CN201430596Y - 可扩展多用户量子密钥分配网络系统 - Google Patents

可扩展多用户量子密钥分配网络系统 Download PDF

Info

Publication number
CN201430596Y
CN201430596Y CN2009200338667U CN200920033866U CN201430596Y CN 201430596 Y CN201430596 Y CN 201430596Y CN 2009200338667 U CN2009200338667 U CN 2009200338667U CN 200920033866 U CN200920033866 U CN 200920033866U CN 201430596 Y CN201430596 Y CN 201430596Y
Authority
CN
China
Prior art keywords
quantum key
quantum
transmitting terminal
sequence
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2009200338667U
Other languages
English (en)
Inventor
赵峰
王少华
傅明星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Technology
Original Assignee
Shaanxi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Technology filed Critical Shaanxi University of Technology
Priority to CN2009200338667U priority Critical patent/CN201430596Y/zh
Application granted granted Critical
Publication of CN201430596Y publication Critical patent/CN201430596Y/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本实用新型公开了一种可扩展多用户量子密钥分配网络系统,包括由量子密钥发射端和分别与量子密钥发射端相接的多个量子密钥接收端组成的点到多点量子密钥分配系统,量子密钥发射端向所述多个量子密钥接收端所分发的量子密钥信息为对应多个随机二进制序列;所述多个量子密钥接收端中的任意两个量子密钥接收端之间均能通过量子密钥发射端对各自与量子密钥发射端间的共享量子密钥信息进行对比分析判断后实现密钥共享。本实用新型设计合理、使用操作方便且用户容量扩展能力强、传输距离远、用户功能性好,能有效解决现有基于光分束器的多用户量子密钥分配系统所存在的多种实际问题。

Description

可扩展多用户量子密钥分配网络系统
技术领域
本实用新型属于量子密钥分配技术领域,尤其是涉及一种可扩展多用户量子密钥分配网络系统。
背景技术
量子密钥分配为异地合法通信双方提供绝对安全的随机序列,通常称之为量子密钥,量子密钥的安全性在理论上被证明是绝对安全的,即使量子计算机的问世也不对其构成威胁。这是由于单量子态作为信息载体来传递信息,通常称之为量子比特,这种量子比特的安全性由量子力学中的不确定性原理和未知量子态不可克隆定理保证。因此。这种绝对安全的量子密钥将首先应用于军事、国家安全等领域,并成为各国科学家角逐的新战场。
“点到点”之间的量子密钥分配技术已经得到了广泛的研究。随着网络技术地不断发展,量子密钥分配与经典通信网络系统相互融合成为了新的研究目标,同时多用户之间的量子密钥分配网络系统成为了目前的研究热点。量子密钥分配网络可为网络中的合法用户提供量子密钥。但是,由于量子比特的独特性,支持网络中量子密钥分配的路由技术与经典通信的实现方式是不同的,因此量子路由技术成为了量子密钥分配网络中的关键技术。
目前,根据量子密钥分配网络的路由特点将其分为三类:第一类,信任方为节点进行路由;第二类,光学器件为节点进行路由;第三类,量子中继器为节点进行路由。
其中,信任方为节点进行路由,实质上是利用成熟的“点到点”量子密钥分发装置作为基本链路,在节点处利用信任的中继方来进行“路由”而组成的量子密钥分发网络,在这样网络中,每对量子密钥在相邻两个节点之间进行独立分配。利用每个节点上生成的量子密钥对要发送的经典信息依次进行“加密-解密-加密-...-解密”操作。这样,利用多个“点到点”链路进行加密、解密方式来实现长距离的密钥传送。这类网络的优点是:信任方为节点构成的量子密钥分发网络在现有的技术条件下很容易实现远距离间的量子密钥分配,可服务于广域范围内。缺点是:网络系统的安全性依赖于节点处的可信赖度,即各个节点都是可信任的。这是因为传递的信息(密钥或者重要信息)会保留在任何一个节点的存储器中,这些信息可以被多次复制而不会被发现。随着传输距离的增加,节点的数目随之增多,安全及可靠的保障系数随之减小,因此这些对于绝对保密的通信体系来说是极为不利的方面。
另外,量子密钥分发网络其节点可以利用光学开关或波分复用器件或光分束器等来实现。①基于光开关或波分复用器的量子密钥分配网络系统,其优点:一,技术实现容易:这种量子密钥分发网络在目前技术条件下很容易实现;二,安全性好:量子信息在传递过程中不会被破坏,安全性好;三,用户功能性好:网络内任意两个用户之间都可以实现密钥分配。但是,其所存在的缺点在于:一,服务范围小:节点不具备中继放大功能,只能服务于城域或局域范围;二,网络容量扩展性差:网络的容量受到器件参数的限制,而且这两类光学器件存在较大的插入损耗,随着网络用户容量的增加,只能通过光学器件级联的方式进行扩展,因此插入损耗也随之增大,从而会缩短量子密钥分配传输距离,以及降低量子密钥的生成速率。②基于光分束器的量子密钥分发网络。其优点:一,技术实现容易:这种量子密钥分发网络在目前技术条件下很容易实现;二,安全性好:量子信息在传递过程中不会被破坏,安全性好。缺点:一,服务范围小:节点不具备中继放大功能,只能服务于城域或局域范围;二,用户功能差:网络内只能实现一点到多点之间的密钥分配;三,扩展性能差,网络的用户容量的扩展严重影响量子密钥的传输距离和分配速率。由于窃听者可以同时窃听分束器的所有端口,因此,发送方A li ce发射出的平均光子数μ应等于η,η为Alice与每个接收端Bob之间的量子比特总传输效率(信道传输效率与探测效率之积)。经过1×n光分束器后,实际上Alice与每一个接收端Bob间的平均光子数为μ/n。随着用户的增加,n随之增大,安全的传输距离及密钥生成速率随之急剧减小。
对于基于量子纠缠特性的量子节点,其优点在于:一,服务范围广:量子节点具有中继放大功能,能够服务于局域、城域、广域范围内。二,安全性好:量子信息在传递过程中不会被破坏,安全性好;三,用户功能性好:网络内任意两个用户之间都可以实现密钥分配。缺点:技术实现目前存在困难。虽然原理性实验研究已经证明了其可行性,但是量子器件的实现依赖于现有的制作工艺和水平,在目前看来,具有纳米微结构的高精度量子元器件将可能建造高效的量子信息系统,也就是说,只有纳米技术的发展,才能保证成功研制的量子路由器具有需要的参数。然而,在现有的实验条件下,还无法实现。
综上,现有基于光分束器的多用户量子密钥分配系统存在以下缺点:一,用户功能差:网络内只能实现一点到多点之间的密钥分配;二,用户容量扩展性能差:容量的扩展降低了密钥的传输距离及生成效率;三,传输距离短。
实用新型内容
本实用新型所要解决的技术问题在于针对上述现有技术中的不足,提供一种可扩展多用户量子密钥分配网络系统,其设计合理、使用操作方便且用户容量扩展能力强、传输距离远、用户功能性好,能有效解决现有基于光分束器的多用户量子密钥分配系统所存在的多种实际问题。
为解决上述技术问题,本实用新型采用的技术方案是:一种可扩展多用户量子密钥分配网络系统,包括由量子密钥发射端和分别与量子密钥发射端相接的多个量子密钥接收端组成的点到多点量子密钥分配系统,量子密钥发射端向所述多个量子密钥接收端所分发的量子密钥信息为对应多个随机二进制序列;所述多个量子密钥接收端中的任意两个量子密钥接收端之间均能通过量子密钥发射端对各自与量子密钥发射端间的共享量子密钥信息进行对比分析判断后实现密钥共享。
所述量子密钥发射端由能制备出相干脉冲序列的微弱相干脉冲光源、将微弱相干脉冲光源所产生的相干脉冲序列分成与所述多个量子密钥接收端相对应的n个微弱相干脉冲序列的1×n光分束器、分别对应接在1×n光分束器n个出口处且相应对各出口处所发出的微弱相干脉冲序列的相位进行随机编码并对应制备出n个随机量子比特序列的n个相位调制器和分别将所述n个随机量子比特序列进行衰减并对应发送至量子密钥接收端的n个衰减器,所述多个量子密钥接收端的数量为n;量子密钥接收端对应设置有对所接收的随机量子比特序列进行解调并获得一个对应随机二进制序列的解码器;所述1×n光分束器布设在微弱相干脉冲光源的光线出口处,衰减器布设在相位调制器的出口处;所述量子比特序列为光量子比特序列,所述相干脉冲序列为相干光脉冲序列。
所述衰减器与量子密钥接收端之间通过通信光纤进行连接。
本实用新型与现有技术相比具有以下优点:
1、可扩展多用户量子密钥分配网络系统在网络内可以实现任意两个合法量子密钥接收端之间即任意两个用户的密钥分配。
2、用户容量的扩展不再影响密钥的传输距离及密钥分配速率,并且从理论上讲,用户容量的扩展不受限制;并且用户容量的扩展也不影响其它用户的性能。
3、在现有的技术条件下,且在不改变网络系统及其相关的设备参数的条件下,该可扩展多用户量子密钥分配网络系统可以将传输距离扩展为原来的2倍,并且其极限传输距离可以达到200km以上,因而完全可以服务于城域范围。
4、技术难度及工程造价低。
综上所述,本实用新型主要针对现有基于光分束器的多用户量子密钥分配系统进行改进,并相应提出的一种星型量子密钥分配网络系统,其设计合理、使用操作方便且用户容量扩展能力强、传输距离远、用户功能性好,在发射方与每一个接收方完成量子密钥分配后,任意两个接收方之间可进行密钥共享。
下面通过附图和实施例,对本实用新型的技术方案做进一步的详细描述。
附图说明
图1为本实用新型的结构示意图。
图2为利用本实用新型进行量子密钥分配的方法流程图。
附图标记说明:
1-量子密钥发射端;1-1-微弱相干脉冲光源;1-2-1×n光分束器;
1-3-相位调制器;  1-4-衰减器;          2-量子密钥接收端;
3-通信光纤。
具体实施方式
如图1所示,本实用新型包括由量子密钥发射端1(即Alice)和分别与量子密钥发射端1相接的多个量子密钥接收端2组成的点到多点量子密钥分配系统。所述量子密钥发射端1向所述多个量子密钥接收端2所分发的量子密钥信息为对应多个随机二进制序列。所述多个量子密钥接收端2中的任意两个量子密钥接收端2之间均能通过量子密钥发射端1对各自与量子密钥发射端1间的共享量子密钥信息进行对比分析判断后实现密钥共享。
本实施例中,所述量子密钥发射端1由能制备出相干脉冲序列的微弱相干脉冲光源1-1(即WCP)、将微弱相干脉冲光源1-1所产生的相干脉冲序列分成与所述多个量子密钥接收端2相对应的n个微弱相干脉冲序列的1×n光分束器1-2(即Beam-splitter)、分别对应接在1×n光分束器1-2的n个出口处且相应对各出口处所发出的微弱相干脉冲序列的相位进行随机编码并对应制备出n个随机量子比特序列的n个相位调制器1-3(即φ1、φ2......φn)和分别将所述n个随机量子比特序列进行衰减并对应发送至量子密钥接收端2的n个衰减器1-4(即ATT1、ATT2......ATTn)。所述多个量子密钥接收端2的数量为n,具体为Bob1、Bob2......Bobn。所述量子密钥接收端2对应设置有对所接收的随机量子比特序列进行解调并获得一个对应随机二进制序列的解码器。所述1×n光分束器1-2布设在微弱相干脉冲光源1-1的光线出口处,衰减器1-4布设在相位调制器1-3的出口处;所述量子比特序列为光量子比特序列,所述相干脉冲序列为相干光脉冲序列。
所述衰减器1-4与量子密钥接收端2之间通过通信光纤3进行连接。
结合图2,利用本实用新型进行量子密钥分配时,其密钥分配过程包括以下步骤:
步骤一、量子密钥发射端1与所述多个量子密钥接收端2分别进行量子密钥分配,即由量子密钥发射端1分别向每个量子密钥接收端2发送一个随机量子密钥信息。量子密钥分配完毕后,量子密钥发射端1与每个量子密钥接收端2间均共享所述随机量子密钥信息中的一段随机量子密钥即一段随机二进制序列,且量子密钥发射端1与所述多个量子密钥接收端2间所共享的一段随机量子密钥的长度即比特数均相同。
本实施例中,量子密钥发射端1中,首先通过微弱相干脉冲光源1-1产生一微弱相干脉冲,具体为一微弱的相干光脉冲序列;所产生的微弱的相干光脉冲序列经过1×n光分束器1-2后,获得n个微弱的相干光脉冲序列;同时,通过连接在1×n光分束器1-2每个出口处的n个相位调制器1-3(实际操作过程中,可分别独立地对每个相位调制器1-3进行随机调制),即对1×n光分束器1-2n个出口处所对应的n个微弱相干光脉冲序列中光脉冲的相位分别独立进行随机编码,从而制备出n个随机的量子比特序列,其中量子比特是量子计算机中的基本信息单位;然后,分别利用n个衰减器1-4将n个随机量子比特序列进行衰减,最后通过通信光纤分别发送至各个量子密钥接收端2。综上,从n个衰减器1-4分别发送至n个量子密钥接收端2的经衰减后的随机量子比特序列,即为量子密钥发射端1分别向n个量子密钥接收端2所发送的随机量子密钥信息。上述从量子密钥发射端1所发送出的n个随机量子比特序列对应分别到达量子密钥接收端2后,各个量子密钥接收端2分别利用其内部所设置的解码器对到达的随机量子比特序列进行解码,获得随机量子密钥信息,从而完成从一个量子密钥发射端1到n个量子密钥接收端2量子密钥分配过程。
所述量子密钥发射端1与所述多个即n个量子密钥接收端2分别进行量子密钥分配时,其量子密钥分配协议为BB84协议、相位差分量子密钥分配协议或B92协议。实际使用时,其量子密钥分配协议还可以为BB84协议(采用四种极化态来进行密钥分发)、相位差分协议(DPSK)和B92协议(即B92量子密钥协议)之外的其它一些相关协议。
综上,本实用新型中,量子密钥发射端1可以分别独立地和任意一个量子密钥接收端2间实现量子密钥分配。当量子密钥分配完毕后,量子密钥发射端1与每一个量子密钥接收端2共享一段量子密钥即一段随机二进制序列。
步骤二、当所述多个量子密钥接收端2中的任意两个量子密钥接收端2即Bobi与Bobj想建立共享的密钥时,其建立过程如下:
201、Bobi和Bobj分别向量子密钥发射端1发送想与对方建立共享密钥的请求。其中,i≠j且二者均不小于且均不大于n,也就是说,Bobi与Bobj为Bob1、Bob2......Bobn中任意两个量子密钥接收端2。
202、量子密钥发射端1接收到Bob i和Bobj所发出的请求后,相应将其分别与Bobi和Bobj共享的两段量子密钥进行逐位比较,并相应得出比较结果:当两段量子密钥对应位上的数值一致时,量子密钥发射端(1)对此位上的比较结果取“Y”;当两段量子密钥对应位上的数值不一致时,量子密钥发射端1对此位上的比较结果取“N”。
本实施例中,所述量子密钥发射端1将其分别与Bobi和Bobj共享的两段量子密钥进行逐位比较前,先对所述两段量子密钥对应分别进行逐步编号,所述两段量子密钥中相同编号对应的比特是相同的。
203、量子密钥发射端1通过公开的信道将所得出的比较结果告诉Bobi和Bobj。
204、Bobi根据自己与量子密钥发射端1所共享的量子密钥,再结合量子密钥发射端1所告知的比较结果,即可推断出Bobj与量子密钥发射端1所共享的量子密钥;同理,Bobj也可推断出Bob i与量子密钥发射端1所共享的量子密钥,则Bobi和Bobj间便建起共享的密钥,即Bob i和Bob j彼此共享对方的量子密钥。
需注意的是:Bobi和Bobj均不能将二者间所共享的密钥再与任何第三个量子密钥接收端2进行共享。
本实施例中,Bobi和Bobj间密钥共享过程列表如表1所示:
表1 Bobi和Bobj间密钥共享过程列表
从表1中可以看出,对于本实用新型所述的点到多点量子密钥分配(分发)系统,任意两个量子密钥接收端2在完成了与Alice之间的量子密钥分配后,都可以实现彼此之间的密钥共享。而且,为了安全起见,两个量子密钥接收端2之间,具体是两个用户之间所共享的量子密钥不能再用来与第三个用户即量子密钥接收端2进行共享。例如,若Bob1与Bob2共享了彼此的量子密钥后,Bob1不能再用上述共享的密钥与Bob3进行共享。因为这样以来,Bob 3就知道了Bob2的密钥信息,造成不安全使用。另外,为了保证量子密钥分发过程安全进行,在量子密钥分发之前需要对通信各方进行身份识别,以防假冒。
以上所述,仅是本实用新型的较佳实施例,并非对本实用新型作任何限制,凡是根据本实用新型技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本实用新型技术方案的保护范围内。

Claims (3)

1.一种可扩展多用户量子密钥分配网络系统,其特征在于:包括由量子密钥发射端(1)和分别与量子密钥发射端(1)相接的多个量子密钥接收端(2)组成的点到多点量子密钥分配系统,量子密钥发射端(1)向所述多个量子密钥接收端(2)所分发的量子密钥信息为对应多个随机二进制序列;所述多个量子密钥接收端(2)中的任意两个量子密钥接收端(2)之间均能通过量子密钥发射端(1)对各自与量子密钥发射端(1)间的共享量子密钥信息进行对比分析判断后实现密钥共享。
2.按照权利要求1所述的可扩展多用户量子密钥分配网络系统,其特征在于:所述量子密钥发射端(1)由能制备出相干脉冲序列的微弱相干脉冲光源(1-1)、将微弱相干脉冲光源(1-1)所产生的相干脉冲序列分成与所述多个量子密钥接收端(2)相对应的n个微弱相干脉冲序列的1×n光分束器(1-2)、分别对应接在1×n光分束器(1-2)n个出口处且相应对各出口处所发出的微弱相干脉冲序列的相位进行随机编码并对应制备出n个随机量子比特序列的n个相位调制器(1-3)和分别将所述n个随机量子比特序列进行衰减并对应发送至量子密钥接收端(2)的n个衰减器(1-4),所述多个量子密钥接收端(2)的数量为n;量子密钥接收端(2)对应设置有对所接收的随机量子比特序列进行解调并获得一个对应随机二进制序列的解码器;所述1×n光分束器(1-2)布设在微弱相干脉冲光源(1-1)的光线出口处,衰减器(1-4)布设在相位调制器(1-3)的出口处;所述量子比特序列为光量子比特序列,所述相干脉冲序列为相干光脉冲序列。
3.按照权利要求2所述的可扩展多用户量子密钥分配网络系统,其特征在于:所述衰减器(1-4)与量子密钥接收端(2)之间通过通信光纤(3)进行连接。
CN2009200338667U 2009-07-10 2009-07-10 可扩展多用户量子密钥分配网络系统 Expired - Lifetime CN201430596Y (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009200338667U CN201430596Y (zh) 2009-07-10 2009-07-10 可扩展多用户量子密钥分配网络系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009200338667U CN201430596Y (zh) 2009-07-10 2009-07-10 可扩展多用户量子密钥分配网络系统

Publications (1)

Publication Number Publication Date
CN201430596Y true CN201430596Y (zh) 2010-03-24

Family

ID=42034335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009200338667U Expired - Lifetime CN201430596Y (zh) 2009-07-10 2009-07-10 可扩展多用户量子密钥分配网络系统

Country Status (1)

Country Link
CN (1) CN201430596Y (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599826B (zh) * 2009-07-10 2011-08-24 陕西理工学院 可扩展多用户量子密钥分配网络系统及其密钥分配方法
CN104219042A (zh) * 2014-07-24 2014-12-17 安徽问天量子科技股份有限公司 量子密钥分发中心控制装置及方法
CN105871538A (zh) * 2015-01-22 2016-08-17 阿里巴巴集团控股有限公司 量子密钥分发系统、量子密钥分发方法及装置
CN106161015A (zh) * 2016-09-29 2016-11-23 长春大学 一种基于dpi的量子秘钥分发方法
CN106209739A (zh) * 2015-05-05 2016-12-07 科大国盾量子技术股份有限公司 云存储方法及系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599826B (zh) * 2009-07-10 2011-08-24 陕西理工学院 可扩展多用户量子密钥分配网络系统及其密钥分配方法
CN104219042A (zh) * 2014-07-24 2014-12-17 安徽问天量子科技股份有限公司 量子密钥分发中心控制装置及方法
CN105871538A (zh) * 2015-01-22 2016-08-17 阿里巴巴集团控股有限公司 量子密钥分发系统、量子密钥分发方法及装置
CN105871538B (zh) * 2015-01-22 2019-04-12 阿里巴巴集团控股有限公司 量子密钥分发系统、量子密钥分发方法及装置
US10305873B2 (en) 2015-01-22 2019-05-28 Alibaba Group Holding Limited Method, apparatus, and system for quantum key distribution
US10757083B2 (en) 2015-01-22 2020-08-25 Alibaba Group Holding Limited Method, apparatus, and system for quantum key distribution
CN106209739A (zh) * 2015-05-05 2016-12-07 科大国盾量子技术股份有限公司 云存储方法及系统
US10581599B2 (en) 2015-05-05 2020-03-03 Quantumctek Co., Ltd Cloud storage method and system
CN106161015A (zh) * 2016-09-29 2016-11-23 长春大学 一种基于dpi的量子秘钥分发方法

Similar Documents

Publication Publication Date Title
CN101599826B (zh) 可扩展多用户量子密钥分配网络系统及其密钥分配方法
CN109660337B (zh) 一种量子与经典融合的通信网络系统及其密钥分发方法
Dušek et al. Quantum identification system
Xu et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network
JP5784612B2 (ja) 量子鍵配送で使用するための方法および装置
Townsend et al. Design of quantum cryptography systems for passive optical networks
Sasaki et al. Quantum photonic network: concept, basic tools, and future issues
US20140098955A1 (en) Quantum enabled security for optical communications
CN201430596Y (zh) 可扩展多用户量子密钥分配网络系统
Yang et al. Member expansion in quantum (t, n) threshold secret sharing schemes
Oesterling et al. Comparison of commercial and next generation quantum key distribution: Technologies for secure communication of information
CN107086891A (zh) 连续变量量子密钥分发系统的相位补偿实现方法
JP6471903B2 (ja) 光秘匿通信システム
Han et al. Enhancing data and privacy security in mobile cloud computing through quantum cryptography
CN108365954B (zh) 一种控制码复用方法
Lo et al. Quantum cryptography: from theory to practice
Trinh et al. Design and secrecy performance of novel two-way free-space QKD protocol using standard FSO systems
WO2012039595A1 (en) Dual coding coherent phase protocol
CN213879845U (zh) 一种三用户tf-qkd网络系统
CN108712254A (zh) 一种量子密钥分发系统及方法
CN114172635B (zh) 基于量子分发的双速业务混叠通信方法
Razavi et al. Architectural considerations in hybrid quantum-classical networks
Corndorf et al. Quantum-noise: protected data encryption for WDM fiber-optic networks
Han et al. An application-oriented hierarchical quantum cryptography network test bed
Symul et al. Coherent state quantum key distribution with continuous-wave laser beams

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20100324

Effective date of abandoning: 20090710