CN1989717A - 具有泵浦模块的光学放大器 - Google Patents

具有泵浦模块的光学放大器 Download PDF

Info

Publication number
CN1989717A
CN1989717A CNA2005800249719A CN200580024971A CN1989717A CN 1989717 A CN1989717 A CN 1989717A CN A2005800249719 A CNA2005800249719 A CN A2005800249719A CN 200580024971 A CN200580024971 A CN 200580024971A CN 1989717 A CN1989717 A CN 1989717A
Authority
CN
China
Prior art keywords
optical amplifier
ray
amplifying fiber
signal
pump module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800249719A
Other languages
English (en)
Inventor
P·克鲁姆里奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Solutions and Networks GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN1989717A publication Critical patent/CN1989717A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06762Fibre amplifiers having a specific amplification band
    • H01S3/06766C-band amplifiers, i.e. amplification in the range of about 1530 nm to 1560 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明涉及一种包括泵浦模块的、优选用于放大WDM信号的信道的光学放大器,该泵浦模块的输出端与放大光纤连接,在该放大光纤中放大通过光学信号形成的信号射线。为了以最低的增益谱差、也就是在WDM技术中以最低信道电平差放大光学信号,由泵浦模块产生的泵浦射线在放大光纤中具有明显比信号射线的模场直径更小的模场直径。

Description

具有泵浦模块的光学放大器
本发明涉及一种按照权利要求1的前序部分的具有泵浦模块的光学放大器。
因特网的飞速成长导致数据通信总量的迅猛增加。为了能提供相应的传输容量,已经证明对于运营商来说波长多路复用运行(WDM=波分复用)是合适的技术。除了更大的容量需求之外,数据通信还对网络的灵活性提出了更高的要求。每个连接的通信关系和需要的容量在数据网络中比在主要传输语音通信的的网络中更频繁也更强地变化。
为了提高灵活性,运营商期待可以动态地与通信总量的变化匹配的光学网络。优选的解决方案在于一种由相互连接的WDM段组成的透明网络。在该网络中各个信道或波长应当尽可能透明地从源节点传输到目标节点。
光学放大器中的光学WDM信号对信道占用的不断变化带来了网络配置的经常转换。放大器必须能够在不同的波长情况下处理有效信道的任意一种组合直至给定的最大数。
为了在最大信道占用时能提供所需要的大的总输出功率,典型地以饱和运行方式来运行光学放大器。在该运行状态下信道的输出功率在泵浦功率恒定时取决于其它信道中有多少是有效的,也就是没有被关闭的。在均匀的线性传播中,其余信道的输出功率保持恒定,其方法是借助调节装置将泵浦功率与有效信道的数量相匹配。均匀的线性传播导致具有恒定形状的增益谱,该增益谱完全由一单个波长时的增益确定。
在当前大多采用的铒掺杂的放大器中,与大多数采用来自稀土金属族的激活的激光离子的放大器一样,除了均匀的线性传播之外还出现非均匀的线性传播。后一种情况导致其形状取决于有效信道的准确波长和功率的增益谱。例如,关闭一个信道导致相邻信道的增益比在波长范围内更远的信道的增益增加得更多。反过来,接通一个信道会导致相邻波长的信道的增益比更远信道的增益降低得多。要添加的信道可以说是在增益谱中烧出了一个孔(spectral hole burning,光谱烧孔,简称SHB)。
借助泵浦功率调节可以仅对匹配放大器的中等增益进行匹配。增益谱的形状变化导致其余信道在放大器输出端的功率偏差。该功率偏差被逐个放大器地叠加起来,并且在具有很多引线的长传输系统中可能产生不容许的高信道电平差。
到目前为止从文献中仅公知补偿在光学放大器的外部或在放大器阶之间出现的信道电平差。为此可以采用无源的光学滤波器,其允许将每一单个信道的功率或一小组信道的功率衰减可调整的量。对滤波器的调节大多需要借助光谱分析仪或类似的功能设置装置来测量信道电平分布。然后可以借助测得的电平分布调节滤波器系数,使得在滤波器后面或在放大器的输出端出现尽可能小的信道电平差。所述方法非常费事,并且要用很昂贵的部件工作。此外每个信道的衰减对于多个级联的滤波器来说会导致不容许的信号带宽变窄。
本发明要解决的技术问题是提供一种具有泵浦模块的光学放大器,该放大器使得可以放大光学信号而增益谱差最小。
要寻找这样一种方法,在有效信道的组合变化时减小例如在WDM信号中由于光学放大器的非均匀线性传播而导致的信道电平差或将其保持在容许的极限值之下。
该技术问题是通过具有权利要求1的特征的光学放大器来解决的。
基于具有泵浦模块的光学放大器,其输出端与放大光纤连接,在该放大光纤中放大通过光学信号形成的信号射线,按照本发明来自该泵浦模块的泵浦射线在放大光纤中具有比信号射线的模场直径更小的模场直径。
本发明方法的主要优点在于,通过在光学放大器中的特殊设置降低了在增益谱中的烧孔效应,这尤其是在信道占用变化时会导致更小的信道电平差。
为了达到该优点通过泵浦和信号之间的波长距离或者放大光纤的相匹配的折射率分布等来描述不同的实施方式。为此在从属权利要求中给出本发明的优选扩展。
下面借助附图详细描述本发明的实施例。
其中示出:
图1a、1b、1c:在放大光纤的横截面中折射率、掺杂和信号强度特性的图,
图2:放大光纤的横截面的折射率分布。
所建议的本发明的概念避免在信道占用变化时产生信道电平差,其方法是减少在光学放大器的增益谱中的烧孔效应。为了解释该概念应当考察图1a、1b、1c。上面的图1a示出在有效光纤(具有公知纤芯部分和外壳部分的放大光纤)中的折射率n在位置坐标x=-R、0、+R垂直于光纤轴,也就是横向的。该折射率曲线用于将泵浦射线和信号射线引入有效光纤中,并具有同心并以光纤轴为中心的阶梯形分布。纤芯玻璃的折射率(在位置坐标为0的范围内)高于包含纤芯的外壳玻璃的折射率(位置坐标-R至+R的范围)。
在中间的图1b中示出在按照图1a的横向位置坐标-R、0、+R处用铒离子对玻璃的掺杂D。在所选择的例子中,该掺杂区只覆盖一部分光纤芯。
下部的图1c示出泵浦射线和信号射线在按照图1a的横向位置坐标-R、0、+R处的泵浦和信号的强度变化I。在传统设置的放大器中,电平变化具有尽可能相似的形状,也就是说模场直径相互之间的偏差应当尽可能地小。在两个场分布中的重叠积分应当尽可能靠近“1”。在本发明的光学放大器中,信号射线具有明显比泵浦射线更大的模场直径。因此泵浦射线的高强度在给定功率的条件下会导致铒离子的粒子数密度强烈反转。高反转导致每种长度的放大光纤的高放大率和良好的噪声特性。通过在信号波长下的大模场直径,信号射线在给定功率的条件下具有明显降低的强度。该降低的强度即使在输出功率为最大时也会导致铒离子从上激光器级到下激光器级的自发跃迁相对于通过信号射线激励的跃迁来说占据主导地位。在有效光纤中直到最大功率都是自发跃迁占据主导地位会使饱和的影响降低并因此减小在增益谱中的烧孔效应。
比传统放大器设计小的每种长度的放大作用可以通过铒离子的更大浓度或通过更长的有效光纤来弥补。
在所述信号波长下的明显大于泵浦波长的模场直径可以通过选择相互远离的泵浦波长和信号波长(在信号波长为1550nm时用980nm而不是1480nm的泵浦波长),并通过很强的波导色散或具有很强材料色散的宿主玻璃来实现。对于很强的波导色散,合适的是具有大的数值孔径和按照图1a、1b、1c的小纤芯直径的阶梯分布,或者按照图2的环形分布,其除了具有高折射率的纤芯区域之外还具有折射率比外壳稍微更大或更小的多个横向的同心环。图2示出这种环形分布的例子。
作为显著降低饱和度和增益谱中的烧孔效应的数量级,应当将信号波长下的模场直径选择为至少是泵浦波长下模场直径的两倍。此外泵浦射线的最小模场直径应当选择为仅稍大于光纤轴周围用铒离子掺杂的区域的直径。
在图2中内芯4的直径为4μm,折射率n要选择得尽可能大。两个环的折射率和直径要这样选择,使得有效光纤还单模地传导980nm的泵浦射线,并且信号射线为1550nm时的模场直径比该泵浦波长下的模场直径大到2.5倍。

Claims (6)

1.具有泵浦模块的光学放大器,该泵浦模块的输出端与放大光纤连接,在该放大光纤中放大通过光学信号形成的信号射线,
其特征在于,
所述放大光纤按照以下方式构成:由泵浦模块产生的泵浦射线在放大光纤中具有明显比信号射线的模场直径更小的模场直径,由此减小谱烧孔效应。
2.根据权利要求1所述的光学放大器,
其特征在于,
泵浦射线和信号射线之间具有大的波长距离,使得泵浦射线的模场直径比信号射线的模场小。
3.根据权利要求1或2所述的光学放大器,
其特征在于,
所述放大光纤具有高的波导色散。
4.根据上述权利要求之一所述的光学放大器,
其特征在于,
所述放大光纤具有横向的折射率阶梯式分布,该阶梯式分布具有大数值孔径和小纤芯直径。
5.根据上述权利要求之一所述的光学放大器,
其特征在于,
所述放大光纤具有横向的折射率阶梯式分布,该阶梯式分布具有至少一个折射率比外壳折射率更高或更低的同心环分布。
6.根据上述权利要求之一所述的光学放大器,
其特征在于,
所述放大光纤具有用铒掺杂的横向同心区域,该区域的直径最多与泵浦射线的最小模场直径相等。
CNA2005800249719A 2004-07-23 2005-07-12 具有泵浦模块的光学放大器 Pending CN1989717A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004035795.1 2004-07-23
DE102004035795A DE102004035795A1 (de) 2004-07-23 2004-07-23 Optischer Verstärker mit Pumpmodul

Publications (1)

Publication Number Publication Date
CN1989717A true CN1989717A (zh) 2007-06-27

Family

ID=34972940

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800249719A Pending CN1989717A (zh) 2004-07-23 2005-07-12 具有泵浦模块的光学放大器

Country Status (4)

Country Link
US (1) US20080304138A1 (zh)
CN (1) CN1989717A (zh)
DE (1) DE102004035795A1 (zh)
WO (1) WO2006010705A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960743A (zh) * 2013-10-14 2016-09-21 拉姆光学有限责任公司 用于生成高功率激光的方法和设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863191B2 (ja) * 2005-05-02 2012-01-25 富士通株式会社 光増幅特性シミュレーション装置および方法
US9059799B2 (en) * 2011-04-21 2015-06-16 Futurewei Technologies, Inc. Apparatus and method to calculate a noise figure of an optical amplifier for wavelength channels in a partial-fill scenario to account for channel loading

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1237980B (it) * 1990-02-12 1993-06-19 Pirelli Cavi Spa Amplificatore ottico a fibra attiva monomodale incurvata
US5131069A (en) * 1991-08-12 1992-07-14 Corning Incorporated Fiber amplifier having modified gain spectrum
JP3259105B2 (ja) * 1992-08-19 2002-02-25 富士通株式会社 光ファイバ増幅器
JP3244579B2 (ja) * 1993-12-17 2002-01-07 富士通株式会社 光ファイバ増幅器
US20030076577A1 (en) * 1999-12-23 2003-04-24 Dominic Vincent G. Lossless optical transmission link
US20020106156A1 (en) * 2000-08-09 2002-08-08 Edward Vail Suppression of undesired wavelengths in feedback from pumped fiber gain media
JP4655353B2 (ja) * 2000-11-15 2011-03-23 住友電気工業株式会社 光増幅用ファイバ、光ファイバ増幅器および光通信システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960743A (zh) * 2013-10-14 2016-09-21 拉姆光学有限责任公司 用于生成高功率激光的方法和设备

Also Published As

Publication number Publication date
US20080304138A1 (en) 2008-12-11
DE102004035795A1 (de) 2006-02-16
WO2006010705A1 (de) 2006-02-02

Similar Documents

Publication Publication Date Title
US6941053B2 (en) Triple-clad rare-earth doped optical fiber and applications
AU632601B2 (en) A double active-fiber optical amplifier having a wide-band signal wavelength
CN101288211B (zh) 光纤激光器
US7068900B2 (en) Multi-clad doped optical fiber
US6049414A (en) Temperature-compensated rare earth doped optical waveguide amplifiers
US7397599B2 (en) Doped-ring amplifying optical fiber, and an amplifier containing such a fiber
EP1160941A1 (en) Waveguide lasers and optical amplifiers having enhanced thermal stability
JPH04322228A (ja) 光ファイバ増幅器
US6483974B1 (en) Optical fiber with improved cross-sectional profile and optical gain media using same
JPH09129948A (ja) 複数の波長信号を一括して増幅する多波長一括光増幅器
US6459526B1 (en) L band amplifier with distributed filtering
EP0910141A1 (en) Optically amplifying fiber and amplifier with such a fiber
US7167302B2 (en) Gain-flattened wideband erbium-doped optical fiber amplifier
CN1989717A (zh) 具有泵浦模块的光学放大器
US6721088B2 (en) Single-source multiple-order raman amplifier for optical transmission systems
US20220052502A1 (en) Bismuth doped fiber amplifier
JP2004110028A (ja) 光ファイバ、光ファイバ分散傾斜補償モジュール及び光ファイバ分散傾斜補償モジュールを用いた光ファイバ伝送システム
US20010022884A1 (en) C-band multimode cladding optical fiber amplifier
KR20010041602A (ko) 초광대역의 저-노이즈 게인-플랫된 희토류 도프처리된섬유 증폭기
HU212954B (en) Broad band amplifier with optical fiber
US7495825B2 (en) Integration of a gain equalization filter in a gain medium
CN115986537B (zh) 一种基于高斯掺杂环芯少模光纤的纤芯泵浦光纤放大器
CN220492413U (zh) 一种基于多浓度掺铒光纤的多通道光放系统
JPH0450139A (ja) 増幅用光ファイバ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NOKIA SIEMENS COMMUNICATION CO., LTD.

Free format text: FORMER OWNER: SIEMENS AG

Effective date: 20080418

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20080418

Address after: Munich, Germany

Applicant after: Nokia Siemens Networks GmbH

Address before: Munich, Germany

Applicant before: Siemens AG

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070627