CN1994576B - Desulfurization method for high-nickel matte magnetically separated Cu-Fe-Ni alloy - Google Patents

Desulfurization method for high-nickel matte magnetically separated Cu-Fe-Ni alloy Download PDF

Info

Publication number
CN1994576B
CN1994576B CN2006101563131A CN200610156313A CN1994576B CN 1994576 B CN1994576 B CN 1994576B CN 2006101563131 A CN2006101563131 A CN 2006101563131A CN 200610156313 A CN200610156313 A CN 200610156313A CN 1994576 B CN1994576 B CN 1994576B
Authority
CN
China
Prior art keywords
alloy
cufeni
classification
nickel
magnetic separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006101563131A
Other languages
Chinese (zh)
Other versions
CN1994576A (en
Inventor
刘旺生
王国荣
李富渊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinchuan Group Co Ltd
Original Assignee
Jinchuan Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinchuan Group Co Ltd filed Critical Jinchuan Group Co Ltd
Priority to CN2006101563131A priority Critical patent/CN1994576B/en
Publication of CN1994576A publication Critical patent/CN1994576A/en
Application granted granted Critical
Publication of CN1994576B publication Critical patent/CN1994576B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention relates to a desulfuration method of high-nickle sulfonium magnetic selected CuFeNi alloy, wherein it is characterized in that: grinding the CuFeNi alloy while the mineral slurry densityis 75-85% until the graininess -74mm is 20%; classifying via classifier, controlling the classify overflow density to 35-55%; entering the level with sulfide into float selection; magnetically selecting fine particles; the classified feedback sand is the final alloy product used in carbonyl nickel production. With said invention, the yield can reach 65%; the product sulfur is reduced from 8. 75%to 2. 11%, while the desulfuration rate can reach 84. 33%.

Description

The sulfur method of high-nickel matte magnetically separated Cu-Fe-Ni alloy
Technical field
The sulfur method of high-nickel matte magnetically separated Cu-Fe-Ni alloy relates to a kind of processing method of producing raw material in the carbonyl nickel process, and particularly artificial high nickel matte separates the CuFeNi alloy raw material sulfur method that obtains by ore dressing.
Background technology
High nickel matte extracts the thicker CuFeNi alloy of granularity through magnetic separation, and its essential mineral consists of: tripartite sulphur nickel minerals (Ni 3S 2), vitreous copper (Cu 2S) and copper iron-nickel alloy (CuFeNi 8~10), general granularity 56 μ m~1000 μ m, the idiomorphic crystal degree is better, and crystal face is straight, mostly is hexahedron and octahedron, and periphery is straight.Be ductile, easily monomer dissociation.Has ferromagnetism.In the process that adopts CuFeNi alloy production carbonyl nickel, when high nickel matte separated the CuFeNi alloy that obtains as raw material by ore dressing, because there is the part intergrowth in the CuFeNi alloy with sulfide, the alloy sulfur-bearing exceeded standard, and can not satisfy the needs of carbonyl nickel production.At present, effectively remove the method for the sulphur in the CuFeNi alloy, still do not have bibliographical information.
Summary of the invention
The objective of the invention is deficiency, provide a kind of desulfurized effect good CuFeNi deep desulphurization method at above-mentioned prior art existence.
The present invention is achieved by the following technical solutions.
The sulfur method of high-nickel matte magnetically separated Cu-Fe-Ni alloy, it is characterized in that its sweetening process is that the CuFeNi alloy that high nickel matte magnetic separation is extracted is to carry out ore grinding under 75%~85% condition in weight concentration, being milled to granularity is after-74 μ m account for 20%, carry out the grader classification, control classification effluent concentration is 35%~55%, the classification overflow that will contain sulfide enters flotation, is reclaimed by the magnetic separation of nickel ore concentrate particulate again, and the classification sand return is sent into the carbonyl nickel production process as qualified alloy product.
Method of the present invention, the product yield 65% after the desulfurization of high-nickel matte magnetically separated Cu-Fe-Ni alloy process ore grinding.Sulfur content is reduced to 2.11% by 8.75%, and desulfurization degree reaches 84.33%.Desulfurized effect is good, can satisfy the requirement that carbonyl nickel is produced.
The specific embodiment
The sulfur method of the CuFeNi alloy of high nickel matte magnetic separation, is to carry out ore grinding under 75%~85% condition with the CuFeNi alloy of high nickel matte magnetic separation in the ore pulp weight concentration, after being milled to granularity-74 μ m and accounting for 20%, carry out the grader classification, control classification effluent concentration is 35%~55%, make the classification overflow that contains sulfide enter flotation, reclaimed by the magnetic separation of nickel ore concentrate particulate, the classification sand return is sent into the carbonyl nickel production process as qualified alloy product.
Embodiment 1
1, feedstock property
(1) alloying component of the CuFeNi alloy of high nickel matte magnetic separation separation
Table 1 coarse grain alloy composition
(2) mineral determining degree of dissociation table
Table 2 mineral determining degree of dissociation table (%)
Sample Monomer Alloy and nickel sulfide Alloy and copper sulfide Alloy and nickel sulfide-copper sulfide
Coarse grain alloy 85 2 10 3
The not sulfur-bearing of gold (alloy monomer) that isozygotys after testing, because there is the part intergrowth in alloy with sulfide, the alloy sulfur-bearing is above 8%.Detect and find that simultaneously intergrowth is many more, the alloy sulfur-bearing is high more.
2, adopt the method for ore grinding to carry out the desulfurization processing.
(1) coarse grain alloy desulfurization industrial equipment is selected a MQG1500 * 3000 ball mills and a FLG1000 grader for use;
(2) technological process: adopt a time grinding grading technique flow process, the coarse grain alloy that the extracts single-beam clamshell crane by 5 tons is hung in feed bin, material feeds ball mill by electric vibrating feeder and spiral conveyer, through entering the grader classification behind the ball mill ore grinding, the classification overflow that will contain sulfide enters flotation, reclaimed by the magnetic separation of nickel ore concentrate particulate, the classification sand return is sent into the carbonyl nickel production process as qualified alloy product again.
(3) process conditions: mine-supplying quantity 2t/h, ore milling concentration 75~85%, classification effluent concentration 35~55%.
3, coarse grain alloy desulfurization commercial test results
Table 3 coarse grain alloy desulfurization commercial test results
Title Productive rate % Ni% Cu% Fe% S%
Coarse grain alloy 100 56.60 22.79 6.86 8.75
Product after the desulfurization 65 69.85 14.23 8.81 2.11
Mine tailing after the desulfurization 35 31.99 38.69 3.24 21.08
(1) through the product yield 65% after the ore grinding desulfurization.
(2) the product sulfur-bearing is reduced to 2.11% by 8.75%, and desulfurization degree reaches 84.33%.Copper sulphur ratio brings up to 6.74 by 2.6, has reached copper sulphur than the standard that requires greater than 4.

Claims (1)

1. the sulfur method of the CuFeNi alloy of high nickel matte magnetic separation, it is characterized in that its sweetening process is that the CuFeNi alloy that high nickel matte magnetic separation is extracted is to carry out ore grinding under 75%~85% condition in the ore pulp weight concentration, being milled to granularity is after-74 μ m account for 20%, carry out the grader classification, control classification effluent concentration is 35%~55%, the classification overflow that will contain sulfide enters flotation, is reclaimed by the magnetic separation of nickel ore concentrate particulate again, and the classification sand return is sent into the carbonyl nickel production process as qualified alloy product.
CN2006101563131A 2006-12-29 2006-12-29 Desulfurization method for high-nickel matte magnetically separated Cu-Fe-Ni alloy Active CN1994576B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006101563131A CN1994576B (en) 2006-12-29 2006-12-29 Desulfurization method for high-nickel matte magnetically separated Cu-Fe-Ni alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006101563131A CN1994576B (en) 2006-12-29 2006-12-29 Desulfurization method for high-nickel matte magnetically separated Cu-Fe-Ni alloy

Publications (2)

Publication Number Publication Date
CN1994576A CN1994576A (en) 2007-07-11
CN1994576B true CN1994576B (en) 2010-06-09

Family

ID=38249827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101563131A Active CN1994576B (en) 2006-12-29 2006-12-29 Desulfurization method for high-nickel matte magnetically separated Cu-Fe-Ni alloy

Country Status (1)

Country Link
CN (1) CN1994576B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114643133B (en) * 2022-03-10 2023-09-22 金川集团股份有限公司 Beneficiation method for copper sulfide nickel tailings in non-uniform distribution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076505A (en) * 1976-11-22 1978-02-28 Mobil Oil Corporation Coal desulfurization process
CN1403208A (en) * 2001-09-11 2003-03-19 中南大学 Bauxite floating method
CN1244408C (en) * 2004-03-30 2006-03-08 中国铝业股份有限公司 Floatation method of desulfurizing and desiliconizing diaspore type bauxite
CN1768964A (en) * 2005-10-19 2006-05-10 重庆钢铁(集团)有限责任公司 Floatation method of whole grade ilmenite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076505A (en) * 1976-11-22 1978-02-28 Mobil Oil Corporation Coal desulfurization process
CN1403208A (en) * 2001-09-11 2003-03-19 中南大学 Bauxite floating method
CN1244408C (en) * 2004-03-30 2006-03-08 中国铝业股份有限公司 Floatation method of desulfurizing and desiliconizing diaspore type bauxite
CN1768964A (en) * 2005-10-19 2006-05-10 重庆钢铁(集团)有限责任公司 Floatation method of whole grade ilmenite

Also Published As

Publication number Publication date
CN1994576A (en) 2007-07-11

Similar Documents

Publication Publication Date Title
CN109351467B (en) Sorting process for treating maghemia mixed ore based on iron mineral embedded granularity
CN101439314B (en) Ore concentration technique for laterite nickel ore rich in nickel and/or cobalt
CN104226463B (en) A kind of beneficiation method of high tin-polymetallic sulphide ore
CN106984425B (en) A kind of sub-prime classification diversion processing method of Lower Grade Micro-fine Grain tin ore
CN109675712B (en) Mineral processing technology for treating high-sulfur hematite-magnetic mixed iron ore
CN106513163A (en) High-pressure rolling and magnetic-gravity separation process for lean hematite
CN113893952B (en) Copper-cobalt ore beneficiation method
CN104056714B (en) A kind of difficulty selects the ore-dressing technique of micro-size fraction iron copper mine
CN102553706A (en) Process for recycling gold from high-arsenic and high-sulfur difficultly treated gold ore
CN102527498A (en) Non-cyanide ore dressing method for gold-copper-lead sulfide ore
CN102824956B (en) Poor hematite grading level and narrow level sorting process
CN113976306A (en) Pre-waste-throwing system and process for complex refractory low-grade molybdenum ore heavy-medium beneficiation
CN106492977A (en) The strong magnetic reverse floatation process of lean hematite high pressure roller mill, weak magnetic
CN102317481A (en) Production is suitable for the novel method that iron and steel are made the iron ore concentrate of process
RU2370316C1 (en) Method for arranging pulp for flotation of magnetic fraction from concentrates of sulphide copper-nickel ores containing ferromagnetic minerals of iron and precious metals
CN103433122B (en) A kind of medium tin ore sub-prime classification and sorting technique
CN102744161A (en) Separation method of nickel-copper mixed concentrate containing platinum-palladium mineral
WO2024045687A2 (en) Method for pre-selection and discarding and reducing over-grinding of gold ores
CN1994576B (en) Desulfurization method for high-nickel matte magnetically separated Cu-Fe-Ni alloy
CN109550587B (en) Ore dressing process for magnetic red mixed ore
CN105597941A (en) Technological method for extracting iron fine powder from pyrite cinder
CN114672640B (en) Technological method for extracting alloy from high nickel matte
CN114308368B (en) Copper-tin ore separation process
CN111282710B (en) Asynchronous simultaneous separation process for poor and refractory nickel-copper ores
CN109499748B (en) Method for separating cassiterite and gangue in ore grinding circuit by selecting ore

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: JINCHUAN GROUP CO., LTD.

Free format text: FORMER NAME: JINCHUAN GROUP CORP., LTD.

CP01 Change in the name or title of a patent holder

Address after: 737103 Jinchuan Road, Gansu, China, No. 98, No.

Patentee after: Jinchuan Group Co., Ltd.

Address before: 737103 Jinchuan Road, Gansu, China, No. 98, No.

Patentee before: Jinchuan Group Corp., Ltd.