CN201535761U - 具有独立探头的谐波法固体材料热物性测试装置 - Google Patents

具有独立探头的谐波法固体材料热物性测试装置 Download PDF

Info

Publication number
CN201535761U
CN201535761U CN2009202777809U CN200920277780U CN201535761U CN 201535761 U CN201535761 U CN 201535761U CN 2009202777809 U CN2009202777809 U CN 2009202777809U CN 200920277780 U CN200920277780 U CN 200920277780U CN 201535761 U CN201535761 U CN 201535761U
Authority
CN
China
Prior art keywords
lead
independent probe
sample
micro metal
metal band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2009202777809U
Other languages
English (en)
Inventor
郑兴华
邱琳
唐大伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Engineering Thermophysics of CAS
Original Assignee
Institute of Engineering Thermophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Engineering Thermophysics of CAS filed Critical Institute of Engineering Thermophysics of CAS
Priority to CN2009202777809U priority Critical patent/CN201535761U/zh
Application granted granted Critical
Publication of CN201535761U publication Critical patent/CN201535761U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

本实用新型为具有独立探头的谐波法固体材料热物性测试装置,独立探头位于两块相同待测样品之间构成三明治式结构,三明治式结构与样品固定台平行放置;样品固定台的底座上设有一方孔与两个螺纹孔成90°;压力调整部位于第一待测样品的上端面上,并且压力调整部压紧第一待测样品,三明治式结构放置于样品固定台的凸台上;数显式扭矩扳手套接于压力调整部的一端,数显式扭矩扳手调节压力调整部的位移,并且数显式扭矩扳手能显示作用于三明治式结构的扭力值;谐波测量单元与独立探头电连接,测量多个扭力值下独立探头两端的基波电压及三次谐波电压并计算拟合扭力值与独立探头和第一待测样品、第二待测样品间接触热阻的关系。

Description

具有独立探头的谐波法固体材料热物性测试装置
技术领域
本实用新型是关于一种利用交流加热和谐波法测量固体材料热物性参数(导热系数和热扩散率等)的方法及装置,特别是应用于金属、陶瓷等导电和非导电固体以及薄膜热物性参数无损测试的装置。
背景技术
近二十年来,基于谐波探测的3ω测量技术一直被认为是测量固体及薄膜热物性参数的一种有效手段。其实现的方法大致是在待测材料表面制备具有一定尺寸和形状的微型金属带,把该微型金属带同时作为加热器和温度传感器,然后根据热波频率与温度变化的关系求得待测材料的热物性参数。目前该方法主要被用于测试非导电固体及薄膜的热物性参数。对于导电固体及薄膜,则需要首先在其表面覆盖一薄层绝缘膜,再在绝缘膜上制备微型金属带。分析该测试方法特点发现,该方法不能实现待测样品的无损检测,并且需要重复对单个样品进行绝缘膜(导电固体和薄膜测量时)及微型金属带的制备,因此实施工艺复杂,成本代价也较高。另外,利用百纳米级厚的绝缘膜来实现导电样品与微型金属带间绝缘的方法不能保证测试结构的成功率。利用上层为柔性覆盖膜的基于柔性衬底的独立探头可以解决上述问题。柔性衬底及柔性覆盖膜本身就是绝缘膜,能实现导电样品热物性参数的测量,也省略了事先在导电样品上制备绝缘层的工序。另外,柔性衬底和柔性覆盖膜对微型金属带有保护作用,构成的独立探头具有一定的机械强度,可以重复使用,这就省略了再在待测样品上制备微型金属带的工序。
实用新型内容
本实用新型目的是解决现有基于谐波探测的3ω测量技术在测试时需要重复制备微型金属带以及绝缘困难等的技术缺陷,为此,本实用新型提供一种独立探头能重复使用、保证金属带与待测样品绝缘,可用于金属、陶瓷等导电和非导电固体以及薄膜的导热系数和热扩散率等多个热物性参数同时测试、具有独立探头的谐波法固体材料热物性测试装置。
为达成所述目的,本实用新型提供一种具有独立探头的谐波法固体材料热物性测试装置,该装置的技术方案是:含有:独立探头、第一待测样品、第二待测样品、压力调整部、样品固定台、数显式扭矩扳手、谐波测量单元,其中:独立探头位于两块相同的第一待测样品、第二待测样品之间构成三明治式结构,三明治式结构放置于样品固定台的凸台上,并且三明治式结构与样品固定台平行放置;样品固定台的底座上设有一方孔与两个螺纹孔成90°;所述独立探头内具有微型金属带以微弱周期正弦电流加热,微型金属带中间的两引线端间的三次谐波电压接近1/500~1/1000微型金属带的基波电压;
压力调整部位于第一待测样品的上端面上,并且压力调整部压紧第一待测样品,三明治式结构放置于样品固定台的凸台上;数显式扭矩扳手套接于压力调整部的一端,数显式扭矩扳手调节压力调整部的位移,并且数显式扭矩扳手能在调节压力调整部过程中实时显示作用于三明治式结构的扭力值;谐波测量单元与独立探头电连接,用于谐波法测量多个扭力值下独立探头两端的基波电压及三次谐波电压并计算拟合扭力值与独立探头和第一待测样品、第二待测样品间接触热阻的关系。
本实用新型提供一种固体材料热物性测量装置,用于测量金属、陶瓷等导电和非导电固体以及薄膜的导热系数和热扩散率参数。
本实用新型的有益效果:本实用新型能在很大程度上解决目前基于谐波探测的3ω测量技术在测试样品热物性参数时需要在单个样品上重复制备微型金属带以及绝缘困难的问题,可以直接将独立探头夹在两样品间进行测试,柔性衬底和柔性覆盖膜同时充当绝缘层,保证非导电/导电固体及薄膜的无损检测。基于柔性衬底的微型金属带厚度在100~1000nm范围内,宽度在100~500μm范围内,可以不必考虑金属膜自身热容的影响,柔性衬底及柔性覆盖膜的厚度在8~25μm范围内,可以保证微型金属膜与导电样品间的绝缘并且具有一定的机械强度保证探头在使用时不易损坏。柔性衬底及柔性覆盖膜具有弹性,当与样品夹紧时可以大大降低界面的接触热阻。基于柔性衬底的微型金属带中间两引线件间距在2~20mm范围内,可以有效消除微型金属带端部散热的影响。与在样品上制备微型金属带的基于谐波探测的3ω测量技术相比,本实用新型不再需要额外在待测样品上制备微型金属带以及在导电样品上制备百纳米级厚的绝缘膜;利用该方法可以保证非导电/导电固体的无损检测。由于接触热阻与独立探头与待测样品间的压紧程度有关,而用一个数显式扭矩扳手即可调节两者间的压紧程度并实时显示扭力值,因此利用该实验系统也可以测量接触热阻与压力的关系。
附图说明
图1是本实用新型的独立探头示意图;
图2是本实用新型的独立探头剖面图;
图3是本实用新型的具有独立探头的谐波法固体材料热物性测试装置样品固定台示意图;
图3a是示出图3中虚线内的局部放大图;
图4是本实用新型谐波测量单元7的结构示意图。
主要元件说明:
独立探头1包括:
微型金属带11、柔性覆盖膜12、柔性衬底13、四个引线件141至144和四个引线端14a至14d;
第一待测样品2,第二待测样品3;
压力调整部包括:一对立柱40、滑块41和螺杆42;
样品固定台包括:底座51、凸台52、卡座53、卡座盖54、方孔55、螺纹孔56和57;
数显式扭矩扳手6;
谐波测量单元7包括:第一运算放大器71、第二运算放大器72、第三运算放大器73、前置放大器74、信号发生器75、锁相放大器76、微机控制与数据采集系统77、第一低温漂电阻R1、第二低温漂电阻R2、第三低温漂电阻R3、第四低温漂电阻R4、第五低温漂电阻R5、第六低温漂电阻R6、第七低温漂电阻R7、第八低温漂电阻R8、可调电阻R9、第一电流引线端7a、第二电流引线端7d、第一探测电压引线端7b、第二探测电压引线端7c。
具体实施方式
下面结合附图详细说明本实用新型技术方案中所涉及的各个细节问题。应指出的是,所描述的实施例仅旨在便于对本实用新型的理解,而对其不起任何限定作用。
本实用新型的一种具有独立探头的谐波法固体材料热物性测试方法,利用具有独立探头的谐波法固体材料热物性测试装置实现该方法的步骤如下:①把独立探头1夹在两块已知热物性参数的相同标准样品之间构成测试结构,并放置在样品固定台底座的凸台52上,移动滑块41和螺杆42,当螺杆42的顶端接触到上标准样品的顶面时停止移动滑块41并在侧面通过螺栓固定滑块41;②用数显式扭矩扳手6扭转螺杆42,在一个扭力点上暂停并记录对应的扭力值,然后开始用谐波法测量独立探头1内的微型金属带11两端的基波电压及三次谐波电压,根据谐波法测试原理拟合标准样品的导热系数值;③继续转动数显式扭矩扳手6使扭力值增大,然后重复步骤②,得到多个扭力值下标准样品导热系数的测量值;④利用得到的标准样品多个导热系数的测量值,找出与标准样品导热系数的真实值最接近的测量值,设此测量值对应的扭力值是不影响导热系数真实测量的独立探头与标准样品间的接触热阻所对应的扭力值,此扭力值为最佳扭力值;⑤从凸台52上取下测试结构,把独立探头1夹在两块相同的待测样品2、3之间构成新的测试结构,仍将其放置在凸台52上,执行步骤1固定好新的测试结构;⑥用数显式扭矩扳手6扭转螺杆42,依次在多个小于最佳扭力值下停止扭转螺杆42,记录扭力值并用谐波法测试待测样品2、3的导热系数和热扩散率值;⑦扭转数显式扭矩扳手6直至最佳扭力值,再用谐波法测试待测样品2、3的导热系数和热扩散率,即完成对待测样品2、3热物性参数的测试;⑧记录多个小于最佳扭力值下的导热系数测量值及最佳扭力值下的导热系数测量值的大小,将小于最佳扭力值下的导热系数测量值与最佳扭力值下的导热系数测量值的差别作为待测样品2、3与独立探头1间存在接触热阻,所述待测样品2、3与独立探头1间的接触热阻的大小由扭力值的大小实验结果拟合的一个经验式决定,并且在最佳扭力值下待测样品2、3与独立探头1间存在的接触热阻不影响导热系数真实测量而可被忽略,通过计算多个小于最佳扭力值下导热系数测量值与最佳扭力值下导热系数测量值的差值,再运用接触热阻与热导率差值的关系式,得到多个扭力值下待测样品2、3与独立探头1间的接触热阻。所述独立探头1内的微型金属带11采用微弱周期正弦电流加热。测试时,调整所述微型金属带11的基波电压,使两引线端14b、14c间的三次谐波电压接近1/500~1/1000基波电压。
请参考图1、图2、图3和图4示出的固体材料热物性测试装置,图3示出该装置,含有:独立探头1、第一待测样品2、第二待测样品3、压力调整部、样品固定台、数显式扭矩扳手6、谐波测量单元7(压力调整部、样品固定台图中未做标记),其中:
请参考图3a示出独立探头1位于两块相同的第一待测样品2、第二待测样品3之间构成三明治式结构,三明治式结构放置于样品固定台,并且三明治式结构与样品固定台平行放置;压力调整部位于第一待测样品2的上端面上,并且压力调整部压紧第一待测样品2,三明治式结构放置于样品固定台的凸台52上;数显式扭矩扳手6套接于压力调整部的一端,数显式扭矩扳手6调节压力调整部的位移,并且数显式扭矩扳手6能在调节压力调整部过程中实时显示作用于三明治式结构的扭力值;谐波测量单元7与独立探头1电连接,用谐波法测量多个扭力值下独立探头1两端的基波电压及三次谐波电压,根据谐波法测量原理计算拟合扭力值与独立探头1和第一待测样品2、第二待测样品3间接触热阻的关系。
如图1和图2示出的独立探头1包括:微型金属带11、柔性覆盖膜12、柔性衬底13和四个引线件141~144,微型金属带11分别与四个引线件141~144的一端部连接,四个引线件141~144的另一端有四个引线端14a~14d;微型金属带11和四个引线件141~144位于柔性覆盖膜12和柔性衬底13之间;引线端14b、14c分别与谐波测量单元7的谐波探测电压引线端7b、7c通过导线连接,谐波测量单元7的电流引线端7a、7d通过导线接入引线端14a、14d周期对微型金属带11电加热。
所述微型金属带11和四个引线件141~144由导电金属通过光刻或气相沉积工艺附着在柔性衬底13上形成百纳米级厚的四焊盘形状结构,与柔性衬底13为同种材料带胶的柔性覆盖薄膜12通过热压工艺与基于柔性衬底13的微型金属带3及四个引线件141~144形成三明治式结构,柔性衬底13和柔性覆盖膜12在微型金属带11及四个引线件141~144的底面和顶面形成具有一机械强度的微型金属带11及四个引线件141~144的绝缘保护层。
所述导电金属为箔或镍;所述柔性衬底为聚酰亚胺或云母。
基于柔性衬底13上的微型金属带11厚度在100~1000nm范围内,宽度在100~500μm范围内,总长度在10~50mm范围内,四个引线件141~144的每两个引线端间距在2~20mm范围内;柔性衬底13及柔性覆盖膜12的厚度在8~25μm范围内。
所述样品固定台包括:一底座51、一凸台52、一卡座53、一卡座盖54、一方孔55、两螺纹孔56和57;其中:底座51与凸台52固定连接或底座51与凸台52为一体结构。在底座51两侧对称设有两个螺纹孔56和57,底座51上设有一方孔55与与两个螺纹孔56、57成90°;凸台52位于底座51的中间;卡座53通过方孔与底座51固定连接;卡座盖54两侧对称设有两个螺纹孔56和57,通过两个螺栓与卡座53固定连接;从引线部件141~144引线端14a~14d引出的四根导线穿过卡座53的槽并由卡座盖54固定;第二待测样品的下端面与凸台52接触。
请参考图3a示出,所述压力调整部包括:一对立柱40、一滑块41、一螺杆42;立柱40与底座51上的螺纹孔固定连接;两个立柱40上套设有一滑块41,滑块41的中央与螺杆42螺纹连接,第一待测样品2的上端面与螺杆42的压接端压接;滑块41和螺杆42为滑动连接共同决定螺杆42压接端的位移,用于实现两个待测样品2、3与独立探头1间的压紧;两个待测样品2、3与独立探头1间接触热阻的大小通过改变螺杆42与第一待测样品2间的压紧程度来调节;螺杆42顶端为光滑半球或椭球结构便于调节待测样品2、3和独立探头1受力均匀。所述数显式扭矩扳手6或是数字式扭矩测量仪。
所述的固体材料热物性测量装置,用于测量金属、陶瓷等导电和非导电固体以及薄膜的导热系数和热扩散率参数。
图1,图2,图3和图4组成具有独立探头的谐波法固体材料热物性测试装置;其中图3和图4中的独立探头放大结构见图1及图2;测试时独立探头1的具体位置见图3;图3中的独立探头1的四个引线端14b、14c和14a、14d分别通过导线接图4的谐波测量单元7的谐波探测电压引线端7b、7c和电流引线端7a、7d。
将独立探头1夹在两块相同的第一待测样品2和第二待测样品3之间,并给微型金属带11通入角频率为ω的周期微弱电流,因焦耳效应产生的热量将以2ω的频率对微型金属带11、金属带外侧柔性衬底13、柔性覆盖膜12及第一待测样品2和第二待测样品3加热,产生频率不同的温度波,引起微型金属带11的电阻增加,而微型金属带11增加的电阻又与角频率为ω的周期电流共同作用产生频率不同的电压谐波。根据电压谐波与振动频率的关系可以确定固体材料的导热系数和热扩散率等多个热参数。利用本实用新型提出的理论模型和数据处理方法可以同时无损测量金属、陶瓷等导电和非导电固体以及薄膜导热系数、热扩散率等多个热物性参数。
本实用新型采用微弱周期正弦电流加热基于柔性衬底的微型金属带11,因微型金属带11内部电流的有效值很小,产生的加热功率只有几个毫瓦,在加热柔性覆盖膜12、柔性衬底13、第一待测样品2和第二待测样品3的过程中,微型金属带11的温升必须小于1~2K,同时采用的周期电流的频率范围比较大,从几Hz变化到几KHz,在上述条件下固体的温升和加热作用深度很小,同时锁相放大器采用比较小的时间常数,可以使得固体样品比较容易满足半无限大边界的假设条件,进而可以使得测量所需的样品体积很小。由于微型金属带11表面的柔性覆盖膜12和柔性衬底13有一定的厚度,而且导热系数不小(约0.8Wm-1K-1),因此绝缘层的温度改变的影响不可忽略,但是可以从实验数据中减去绝缘层的影响。只要保证在所测量频率范围内热波已经穿透了柔性覆盖膜12和柔性衬底13,就能得到固体样品的热物性参数信息。本实用新型测试的固体的导热系数范围比较宽,固体导热系数在0.1~50W·m-1·K-1之间,导热系数的测量不确定度小于±3.5%,固体导热系数在50~500W·m-1·K-1之间,导热系数的测量不确定度小于±2%,热扩散系数的测量不确定度小于±6%。
测试开始前,要对最佳扭力值进行校准,具体步骤如下:将独立探头1夹在两块标准样品之间构成类似三明治的结构并将其放置在样品固定台的凸台52上,移动滑块41和螺杆42,当螺杆42的顶端接触到上标准样品的顶面时停止移动滑块41并在侧面通过螺栓固定滑块41;用数显式扭矩扳手6扭转螺杆42,在一个扭力点上暂停并记录对应的扭力值,然后开始用谐波法测量独立探头内的微型金属带两端的基波电压及三次谐波电压,根据谐波法测试原理拟合标准样品的导热系数值;继续转动数显式扭矩扳手使扭力值增大,然后重复上面步骤,得到多个扭力值下标准样品导热系数的测量值;利用得到的标准样品多个导热系数的测量值,找出与标准样品导热系数的真实值最接近的测量值,设此测量值对应的扭力值是不影响导热系数真实测量的独立探头与标准样品间的接触热阻所对应的扭力值,此扭力值为最佳扭力值;即完成校准工作。正式测试时,以同样的方法将独立探头1与第一待测样品2和第二待测样品3构成的类似三明治结构通过螺杆42的顶端压紧在凸台52上,再用数显式扭矩扳手直接扭转螺杆42至最佳扭力值,认为此时第一待测样品2、第二待测样品3已经与独立探头1充分接触。调节串联的可调电阻R9接近或略微大于测量过程中微型金属带11可能达到的最大电阻。为了防止微型金属带11有比较明显的温升,调节信号发生器的输出电压,使得可调电阻R9两端的电压接近10mV,微调可调电阻,通过锁相放大器的差动输入监测,使得电桥平衡,可调电阻的阻值就等于微型金属带的冷态电阻。然后开始测试,选择一系列的频率值,测量对应频率值下微型金属带11两端的基波电压及三次谐波电压。测量在某一频率下微型金属带11两端的三次谐波时,应选择合理的基波电压,使得微型金属带11两端的三次谐波接近基波的1/500~1/1000。另外,在数显式扭转扭矩扳手达到最佳扭力值的过程中也可以在多个小于最佳扭力值上停留(此时意味着独立探头与样品间接触热阻不可忽略),然后用上述方法测量微型金属带11两端的基波电压和三次谐波电压,再根据谐波法测试原理拟合待测样品的导热系数值;通过计算多个小于最佳扭力值下导热系数测量值与最佳扭力值下导热系数测量值的差值,再运用接触热阻与热导率差值的关系式,得到多个扭力值下待测样品与独立探头之间的接触热阻。
请参见图4示出本实用新型谐波测量单元7的结构,谐波测量单元7包括:第一运算放大器71、第二运算放大器72、第三运算放大器73、前置放大器74、信号发生器75、锁相放大器76、微机控制与数据采集系统77、第一低温漂电阻R1、第二低温漂电阻R2、第三低温漂电阻R3、第四低温漂电阻R4、第五低温漂电阻R5、第六低温漂电阻R6、第七低温漂电阻R7、第八低温漂电阻R8、可调电阻R9、第一电流引线端7a、第二电流引线端7d、第一探测电压引线端7b、第二探测电压引线端7c。
信号发生器75输出角频率为ω的交流电压信号经第一运算放大器71转换为电流信号,该电流信号用于同时驱动可调电阻R9和独立探头1的微型金属带11,可调电阻R9和独立探头1的电压信号分别经第二运算放大器72和第三运算放大器73变为差动信号再经前置放大器74放大后输入锁相放大器76。微机控制与数据采集系统77控制信号发生器75锁相放大器76及可调电阻。第一电流引线端7a和第二电流引线端7d分别与独立探头1的引线端14a和14d电连接,第一探测电压引线端7b和第二探测电压引线端7c分别与独立探头1的引线端14b和14c电连接。
以上所述,仅为本实用新型中的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉该技术的人在本实用新型所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本实用新型的包含范围之内,因此,本实用新型的保护范围应该以权利要求书的保护范围为准。

Claims (8)

1.一种具有独立探头的谐波法固体材料热物性测试装置,其特征在于,该装置含有:独立探头、第一待测样品、第二待测样品、压力调整部、样品固定台、数显式扭矩扳手、谐波测量单元,其中:
独立探头位于两块相同的第一待测样品、第二待测样品之间构成三明治式结构,三明治式结构放置于样品固定台的凸台上,并且三明治式结构与样品固定台平行放置;样品固定台的底座上设有一方孔与两个螺纹孔成90°;所述独立探头内具有微型金属带以微弱周期正弦电流加热,微型金属带的中间两引线端间的三次谐波电压接近1/500~1/1000微型金属带的基波电压;
压力调整部位于第一待测样品的上端面上,并且压力调整部压紧第一待测样品,三明治式结构放置于样品固定台的凸台上;数显式扭矩扳手套接于压力调整部的一端,数显式扭矩扳手调节压力调整部的位移,并且数显式扭矩扳手能在调节压力调整部过程中实时显示作用于三明治式结构的扭力值;谐波测量单元与独立探头电连接,用于谐波法测量多个扭力值下独立探头两端的基波电压及三次谐波电压并计算拟合扭力值与独立探头和第一待测样品、第二待测样品间接触热阻的关系。
2.如权利要求1所述的固体材料热物性测试装置,其特征在于,所述独立探头包括:微型金属带、柔性覆盖膜、柔性衬底和四个引线件,微型金属带分别与四个引线件的一端部连接;微型金属带和四个引线件位于柔性覆盖膜和柔性衬底之间;两个引线端分别与谐波测量单元的谐波探测两个电压引线端通过导线连接,谐波测量单元的另两个电流引线端通过导线接入另两个引线端周期对微型金属带电加热。
3.如权利要求2所述固体材料热物性测试装置,其特征在于,所述微型金属带和四个引线件由导电金属通过光刻或气相沉积工艺附着在柔性衬底上形成百纳米级厚的四焊盘形状结构,与柔性衬底为同种材料带胶的柔性覆盖薄膜通过热压工艺与基于柔性衬底的微型金属带及四个引线件形成三明治式结构,柔性衬底和柔性覆盖膜在微型金属带及四个引线件的底面和顶面形成具有一机械强度的微型金属带及四个引线件的绝缘保护层。
4.如权利要求3所述固体材料热物性测试装置,其特征在于,所述导电金属为箔或镍;所述柔性衬底为聚酰亚胺或云母。
5.如权利要求4所述固体材料热物性测试装置,其特征在于,基于柔性衬底上的微型金属带厚度在100~1000nm范围内,宽度在100~500μm范围内,总长度在10~50mm范围内,四个引线件的每两个引线端间距在2~20mm范围内;柔性衬底及柔性覆盖膜的厚度在8~25μm范围内。
6.如权利要求1所述固体材料热物性测试装置,其特征在于,所述样品固定台包括:一底座、一凸台、一卡座和一卡座盖,其中:底座与凸台固定连接或底座与凸台为一体结构;在底座两侧对称设有两个螺纹孔,凸台位于底座的中间;卡座通过方孔与底座固定连接;卡座盖两侧对称设有两个螺纹孔,通过两个螺栓与卡座固定连接;从引线部件的引线端引出的四根导线穿过卡座的槽并由卡座盖固定;第二待测样品的下端面与凸台接触。
7.如权利要求1所述固体材料热物性测试装置,其特征在于,所述压力调整部包括:一对立柱、一滑块、一螺杆;立柱与底座上的螺纹孔固定连接;两个立柱上套设有一滑块,滑块的中央与螺杆螺纹连接,第一待测样品的上端面与螺杆的压接端压接;滑块和螺杆为滑动连接共同决定螺杆压接端的位移,用于实现两个待测样品与独立探头间的压紧;两个待测样品与独立探头间接触热阻的大小通过改变螺杆与第一待测样品间的压紧程度来调节;螺杆顶端为光滑半球或椭球结构便于调节待测样品和独立探头受力均匀。
8.一种如权利要求1所述的固体材料热物性测量装置,用于测量金属、陶瓷等导电和非导电固体以及薄膜的导热系数和热扩散率参数。
CN2009202777809U 2009-12-09 2009-12-09 具有独立探头的谐波法固体材料热物性测试装置 Expired - Lifetime CN201535761U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009202777809U CN201535761U (zh) 2009-12-09 2009-12-09 具有独立探头的谐波法固体材料热物性测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009202777809U CN201535761U (zh) 2009-12-09 2009-12-09 具有独立探头的谐波法固体材料热物性测试装置

Publications (1)

Publication Number Publication Date
CN201535761U true CN201535761U (zh) 2010-07-28

Family

ID=42535540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009202777809U Expired - Lifetime CN201535761U (zh) 2009-12-09 2009-12-09 具有独立探头的谐波法固体材料热物性测试装置

Country Status (1)

Country Link
CN (1) CN201535761U (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243192A (zh) * 2011-04-15 2011-11-16 东南大学 地源热泵用多功能岩土体热物性测试装置
CN102621182A (zh) * 2012-04-12 2012-08-01 北京大学 一种一维到三维边界热阻的测试结构和方法
CN102636477A (zh) * 2012-04-18 2012-08-15 北京大学 由于维度突变引起的一维到三维边界热阻的测试方法
CN103472090A (zh) * 2013-08-15 2013-12-25 上海交通大学 测试水稻秸秆热特性的方法
CN103472089A (zh) * 2013-08-15 2013-12-25 上海交通大学 测试猪粪热特性的方法
CN112710693A (zh) * 2020-12-10 2021-04-27 中国电子科技集团公司第五十五研究所 一种提升3ω法薄膜热导率测试精度的装置及方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243192A (zh) * 2011-04-15 2011-11-16 东南大学 地源热泵用多功能岩土体热物性测试装置
CN102243192B (zh) * 2011-04-15 2012-11-28 东南大学 地源热泵用多功能岩土体热物性测试装置
CN102621182A (zh) * 2012-04-12 2012-08-01 北京大学 一种一维到三维边界热阻的测试结构和方法
CN102636477A (zh) * 2012-04-18 2012-08-15 北京大学 由于维度突变引起的一维到三维边界热阻的测试方法
CN103472090A (zh) * 2013-08-15 2013-12-25 上海交通大学 测试水稻秸秆热特性的方法
CN103472089A (zh) * 2013-08-15 2013-12-25 上海交通大学 测试猪粪热特性的方法
CN103472089B (zh) * 2013-08-15 2016-04-13 上海交通大学 测试猪粪热特性的方法
CN103472090B (zh) * 2013-08-15 2016-06-01 上海交通大学 测试水稻秸秆热特性的方法
CN112710693A (zh) * 2020-12-10 2021-04-27 中国电子科技集团公司第五十五研究所 一种提升3ω法薄膜热导率测试精度的装置及方法

Similar Documents

Publication Publication Date Title
CN101782541B (zh) 具有独立探头的谐波法固体材料热物性测试方法及装置
CN201535761U (zh) 具有独立探头的谐波法固体材料热物性测试装置
CN101907589B (zh) 谐波法微/纳米薄膜热物性测试方法
CN102313758B (zh) 基于独立型传感器的谐波法测量材料蓄热系数装置及方法
CN101825592B (zh) 谐波法单根导电丝状材料热物性测试方法及装置
CN104931796B (zh) 一种非接触式测量复合材料频域介电谱的方法
CN102279204A (zh) 用于各向异性材料导热系数和热扩散率的测定方法
CN103293184A (zh) 一种基于准、非稳态法测试建筑材料导热系数的实验装置
CN104502400A (zh) 一种隔热材料高温热导率平面热源测试系统及方法
CN107290399B (zh) 基于pdc/fds介质响应法的变压器含水量测量装置
Qiu et al. Adaptable thermal conductivity characterization of microporous membranes based on freestanding sensor-based 3ω technique
CN110530927A (zh) 一种热电材料塞贝克系数测试装置及方法
CN104865417A (zh) 一种可对夹持力在线测控的植物叶片电参数测试电极
CN106706700A (zh) 导电高分子复合材料相变‑电阻关系在线监测系统及方法
CN106404843A (zh) 基于电学测量的四点式自适应调节无损检测探头
CN106813718B (zh) 一种测量薄膜应变与热导率的装置及方法
CN202057621U (zh) 基于独立型传感器的谐波法测量材料蓄热系数装置
CN108051476B (zh) 基于蓝宝石基底的独立型3ω热物性测量装置和方法
CN101520302B (zh) 一种超细钨丝直径的测量方法及其测量装置
CN203732477U (zh) 双螺旋平面结构谐波法测试材料热物性参数的装置
CN203231994U (zh) 一种用于测定混凝土含水量的装置
CN203037741U (zh) 一种测试太阳能电池材料在高温下的电阻率的装置
CN202929112U (zh) 一种测试太阳能电池材料在低温下的电阻率的装置
CN203133002U (zh) 一种低温下材料线膨胀系数测量装置
CN207181351U (zh) 基于pdc/fds介质响应法的变压器含水量测量装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20100728