标准。表2中单位mg/L不包括色度的单位。In the sewage treatment experiment of the paper mill, because the level of pollutants contained in the sewage was too high, the residual amount was very high in the first sump sampling inspection. After turning on the backflow retreatment function, the treatment was repeated twice, so that the tail water reached The national sewage secondary discharge standard. The unit mg/L in Table 2 does not include the unit of chromaticity.

表3table 3

电镀厂工业废水(单位mg/L)Industrial wastewater from electroplating plants (unit: mg/L)

  CODCOD   CrCr   ZnZn   FeFe   MnMn   SSSS   pHpH   入水口 water inlet   151151   23.7823.78   14.8614.86   43.1643.16   24.2224.22   145145   3.533.53   尾水投料后After tail water feeding   2 2   0.90.9   0.60.6   0.70.7   0.50.5   8 8   6.96.9   净化比率Purification ratio   98.68%98.68%   96.21%96.21%   95.95%95.95%   98.37%98.37%   97.94%97.94%   94.48%94.48%   --

在电镀厂污水处理实验中,污水中所含的重金属污染物水平较高,在第一次集水池抽检中,各重金属污染物的处理率虽然达到了70%左右,但含量仍未达到国家污水二级排放标准,开启了回流再次处理功能之后,重复两次处理,使尾水达到了国家污水二级排放标准。表3中单位mg/L不包括pH的单位。In the sewage treatment experiment of the electroplating plant, the level of heavy metal pollutants contained in the sewage was relatively high. In the first sampling inspection of the sump, although the treatment rate of each heavy metal pollutant reached about 70%, the content has not yet reached the national sewage level. Secondary discharge standard, after turning on the backflow retreatment function, repeat the treatment twice, so that the tail water meets the national sewage secondary discharge standard. The unit mg/L in Table 3 does not include the unit of pH.

对所公开的实施方式的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本实用新型将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to these embodiments shown herein, but will conform to the widest scope consistent with the principles and novel features disclosed herein.

Claims (8)

1. composite artificial marsh sewage treatment system, it is characterized in that: comprising: pretreatment pool (1), pretreatment pool (1) is communicated with vertical current constructed wetland pond (29), bottom, vertical current constructed wetland pond (29) is provided with horizontal drowned flow artificial wet land pond (30), horizontal drowned flow artificial wet land pond (30) is located under the ground surface, and vertical current constructed wetland pond (29) are communicated with horizontal drowned flow artificial wet land pond (30) via backflow pool (17); The inner matrix in described vertical current constructed wetland pond (29) is followed successively by coarse sands layer (7), artificial mixolimnion (8) and gravel bed (9) from top to bottom, both sides, described horizontal drowned flow artificial wet land pond (30) are provided with the gravel district, the centre is the matrix district, the matrix district is followed successively by coarse sands layer (22), artificial mixolimnion (21), coarse sands layer (19) from top to bottom, vertical current constructed wetland pond (29) is carried and to be implanted with the shallow root system plant, horizontal drowned flow artificial wet land pond (30) the dark root system plant of having planted; Top, vertical current constructed wetland pond (29) is provided with water distributor (6), and the bottom is provided with dredging flow groove (10), and bottom, horizontal drowned flow artificial wet land pond is provided with dredging flow groove (20).
2. composite artificial marsh sewage treatment system according to claim 1, it is characterized in that: also be provided with the water collecting basin (12) that is used for the sewage secondary treatment, be provided with sump pump (13) in the water collecting basin (12), sump pump (13) is communicated in the water distributor (3) on top, vertical current constructed wetland pond (29), and the sluicing groove (20) of horizontal drowned flow artificial wet land pond (30) is by pipeline connection water collecting basin (12).
3. compound thermal technology's marsh sewage treatment system according to claim 2, it is characterized in that: also be provided with the tail water water purification agent feeding system (11) that is used for treated sewage is carried out the ecological rehabilitation processing, tail water water purification agent feeding system connects water collecting basin (12) by pipeline.
4. according to claim 1 or 2 or 3 described composite artificial marsh sewage treatment systems, it is characterized in that: also be provided with the insulation power system, the insulation power system comprises solar energy greenhouse (25) and is positioned the solar panel (4) of solar energy greenhouse outer wall, the agent structure of solar energy greenhouse (25) is a steel construction, and the outer wall of solar energy greenhouse is formed enclosed space by transparent glass.
5. composite artificial marsh sewage treatment system according to claim 1, it is characterized in that: be provided with sump pump (14) in the described backflow pool (17), sump pump (14) is by the entry place gravel district (33) in pipeline connection horizontal drowned flow artificial wet land pond (30), backflow pool (17) is by the dredging flow groove (10) in pipeline connection vertical current constructed wetland pond (29), (17) are provided with underwater jet aeration machine (16) in the backflow pool, and underwater jet aeration machine (16) is communicated in the micropore aeration pipe (35) at the bottom of the pond, horizontal drowned flow artificial wet land pond (30).
6. composite artificial marsh sewage treatment system according to claim 1, it is characterized in that: described pretreatment pool (1) is provided with water-in and water outlet, be provided with the impurity that is used for sewage in the pretreatment pool (1) and carry out preliminary filtering grid (2), one side of grid (2) is made of grizzly bar (26) and transverse ribs (27), and opposite side is provided with screen cloth (28).
7. composite artificial marsh sewage treatment system according to claim 1 is characterized in that: described artificial composite bed (8,21) is mixed by vermiculite, zeolite, cinder and forms, and it highly is at least 20cm.
8. composite artificial marsh sewage treatment system according to claim 1, it is characterized in that: described vertical current constructed wetland pond (29) is equipped with waterproof layer with the dredging flow groove bottom in horizontal drowned flow artificial wet land pond (30), be provided with above the waterproof layer (38) of dredging flow groove bottom, vertical current constructed wetland pond and can hold the hole, prefabricated cave (40) that dark root system plant stem passes through, inboard, hole, prefabricated cave (40) is filled with flexible plastic water tight packing (41), and dredging flow groove (10) top is provided with porous disc (39); Be provided with diaphragm (23) in the horizontal drowned flow artificial wet land pond (30), diaphragm (23) forms the water stream channel of S type.
CN2010201208131U 2010-03-02 2010-03-02 Composite Constructed Wetland Sewage Treatment System Expired - Lifetime CN201648119U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010201208131U CN201648119U (en) 2010-03-02 2010-03-02 Composite Constructed Wetland Sewage Treatment System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010201208131U CN201648119U (en) 2010-03-02 2010-03-02 Composite Constructed Wetland Sewage Treatment System

Publications (1)

Publication Number Publication Date
CN201648119U true CN201648119U (en) 2010-11-24

Family

ID=43113348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010201208131U Expired - Lifetime CN201648119U (en) 2010-03-02 2010-03-02 Composite Constructed Wetland Sewage Treatment System

Country Status (1)

Country Link
CN (1) CN201648119U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781060A (en) * 2010-03-02 2010-07-21 河北农业大学 Composite artificial wetland sewage treatment system
CN102976493A (en) * 2012-11-30 2013-03-20 南京农业大学 Horizontal subsurface flow constructed wetlands experimental device
CN104418433A (en) * 2013-08-20 2015-03-18 沈阳环境科学研究院 Method for efficient sewage treatment by integrated flow constructed wetland
CN105236585A (en) * 2015-11-11 2016-01-13 辽宁石油化工大学 Tide current constructed wetland substrate packing for deep treatment of rural domestic sewage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781060A (en) * 2010-03-02 2010-07-21 河北农业大学 Composite artificial wetland sewage treatment system
CN101781060B (en) * 2010-03-02 2012-04-18 河北农业大学 Composite artificial wetland sewage treatment system
CN102976493A (en) * 2012-11-30 2013-03-20 南京农业大学 Horizontal subsurface flow constructed wetlands experimental device
CN104418433A (en) * 2013-08-20 2015-03-18 沈阳环境科学研究院 Method for efficient sewage treatment by integrated flow constructed wetland
CN104418433B (en) * 2013-08-20 2016-12-28 沈阳环境科学研究院 High efficiency composition artificial wetland sewage water treatment method
CN105236585A (en) * 2015-11-11 2016-01-13 辽宁石油化工大学 Tide current constructed wetland substrate packing for deep treatment of rural domestic sewage

Similar Documents

Publication Publication Date Title
CN101781060A (en) Composite artificial wetland sewage treatment system
CN101671092B (en) Sewage treatment system and method for combined tidal flow artificial wetland
CN101973637B (en) River channel purification system for processing rural domestic sewage
CN100371269C (en) A method and device for treating domestic sewage using constructed wetlands
CN106830506A (en) A kind of intensified denitrification and dephosphorization biology delaying basin for being applied to sponge urban construction
CN102251459A (en) System for carrying out collection, purification and utilization on rainwater on road surfaces
CN105236671B (en) A kind of ecological green land sewage disposal system and its method
CN109384315B (en) Enhanced nitrogen and phosphorus removal high-load constructed wetland system
CN101792231A (en) Composite artificial wet land sewage treatment method
CN101704613A (en) Rural sewage ecological purification recycling device
CN104355490B (en) The removal device of pollution substance and minimizing technology in a kind of domestic sewage in rural areas
CN106186589A (en) A kind of solar rural domestic sewage drips filter processing system and using method thereof
CN101164924A (en) Countryside sewage treatment equipment and application
CN105174468B (en) A kind of cellular-type composite stereo artificial wet land system and sewage water treatment method
CN110642481B (en) Domestic sewage integrated treatment system suitable for villages and its treatment method
CN201648119U (en) Composite Constructed Wetland Sewage Treatment System
CN206033519U (en) Rural domestic sewage of solar energy drips and strains processing system
CN216890553U (en) Constructed wetland sewage treatment system for treating rural sewage
CN105174469B (en) A kind of integral type composite stereo artificial wet land system and sewage water treatment method
CN205368030U (en) Vertical -flow constructed wetland system of getting rid of is reinforceed with total nitrogen to ammonia nitrogen
CN104326574B (en) The horizontal subsurface flow wetland system of strengthening micropollutant water denitrogenation in winter
CN102515434A (en) Method for sewage treatment in compound tower-type ecological filtering pool
CN210825835U (en) An unpowered sewage treatment system
CN104692598B (en) Ecological treatment device for supplying recycled water to landscape water
CN204569656U (en) A kind of ecological treatment apparatus of reuse water supply landscape water

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20101124

Effective date of abandoning: 20120502