CN201476631U - 封闭式冷却塔用防冻换热器 - Google Patents

封闭式冷却塔用防冻换热器 Download PDF

Info

Publication number
CN201476631U
CN201476631U CN2009201972128U CN200920197212U CN201476631U CN 201476631 U CN201476631 U CN 201476631U CN 2009201972128 U CN2009201972128 U CN 2009201972128U CN 200920197212 U CN200920197212 U CN 200920197212U CN 201476631 U CN201476631 U CN 201476631U
Authority
CN
China
Prior art keywords
heat exchanger
water
tube
cooling tower
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009201972128U
Other languages
English (en)
Inventor
梁忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2009201972128U priority Critical patent/CN201476631U/zh
Application granted granted Critical
Publication of CN201476631U publication Critical patent/CN201476631U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本实用新型公开了一种封闭式冷却塔用防冻换热器,由设置有放气阀的进水集管、多层换热管、连接各层间换热管的转向管以及出水集管组成,所述每层换热管并列排布多条通管,所述的转向管为中空的两端封闭管,各层的通管与所对应的转向管密封连通,所述的各转向管的一端设置有放水阀,采用此种结构的防冻换热器在气温低的环境下停用时不会被冻裂,同时由于转向管采用中空的两端封闭的结构,因此减少了各层换热管中水的阻力和张力,有利于将水流的流动,使排水时水容易汇集,从而便于将存水排出。

Description

封闭式冷却塔用防冻换热器
技术领域
本实用新型涉及一种防冻换热器,特别是涉及一种用于封闭式冷却塔的防冻换热器。
背景技术
当前,国内外用于循环水冷却的主要设备为冷却塔,当冷却水水质要求非常高或在严重缺水地区时,就会选用封闭式冷却塔作为循环水冷却设备,因此,在电力、食品、饮料、光伏太阳能等许多重要行业以及北方缺水地区越来越多的工程中选用封闭式冷却塔作为循环水冷却的设备,封闭式冷却塔可以保证冷却介质与外部环境的隔绝,同时将热交换器与开式冷却塔二者结合在一起,减少用户的投资成本,同时能节约大量的水资源。
目前,封闭式冷却塔的形式从喷淋水与空气流向上分主要有逆流式和横流式;从是否安装预冷却填料可分为:带预填料的封闭式冷却塔和不带预填料的封闭式冷却塔;从换热管的材质选用上可分为:碳钢管、铝管、不锈钢管、铜管等;从换热管的连接结构上可分为封头板结构和U型弯头焊接结构。当然还可以有其它的分类法,从现在的使用状况来看,封闭式冷却塔大多采用铜管加“U”型铜弯头焊接的形式。
逆流封闭式冷却塔的主要工作原理:工艺水从需要冷却的设备中吸收热量后成为热水,经压力推动后进入冷却塔上换热器的进水集管内,工艺水由进水集管均匀分配流入换热管中,沿蛇形换热管在冷却塔的换热器内流动,最后汇集到出水集管中,通过出水集管流回到需冷却的设备中,工艺水在冷却塔内来回流动的过程中,换热管内的工艺水通过管壁与管外的喷淋水和空气进行热交换,由于管内外存在温度梯度,管内的较高温度的水将热量传递给管外的较低温度的水膜和空气,当工艺水沿着蛇形换热管流动到出水集管时,管内的工艺水的热量已被管外的低温水和空气带走,管内水温度降低,达到冷却温度,回流到需冷却的设备当中,再次吸收热量,从而完成一个冷却循环周期,这是工艺热水的循环;另一方面,喷淋水由设置在冷却塔底部的集水盘收集,由喷淋泵将集水盘中收集的水抽吸并加压送到位于冷却塔上部的喷淋管内,喷淋管内的水通过喷头将水均匀分散到预冷填料上,在填料上形成均匀水膜,缓慢向下流动,填料表面凹凸不平的波纹可增加水的紊流度,增加与空气的接触换热效果,水膜向下流动时,与向上流动的空气进行热交换,空气吸收喷淋水中的热量,将喷淋水冷却,流经预冷填料得到冷却的喷淋水再次均匀的喷淋在换热器中的换热管表面上,在换热管表面形成均匀的水膜,覆盖整个换热管的表面,因为喷淋水形成的水膜与管内工艺水存在温度差,这样就会在管内与管外之间产生热交换,随着这个热交换过程的持续进行,管内水的热量不断向管外水膜传导,直到两者之间平衡,热传导过程才可能停止,管外水膜在与管内工艺水进行热交换的同时,水膜外表面与向上流动的空气也在进行接触换热和蒸发散热,这样使得水膜外侧的温度始终低于内侧,与内侧的水膜温度保持一定的温度梯度,从而保持水膜本身由内到外的热传导过程的持续,这样热量就从管内工艺水通过管壁传导给水膜内侧,水膜内侧的热量通过水膜本身热传导到了水膜外侧,水膜外侧的热量通过水膜与空气的接触换热和蒸发散热,将热量传递给空气,使之变成湿热空气,通过顶部风机的抽吸,最终被排放到大气中,热量也随之散发至大气中,最终达到冷却换热管内工艺水的目的。封闭式冷却塔中的喷淋水在整个运行过程中只是起到一个传递热量的媒介作用,其损失的水量主要是运行时蒸发的水蒸汽和被风吹走的部分,完成媒介作用后的喷淋水汇集到冷却塔底部集水盘中,再次回流到喷淋泵的入口,进入下次循环,这就是外部循环的喷淋水系统。同时,空气经由塔顶风机抽吸进入冷却塔内,首先与换热器中的换热管及其表面的水膜进行传热传质交换,吸收其热量,接着进入预冷填料中,在预冷填料中与喷淋水再次进行热交换,提高热交换的效率,成为湿热空气,经除水器回收水分后,被风机抽吸而最终排出到冷却塔外,散入大气中,完成空气的运行过程。因此,管内水温与管外喷淋水之间的温差越大,热传导效率就越好,管外水膜温度与空气的温差越大,喷淋水与空气之间的热交换效果越好。
横流式封闭冷却塔目前结构型式有多种,其主要差别在:预冷填料与换热盘的布置上,主要有1)换热器放在上层,预冷填料放在下层,其布置方式类似于蒸发式冷凝器;2)换热器放在下层,预冷填料放在换热器之上;3)一层换热管一层预冷填料;4)一单元换热器一单元预冷填料;现以上部为预冷填料,下层为换热器为例,概述横流式封闭冷却塔的工作原理:首先,从设备处吸收热量的工艺水经加压进入换热器的进水集管内,经分配分别进入与进水集管相联的换热管,热水沿换热管的走向水平来回流动,最终流向出水集管,在热水流动过程中,管内水温高于管外水膜温度,存在一定的温度差,因此,流动过程中管内水不断的将热量传递给管外水膜,管内水不断得到冷却,最终得到所需的冷却水,回流到需冷却的设备中,进入下一个循环冷却周期中.同时,外部喷淋水通过自带的喷淋泵将喷淋水从冷却塔底部集水盘中抽吸后再送到上部的配水盘中,喷淋水通过配水盘底部均匀分布的小孔将喷淋水分散后均匀地喷淋到预冷填料上,喷淋水在预冷填料表面上形成均匀的水膜,并且沿填料凹凸不平的表面向下流动,在预冷填料中,水膜与横向流动的空气发生接触换热和蒸发换热,使喷淋水得到冷却,冷却后的喷淋水流出预冷填料接着又均匀喷洒在换热管上,在换热管表面又一次形成水膜,包裹换热管,换热管表面上的水膜不断轮动,使位于换热管表面的水膜的水不断向下流动,上面的喷淋水不断的补充,在水膜不断的轮动中,因为与换热管内工艺水之间存在温度差,换热管内的水温度高于换热管外水膜的温度,使水膜不断与换热管内的水进行热量交换,换热管外的水膜不断吸收热量,同时这部分水膜表面又与横向流动的空气进行接触,接触过程中与水膜发生接触换热,同时水膜表面水发生蒸发,形成水蒸汽将部分热量带走.在整个过程中,水膜不断从换热管内流动的工艺热水中吸取热量,然后通过水膜内外侧的温度梯度,使热量从内侧传递到外侧,水膜的外侧又与流过的空气接触,发生接触换热和蒸发吸热.使空气吸收热量变成湿热空气,最后由风机抽吸而排出塔外,散入大气中.吸收了热量又散出了热量的喷淋水最后落入冷却塔底部集水盘中,准备下一次循环,这是喷淋水的循环周期;而空气由风机抽吸,从冷却塔两侧被吸入,横向流过换热盘管和预冷填料,吸收喷淋水中的热量变成湿热空气最后排出冷却塔进入大气中。
目前,用在冷却塔中的换热器普遍采用的结构为:多层换热盘管通过“U”型接头连接,各层换热盘管的各条管路组成一个完整的回路,通过进水集管和出水集管连通起来,换热管与“U”型弯头之间采用焊接连接。采用上述结构的换热器在气温低的环境下停用时,由于换热管内存水容易结冰造成换热管冻裂,尤其在“U”型管与换热管的接头处更容易被冻裂,结果不仅使管内的工艺水流失,造成水资源的浪费,同时,由于管路破裂,造成管内压力缺失,管内水流无法有效运行,影响生产设备的正常运行,而且,换热管冰裂时由于各管间与“U”型管焊接密封固定连接,因此当一条管路破裂时,需拆下相连的管路,所以维修相当困难,为防止气温低时冻裂管路,本技术领域的工作人员进行了多种尝试,但都没能有效解决管路冻裂的问题,目前的主要方法有:1)向管内加防冻液:目前主要用乙二醇作为防冻液。其优点是不用担心气温突变等情况时的防冻问题,缺点是防冻液对工艺水是一种污染,且防冻温度有一定的局限,对水质要求高的场合不适用本方案。2)用压缩空气将管内积水排出,冬季封闭塔停用后,通过进水集管上的排气孔,用压缩空气把管内积水压出。这种方法相对比较简单容易操作,对管内水质没有影响,缺点是需配空压机,同时无法彻底将管内积水排放干净,有可能只排空部分管子内的积水,所以换热管仍有可能会冻裂。3)天气寒冷时带热负荷运行,保证管内的水温在0℃以上,可防止管内水结冰,从而防止换热管的冰裂,这种方法的优点是操作比较简单,缺点是必须保持有热源,在冬季会消耗额外的能源。4)加热喷淋水,使管外的水膜水温保持在较高温度上,从而将热量从外侧水膜传导给管内水,使管内水不结冰,而达到防止换热管冰裂的目的。这种方法的优点是操作比较简单,缺点是在集水盘中须加装加热器,同时在冬季采用这种方式运行会消耗大量的热量,从而耗费大量能源,费用较大。5)将换热管制作时设计成一定坡度的结构,让管内的水通过坡度的作用自行向下流出,采用这种方式的优点是无须增加额外的能源,其缺点是无法将水全部排出。因为水表面具有一定的张力,当管子的坡度较小时,由于水的张力存在,管内水无法自行向下流动,特别是当管子采用弯头连接形成一体时,行程增加,这时更无法采用这种结构达到自行排水的目的。如何防止封闭式冷却塔换热管在寒冬时节不被冻裂是一个非常紧迫的和重要的课题。
实用新型内容
本实用新型的目的是解决现有技术中冷却塔用换热器在气温低的环境下停用由于换热管内留存水,换热管易冻裂的不足,提供一种停用时在换热管中不积水或积水量很少,防止换热管冻裂的封闭式冷却塔用换热器。
本实用新型的目的是通过如下技术方案实现的:
一种封闭式冷却塔用防冻换热器,由设置有放气阀的进水集管、上、下层布的多层换热管、连接各层间换热管的转向管以及出水集管组成,所述每层换热管由前、后并列排布的多条通管组成,所述的转向管为中空的两端封闭管,各层的通管与所对应的转向管密封连通,所述的各转向管的一端设置有放水阀;
所述的每层换热管顺着水流方向向下倾斜设置;
由设置有放气阀的进水集管、前、后层布的多层换热管、连接各层间换热管的转向管以及出水集管组成,所述每层换热管由上、下并列排布的多条通管组成,所述的转向管为中空的两端封闭管,各层的通管与所对应的转向管密封连通,所述的各转向管的一端设置有放水阀;
所述的每层换热管由进水集管的一侧向出水集管一侧由上向下倾斜设置;
所述的换热器本体由换热器支撑架支撑,所述的换热管由换热管支撑板支撑;
所述的转向管为两端封闭的金属管;
所述各通管与转向管间通过密封连接件连接。
采用本实用新型结构的冷却塔用换热器,由于各层换热管间由中空的两端密封的转向管连接,且每层转向管设置有放水阀,当停用冷却塔时,同时开启集热管的放气阀和放水阀后,进水集管、出水集管及换热管中的存水向放水阀处汇集,经由放水阀排出,所以,换热器内不积水或积存少量水,因此换热器在气温低的环境下停用时不会被冻裂,同时由于转向管采用中空的两端封闭的结构,因此减少了各层换热管中水的阻力和张力,有利于水流的流动,使排水时水容易汇集,从而便于将存水排出。
附图说明
图1为现有技术中封闭式冷却塔用防冻换热器的第一种实施例立体结构示意图;
图2为现有技术中封闭式冷却塔用防冻换热器的第一种实施例结构示意图;
图3为图2的左视图;
图4为现有技术中封闭式冷却塔用防冻换热器的第二种实施例立体结构示意图;
图5为现有技术中封闭式冷却塔用防冻换热器的第二种实施例结构示意图;
图6为图5的俯视图;
图7为图5的左视图;
图8为本实用新型封闭式冷却塔用防冻换热器的第一种实施例立体结构示意图;
图9为本实用新型封闭式冷却塔用防冻换热器的第一种实施例结构示意图;
图10为图9的左视图;
图11为本实用新型封闭式冷却塔用防冻换热器的第二种实施例立体结构示意图;
图12为本实用新型封闭式冷却塔用防冻换热器的第二种实施例结构示意图;
图13为图12的俯视图;
图14为图12的左视图。
具体实施方式
下面结合附图及实施例对本实用新型做进一步的描述:
如图8至图10所示为本实用新型的第一个实施例,防冻换热器由上、下几层分布的换热管3、连接各层换热管3的转向管5、将待冷却的水流入换热管3的进水集管1及将冷却完毕的水送出的出水集管7组成,进水集管1的顶部设置有放气阀,每层换热管3由前、后排列的多条通管8组成,由每条通管8与转向管5密封固定连接,从而将换热管3连接成蛇形曲管,换热器由换热器支承钢架4固定、各条通管8由支承板2固定。制作时用型钢组成一个长方型的钢架作为换热器支承钢架4,取2块支撑板2,在每块支撑板2上按一定的间隔设置10行12列通孔,将支承板2固定在换热器支承钢架4上,将通管8穿过支承板2上钻好的孔,排列成每层有12列通管,共10层的换热管3,在进水集管1和出水集管7以及各转向管5的底部均焊接一放水阀6,用于排放积水,在进水集管1和出水集管7上沿轴向各钻12个孔,在每层的转向管5上沿轴向钻10行2列孔,在支承钢架4的一侧将首层通管8的首端插入进水集管1的对应孔内,将首层通管8的尾端插入到首层转向管5的对应孔中,将中间各层通管的首端和尾端分别插入对应的转向管5的对应孔内,用焊接的方法将通管8与所对应的转向管5和进水集管1、出水集管7固定密封连接,这样各层通管8排列形成“蛇”形结构的换热管3,使得水流能从进水集管1处进入,经换热管到达第一根转向管,水流在转向管处转向,进入第二列换热管,并流向另一侧的转向管,同样在此处水流转向,进入第三列换热管…直到达到出水集管7为止。为了便于换热管内的存水排出,每层换热管顺着水流方向向下倾斜设置。上述结构的换热器多用在逆流封闭式冷却塔内。
如图11至图14所示为本实用新型的第二个实施例,防冻换热器由前、后几层分布的换热管3、连接各层换热管的转向管5、将待冷却的水流入换热管3的进水集管1及将冷却完毕的水送出的出水集管7组成,进水集管1的顶部设置有放气阀,每层换热管3由上、下排列的多条通管8组成,由每条通管8与转向管5密封固定连接,从而将换热管连接成蛇形曲管,换热器由换热器支承钢架4固定,各条通管由支承板2固定。其制作方法参照实施例一。本结构的换热器多用于横流式封闭型冷却塔内。为了便于换热管内的存水排出,每层换热管由进水集管1一侧向出水集管7一侧向下倾斜设置。
在本实用新型中,使用两头密封的封闭管作为转向管5与各条通管8密封连接,与采用U型弯头作为转向管与每条通管连接相比,具有如下优点:水流可在每一次转向过程中,将各通管8中的水进行一次再混合和重新分配,这样使水流温度更均匀。如果换热管发生破裂时,只需切除此管,进行更换,或者只需将此管堵塞即可,不会影响到其他行程上的管子内的水流,从而减少对换热面积的影响。转向管5和各通管8间可采用密封连接件进行连接,这样,当某一条通管或换热管损坏时,可方便更换。
工作时,需要冷却的热水从被冷却设备中吸取热量经加压后进入冷却塔换热器的进水集管1,通过进水集管1的分配,流入换热管3中,流向转向管5,转向管5采用钢管或不锈钢管或其它金属管,水流在转向管中混合,进行第二次分配,热水进入第二个行程中,流向另一侧的转向管5,再进行一次水流混合和分配,而后进入到下一转向管中,重复上述过程,…直到水流到达出水集管后,流入需冷却的设备,进行下一个循环过程。
采用本实用新型结构换热器的冷却塔在冬季停用后,首先将风机和电机电源断开,并停止喷淋泵的运行,接着将热水管的进出管阀门关闭,确保换热器内的水与外部水源隔离,然后,分别将进水集管1、出水集管7和转向管5上的放水阀6全部打开,直到各管内积水全部放尽为止,然后将放水阀6重新关闭,放水时要注意将进水集管1顶部的放气阀打开,这样有利于管内积水的流出;因为换热器设计时换热管具有一定的坡度,每层换热管均向着出水集管7的方向倾斜,而且两端采用钢管或不锈钢管或其它金属管作为转向管,而不是“U”型铜弯头或封头板,这样减少了弯头处的阻力和水的张力,有利于顺利将水汇集到两端的各个集管中,从而便于从集管的放水阀中放出积水;这样将换热管3内、进水集管1、出水集管7、转向管5处的积水放尽后,封闭式冷却塔就可以安全越冬了,即使遗留一些水,也会慢慢汇聚到出水集管7或各转向管5的底部,进水集管1、出水集管7及转向管5采用钢管或不锈钢管或其它金属管,管径较大,在已放掉了大部分积水的情况下,在管腔内留有较大的空间,即使放水时留存的水结成冰,在管腔内仍有足够大的膨胀空间,不易造成换热管冰裂。
停用时,水放尽后重新关闭放水阀和放气阀,保证整个换热器的密封性,以备下周期使用。
为了便于更换损坏的换热管或转向管,各通管与转向管间可采用管密封连接间密封连接。

Claims (7)

1.一种封闭式冷却塔用防冻换热器,由设置有放气阀的进水集管(1)、上、下层布的多层换热管(3)、连接各层间换热管(3)的转向管(5)以及出水集管(7)组成,所述每层换热管(3)由前、后并列排布的多条通管(8)组成,其特征在于:所述的转向管(5)为中空的两端封闭管,各层的通管(8)与所对应的转向管(5)密封连通,所述的各转向管(5)的一端设置有放水阀(6)。
2.如权利要求1所述的一种封闭式冷却塔用防冻换热器,其特征在于:所述的每层换热管(3)顺着水流方向向下倾斜设置。
3.一种封闭式冷却塔用防冻换热器,由设置有放气阀的进水集管(1)、前、后层布的多层换热管(3)、连接各层间换热管(3)的转向管(5)以及出水集管(7)组成,所述每层换热管(3)由上、下并列排布的多条通管(8)组成,其特征在于:所述的转向管(5)为中空的两端封闭管,各层的通管(8)与所对应的转向管(5)密封连通,所述的各转向管的一端设置有放水阀(6)。
4.如权利要求3所述的一种封闭式冷却塔用防冻换热器,其特征在于:所述的每层换热管(3)由进水集管(1)的一侧向出水集管(7)一侧由上向下倾斜设置。
5.如权利要求1至4各项之一所述的一种封闭式冷却塔用防冻换热器,其特征在于:所述的换热器本体由换热器支撑架(4)支撑,所述的换热管(3)由换热管支撑板(2)支撑。
6.如权利要求1至4各项之一所述的一种封闭式冷却塔用防冻换热器,其特征在于:所述的转向管(5)为两端封闭的金属管。
7.如权利要求1至4各项之一所述的一种封闭式冷却塔用防冻换热器,其特征在于:所述各通管(8)与转向管(5)间通过密封连接件连接。
CN2009201972128U 2009-09-24 2009-09-24 封闭式冷却塔用防冻换热器 Expired - Fee Related CN201476631U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009201972128U CN201476631U (zh) 2009-09-24 2009-09-24 封闭式冷却塔用防冻换热器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009201972128U CN201476631U (zh) 2009-09-24 2009-09-24 封闭式冷却塔用防冻换热器

Publications (1)

Publication Number Publication Date
CN201476631U true CN201476631U (zh) 2010-05-19

Family

ID=42412879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009201972128U Expired - Fee Related CN201476631U (zh) 2009-09-24 2009-09-24 封闭式冷却塔用防冻换热器

Country Status (1)

Country Link
CN (1) CN201476631U (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929227A (zh) * 2010-07-20 2010-12-29 中国轻工业武汉设计工程有限责任公司 酱油塔式制曲防结露装置
CN102692155A (zh) * 2012-05-28 2012-09-26 上海理工大学 用于逆流闭式冷却塔的导热塑料换热模块
CN104034184A (zh) * 2014-06-23 2014-09-10 周武平 一种节能防冻型干湿式空冷器
CN104204664A (zh) * 2012-01-17 2014-12-10 阿尔斯通技术有限公司 用于连接单程水平蒸发器的区段的方法及设备
US9746174B2 (en) 2012-01-17 2017-08-29 General Electric Technology Gmbh Flow control devices and methods for a once-through horizontal evaporator
CN107830747A (zh) * 2017-10-19 2018-03-23 德阳东汽电站机械制造有限公司 一种沉浸式hdpe盐水换热器
CN108051629A (zh) * 2017-11-28 2018-05-18 法泰电器(江苏)股份有限公司 一种断路器用负载电流监视装置
CN113494857A (zh) * 2020-03-20 2021-10-12 中国科学院广州能源研究所 一种立式降膜高效冷凝器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929227A (zh) * 2010-07-20 2010-12-29 中国轻工业武汉设计工程有限责任公司 酱油塔式制曲防结露装置
US9696098B2 (en) 2012-01-17 2017-07-04 General Electric Technology Gmbh Method and apparatus for connecting sections of a once-through horizontal evaporator
CN104204664A (zh) * 2012-01-17 2014-12-10 阿尔斯通技术有限公司 用于连接单程水平蒸发器的区段的方法及设备
CN104204664B (zh) * 2012-01-17 2016-12-14 通用电器技术有限公司 用于连接单程水平蒸发器的区段的方法及设备
US9746174B2 (en) 2012-01-17 2017-08-29 General Electric Technology Gmbh Flow control devices and methods for a once-through horizontal evaporator
US9989320B2 (en) 2012-01-17 2018-06-05 General Electric Technology Gmbh Tube and baffle arrangement in a once-through horizontal evaporator
US10274192B2 (en) 2012-01-17 2019-04-30 General Electric Technology Gmbh Tube arrangement in a once-through horizontal evaporator
CN102692155B (zh) * 2012-05-28 2015-05-20 上海理工大学 用于逆流闭式冷却塔的导热塑料换热模块
CN102692155A (zh) * 2012-05-28 2012-09-26 上海理工大学 用于逆流闭式冷却塔的导热塑料换热模块
CN104034184A (zh) * 2014-06-23 2014-09-10 周武平 一种节能防冻型干湿式空冷器
CN107830747A (zh) * 2017-10-19 2018-03-23 德阳东汽电站机械制造有限公司 一种沉浸式hdpe盐水换热器
CN108051629A (zh) * 2017-11-28 2018-05-18 法泰电器(江苏)股份有限公司 一种断路器用负载电流监视装置
CN113494857A (zh) * 2020-03-20 2021-10-12 中国科学院广州能源研究所 一种立式降膜高效冷凝器

Similar Documents

Publication Publication Date Title
CN201476631U (zh) 封闭式冷却塔用防冻换热器
CN202133043U (zh) 一种水冷却家用空调室外机组
CN201983650U (zh) 分体换热喷淋闭式冷却塔
CN106958977A (zh) 一种冷库供冷设备及其控制方法
CN101338958B (zh) 空调热交换式冷凝器及喷淋蒸发冷却系统
KR101151691B1 (ko) 내부순환 복합에너지 난방제냉기술 및 장치
CN201396872Y (zh) 节能型全自动冷、热水中央空调系统
CN107940805A (zh) 直冷式深焓取热乏风热泵系统
CN201131642Y (zh) 一种即热式饮水机
CN201973897U (zh) 以气体为工作介质的分体式太阳能热水器
CN201488598U (zh) 蒸发密闭式冷却水塔
CN207333151U (zh) 一种应用于制冰机上的散热装置
CN203298421U (zh) 一种直流换流站蒸发冷却式外冷却系统
CN206919702U (zh) 一种一体式干湿联合空冷塔
CN202648133U (zh) 空气能和太阳能叠加给水源热泵供热的装置
CN213421305U (zh) 一种冰蓄冷系统
CN201193905Y (zh) 一种利用余冷/余热的储藏箱
CN113710076A (zh) 一种柔性直流输电换流阀冷却系统
CN202648248U (zh) 太阳能和空气能组合供热于水源热泵的装置
CN206875801U (zh) 一种冷库供冷系统
CN207095136U (zh) 一种联合供冷系统
CN113465008A (zh) 耦合蒸汽调峰的循环水系统废热综合利用供热设备
CN208475517U (zh) 气水冰三用换热器
CN206531224U (zh) 一种制冷、储冷和供冷的系统
CN201666746U (zh) 高效太极模块高速换热装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100519

Termination date: 20140924

EXPY Termination of patent right or utility model