CN1977194A - 光子晶体光纤和包括光子晶体光纤的医疗系统 - Google Patents

光子晶体光纤和包括光子晶体光纤的医疗系统 Download PDF

Info

Publication number
CN1977194A
CN1977194A CN 200580018948 CN200580018948A CN1977194A CN 1977194 A CN1977194 A CN 1977194A CN 200580018948 CN200580018948 CN 200580018948 CN 200580018948 A CN200580018948 A CN 200580018948A CN 1977194 A CN1977194 A CN 1977194A
Authority
CN
China
Prior art keywords
photonic crystal
radiation
crystal fiber
conduit
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200580018948
Other languages
English (en)
Inventor
布拉克·泰梅尔库兰
哈拉兰博斯·阿纳斯塔索
戴维·托里斯
吉尔·沙皮拉
马克斯·舒尔加林
格雷戈尔·德莱曼
奥里·韦斯伯格
史蒂文·A·雅各布斯
王泰然
尤里·科洛德内
杰西·腊斯科
罗伯特·佩恩
约尔·芬克
格克汗·乌卢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omniguide Inc
Original Assignee
Omniguide Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omniguide Inc filed Critical Omniguide Inc
Publication of CN1977194A publication Critical patent/CN1977194A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Laser Surgery Devices (AREA)

Abstract

一般来说,在一个方面,本发明的特征在于一种系统,其包括光子晶体光纤(120),该光子晶体光纤包括沿波导轴延伸的芯(210)和围绕该芯的介电限制区域(220),该介电限制区域(220)配置为将辐射沿着波导轴从输入端引导到光子晶体光纤(120)的输出端。该系统还包括机头(680),其连到该光子晶体光纤(120)上,其中该机头允许操作者控制输出端的朝向,从而将该辐射指引到病人的目标位置。

Description

光子晶体光纤和包括光子晶体光纤的医疗系统
相关申请的相互参照
在35USC§119(e)(l)下,本申请要求2004年4月8日提交的临时专利申请号为60/560458、题为“光子晶体光纤应用(PHOTONICCRYSTAL FIBER APPLICATIONS)”的专利申请;2004年4月9日提交的临时专利申请号为60/561020、题为“光子晶体光纤应用(PHOTONICCRYSTAL FIBER APPLICATIONS)”的专利申请;2004年6月30日提交的临时专利申请号为60/584098、题为“光子晶体光纤应用(PHOTONICCRYSTAL FIBER APPLICATIONS)”的专利申请;2004年11月16日提交的临时专利申请号为60/628462、题为“光子晶体光纤应用(PHOTONIC CRYSTAL FIBER APPLICATIONS)”的专利申请;2004年12月30日提交的临时专利申请号为60/640536、题为“用于在喉科学中的CO2激光器的柔性传送的OMNIGUIDE光子带隙光纤(OMNIGUIDE PHOTONIC BANDGAP FIBERS FOR FLEXIBLEDELIVERY OF CO2LASERS IN LARYNGOLOGY)”以及2005年3月4日提交的临时专利申请,号为60/658531、题为“光子晶体光纤(PHOTONIC CRYSTAL FIBER)”的专利申请的利益。上面列出的所有临时专利申请的内容整体在此引入作为参考。
技术背景
现在,激光器在许多医学领域是很普遍的。例如,激光器获得在各种不同的医疗领域中的应用,诸如外科学、兽医学、牙科学、眼科学以及在美学医疗过程中。
在许多这些应用中,光纤用于将辐射从激光器输送到病人的目标区域。常规的光纤对于具有电磁波谱(例如,大约2微米或更小的波长)的可见光或近红外部分的波长的辐射来说是极好的波导。但是,常规的光纤一般来说在利用具有相对较长波长的大功率激光辐射的应用中是不适合的。因此,输送大功率(例如大约10瓦或更大),长波长(例如,大于大约2微米)的许多医用激光系统利用关节臂来输送上述辐射,该关节臂包括光学部件,这些光学部件引导激光辐射通过刚性导管或者自由空间从激光器到目标。
发明内容
光子晶体光纤可以用在医用激光系统中以将辐射从辐射源(例如,激光器)引导到病人的目标位置。一般来说,光子晶体光纤包括围绕芯的区域,其向芯提供某些辐射波长的非常有效的限制。这些所谓的限制区域可以专门由无定形的介电材料(例如,玻璃和/或聚合物)来形成,并且在仍然相对较薄时提供有效的限制。因此,光子晶体光纤可包括能够引导极大功率辐射的薄的、挠性光纤。
此外,光子晶体光纤可以由预制件拉制而成,导致生产出与没有被拉制的其他波导相比相对便宜的光纤。光纤制造技术也提供相当大的生产能力,例如能够从单个预制件中拉制出数千米的光纤。在拉制过程中从相对较短的预制件转变为长度非常长的光纤能够有效地消除来自所需结构的在预制件中存在的任何微扰,产生低损耗、低缺陷的光纤。
一般来说,在第一方面,本发明的特征在于一种系统,该系统包括光子晶体光纤,该光子晶体光纤包括沿波导轴延伸的芯和围绕该芯的介电限制区域,该介电限制区域配置为将辐射沿着波导轴从输入端引导到光子晶体光纤的输出端。该系统还包括连到该光子晶体光纤的机头(handpiece),其中该机头使得操作者控制输出端的朝向,从而将该辐射指引到病人的目标位置。
该系统的实施例可包括一个或多个下面的特征和/或其他方面的多个方面。
机头可包括内窥镜。该内窥镜可包括软导管,一部分光子晶体光纤穿过该软导管中的通道。该内窥镜可包括机械地耦合到软导管的致动器,其配置为使一部分软导管弯曲,由此允许操作者改变输出端的朝向。该致动器可配置为使一部分软导管弯曲,从而使该软导管的弯曲部分具有大约12厘米或更小(例如,大约10厘米或更小、大约8厘米或更小、大约5厘米或更小、大约3厘米或更小)的曲率半径。该致动器可配置为使软导管在弯曲面内弯曲。机头可连到光子晶体光纤上以保持介电限制区域的朝向从而控制光子晶体光纤绕着其在软导管中的波导轴的朝向。机头和光子晶体光纤之间的连接可以在保养操作时防止光纤扭转大于大约10度(例如,大于大约5度)。内窥镜可以还包括辅助导管,该辅助导管包括与软导管耦合的第一部分,其中将光子晶体光纤通过辅助导管中的通道穿入到软导管的通道中,该辅助导管还包括可相对于第一部分移动的第二部分,其中光子晶体光纤连到第二部分并且移动该第二部分允许操作者使该输出端相对于软导管的一端延伸或收缩。第二部分可以相对于第一部分延伸或收缩。该辅助导管可以是刚性导管。
在一些实施例中,机头包括导管,一部分光子晶体光纤穿过该导管。该导管可包括弯曲部分。该导管可由可变形材料形成。该机头还包括机械耦合到导管的致动器,其配置为使一部分导管弯曲,由此允许操作者改变输出端的朝向。
该机头可包括延伸超过输出端的尖端,其提供在输出端和目标位置之间大约1毫米或更大的最小的间隔距离。
光子晶体光纤可以具有足够的挠性,从而在使一部分光子晶体光纤弯曲成大约90度或更大的角度并且该部分具有大约12厘米或更小的曲率半径时将辐射引导到目标位置。在使该部分光子晶体光纤弯曲成大约90度或更大的角度并且该部分具有大约12厘米或更小的曲率半径时,该辐射可以具有在输出端的大约1瓦或更高的平均功率。在使该部分光子晶体光纤弯曲成大约90度或更大的角度并且该部分具有大约12厘米或更小的曲率半径时,该辐射可以具有在输出端的大约5瓦或更高的平均功率。光子晶体光纤可以具有足够的挠性,从而在使一部分光子晶体光纤弯曲成大约90度或更大的角度并且该部分具有大约10厘米或更小(例如,大约5厘米或更小)的曲率半径时将辐射引导到目标位置。
介电限制区域可包括一层绕波导轴的螺旋形排列的第一介电材料。该介电限制区域可还包括一层绕波导轴的螺旋形排列的第二介电材料,第二介电材料具有与第一介电材料不同的折射率。第一介电材料可以是玻璃(例如,硫属玻璃)。第二介电材料可以是聚合物。该介电限制区域可包括至少一层硫属玻璃。该介电限制区域可包括至少一层聚合材料。在一些实施例中,介电限制区域包括至少一层沿波导轴延伸的第一介电材料,和至少一层沿波导轴延伸的第二介电材料,其中第一和第二介电材料可以与第一介电材料被共同拉制。
该芯可以是中空芯。该系统可还包括与输入端或输出端耦合的流体源,其中在操作过程中,该流体源供应流体通过该芯。该流体可以是气体。
芯可以具有大约1000微米或更小(例如,大约500微米或更小)的直径。光子晶体光纤可以在输出端具有大约2000微米或更小的外径。
在一些实施例中,该系统还包括光波导和连接器,该连接器将光波导连到光子晶体光纤上。光波导可以是第二光子晶体光纤。该系统还可以包括围绕该光波导的导管。该导管可以比光波导具有更大的刚性。该系统可以包括与该导管耦合的流体源,其中在操作过程中,该流体源向该导管供应流体。
该系统可以还包括激光器,其产生辐射并朝光子晶体光纤的输入端引导该辐射。该激光器可以是CO2激光器。辐射可以具有大约2微米或更长的波长。在一些实施例中,该辐射具有大约10.6微米的波长。
在某些实施例中,该系统还包括辅助辐射源和机械耦合到光子晶体光纤的至少一个附加光纤,附加波导配置为将辅助辐射从辅助辐射源输送到目标位置。该辅助光纤可以由机头机械地耦合到光子晶体光纤。辅助辐射源可以是第二激光器,其不同于为了将辐射引导到光子晶体光纤的输入端而定位的激光器。第二激光器可以是Nd:YAG激光器、二极管激光器,或脉冲染料激光器。辅助的辐射可以具有在电磁波谱的可见光部分中的波长。
可以将至少一部分光子晶体消毒。
一般来说,在另一方面,本发明的特征在于一种物品,其包括光子晶体光纤的一段(length),该光子晶体光纤包括沿波导轴延伸的芯和围绕该芯的介电限制区域,该介电限制区域配置为将辐射沿着波导轴从输入端引导到光子晶体光纤的输出端,其中将光子晶体光纤的一段消毒。
该物品可以还包括密封包装,其包含光子晶体光纤的一段。物品的实施例可以包括其他方面的一个或多个特征。
一般来说,在另外的方面,本发明的特征在于一种方法,该方法包括将辐射引导到光子晶体光纤的输入端中,并利用连到光子晶体光纤的机头来控制光子晶体光纤输出端的朝向,且向病人的目标位置引导从输出端发出的辐射。这些方法的实施例可以包括其他方面的一个或多个特征。
一般来说,在另一个方面,本发明的特征在于一种方法,该方法包括将辐射通过光子晶体光纤引导到病人的目标位置,光子晶体光纤具有中空芯,并使流体通过该中空芯流到病人的目标位置。
该方法的实施例可以包括下面的特征和/或其他方面的特征中的一个或多个。
辐射可以具有足够的功率来切开、切除或摘除在目标位置处的组织。流体可以具有足够的压力和温度来使目标位置处的血液凝结。
这些方法可包括在将辐射和流体引导到目标位置时使光子晶体光纤弯曲。使光纤弯曲可包括使一部分光纤弯曲大约45度或更多从而具有大约12厘米或更小的曲率半径。
将辐射和流体引导到目标位置可包括保持连到光子晶体光纤的一部分机头并利用该机头控制输出端的朝向。
流体可以是气体、液体或超流体。在流体是气体的实施例中,气体可以在输出端具有大约0.5PSI或更大(例如大约1PSI或更大)的压力。气体可以在目标位置处具有大约50℃或更高(例如大约80℃或更高)的温度。气体可以是空气。气体可以包括二氧化碳、氧、氮、氦、氖、氩、氪或氙。气体可以是基本上纯净的气体。例如,气体可以包括大约98%或更高的单一组分气体。可选择的是,在一些实施例中,气体是气体混合物。
流体能够以大约1升/分或更大的速度(例如,大约2升/分或更大、大约5升/分或更大、大约8升/分或更大)流到中空芯中。
辐射可以具有大约2微米或更长(例如大约10.6微米)的波长。辐射可以在目标位置处具有大约1瓦或更高的平均功率。
一般来说,在另一方面,本发明的特征在于一种装置,该装置包括光子晶体光纤,该光子晶体光纤包括沿波导轴延伸的芯和围绕该芯的介电限制区域,该介电限制区域配置为将辐射沿波导轴从输入端引导到光子晶体光纤的输出端,该光子晶体光纤还包括套,其耦合到光子晶体光纤的输出端从而允许辐射穿过该套并通过第一开口从该套射出,该套还包括一个或多个第二开口,所述第二开口设置为使流入到该套中的气体通过第二开口离开该套。
装置的实施例还包括下面特征和/或其他方面的特征中的一个或多个。
流入到套中的气体除了通过第二开口之外还通过第一开口离开该套。该装置可以还包括设置在第一开口和第二开口之间的透明元件,其在辐射穿过该套时基本上透射该辐射。该透明元件可以基本上防止气体通过第一开口离开该套。该透明元件可以包括ZnSe。
该装置可还包括相对于第二开口设置的导管,从而使得通过第二开口离开该套的气体被吸入到导管的输入端中。
第二开口可设置在第一开口附近。第一开口的直径可小于光子晶体光纤在输出端的外径。该装置可还包括连到套上的聚焦元件,从而聚焦穿过该套的辐射。可选择的是,或者另外,其能够包括连到套上的反射元件从而反射穿过该套的辐射。
一般来说,在另一方面,本发明的特征在于一种装置,该装置包括组件,该组件包括辐射输入口和输出口,所述辐射输入口配置为接收来自辐射源的辐射,所述输出口配置为将该辐射与光子晶体光纤耦合,该组件还包括延迟元件,该延迟元件设置为在从辐射源接收的辐射耦合到光子晶体光纤之前改变该辐射的偏振态。
该装置的实施例可以包括下面特征和/或其他方面的特征中的一个或多个。
该组件可还包括配置为从气体源接收气体的气体输入口。光子晶体光纤可具有中空芯。输出口可进一步配置为将从气体源接收的气体耦合到光子晶体光纤的中空芯中。该装置可包括气体源。
延迟元件可以是反射延迟元件。该装置可包括辐射源,其中来自辐射源的辐射包括具有波长λ的辐射。反射延迟元件可包括反射镜以及置于反射镜的表面上的光学厚度为大约λ或更小的延迟层。该延迟层可具有沿着相对于反射镜表面的法线成大约45°方向上的大约λ/4的光学厚度。λ可以是大约2微米或更大。例如,λ可以是大约10.6微米。
延迟元件可以是透射延迟元件。
延迟元件可以将辐射的偏振态从基本上线性偏振态变为基本上非线性偏振态。基本上非线性的偏振态可以是基本上圆偏振态。
该组件可还包括聚焦元件,该聚焦元件配置为将在辐射输入口射入该组件的辐射聚焦为在输出口附近的收敛部分。聚焦元件可以将该辐射聚焦为直径是大约1000微米或更小(例如,大约500微米或更小)的收敛部分。聚焦元件可以是透镜。该透镜可包括ZnSe。
该装置可还包括光子晶体光纤。
一般来说,在另一方面,本发明的特征在于一种方法,该方法包括改变从激光器发射的辐射的偏振态、将具有已经改变偏振态的辐射引导到具有中空芯的光子晶体光纤的输入端,以及将来自气体源的气体耦合到中空芯的输入端中。
该方法的实施例可包括一个或多个特征或其他方面。
一般来说,在另一方面,本发明的特征在于一种方法,该方法包括引导辐射通过光波导到达病人的组织,其中光波导具有中空芯,该方法还包括在引导辐射时将气体指引到该组织,其中该辐射和气体足以切割(例如,切除或摘除)该组织并且基本上使暴露的血液凝结。
一般来说,在另一方面,本发明的特征在于一种医用激光系统,其包括激光器、具有中空芯的光波导、输送设备、配置为将气体输送到组织的气体源(例如,气瓶、压缩机、鼓风机),其中在操作过程中,将来自激光器的辐射和来自气体源的气体输送到病人的组织,其中该辐射和气体足以切开组织并基本上使暴露的血液凝结。
一般来说,在另一方面,本发明的特征在于一种系统,其包括具有输出终端的激光器、具有输入端和输出端的光子晶体光纤,所述输入端配置为接收从输出终端发出的辐射,还包括输送设备,该输送设备用于允许操作者将输出端发射的辐射指引到目标组织。
一般来说,在另一方面,本发明的特征在于一种系统,其包括CO2激光器、内窥镜和光子晶体光纤,其中在操作过程中,光子晶体光纤引导来自CO2激光器的辐射通过内窥镜到达目标组织。
一般来说,在另一方面,本发明的特征在于一种耦合器,其用于将气体和辐射耦合到光纤的中空芯的一端。
本发明的实施例可以包括下面特征中的一个或多个。
可以引导气体通过光波导的中空芯或者可以引导气体通过与中空芯分开的管而达到组织。辐射可以从激光器(例如,CO2激光器)输送。激光器可以具有大约5瓦或更高(例如,大约10瓦或更大、大约15瓦或更大、大约20瓦或更大、大约50瓦或更大、大约100瓦或更大)的输出功率。输送到组织的辐射可以具有如在光波导的远端处测量的大约1瓦或更高(例如,大约2瓦或更大、5瓦或更大、8瓦或更大、10瓦或更大、大约20瓦或更大、大约50瓦或更大)的功率。该辐射可以具有大约10.6微米的波长。该气体可以具有大约1升/分或更高(例如,大约2升/分或更大、大约5升/分或更大、大约8升/分或更大、大约10升/分或更大、大约12升/分或更大、大约15升/分或更大、大约20升/分或更大)的流速。
离开中空芯的气体的压力可以相对较高。例如,离开光纤的气体压力可以与通过1米长的纤芯直径为大约500μm的光纤的大约1升/分或更高(例如,大约2升/分或更大、大约5升/分或更大、大约8升/分或更大、大约10升/分或更大、大约12升/分或更大、大约15升/分或更大、大约20升/分或更大)的流速相对应。
气体可以是空气、氮、氧、二氧化碳或惰性气体(例如,氦、氖、氩、氪和/或氙)。气体可以包括基本上仅仅一种化合物(例如,大约98%或更高一种化合物、大约99%或更高、大约99.5%或更高、大约99.8%或更高、大约99.9%或更高)。可选择的是,在一些实施例中,气体可以包括不同化合物的混合物(例如,空气)。
该方法可还包括利用辐射切除组织。光波导可以是光子晶体光纤(例如,布拉格光纤)。气体可以在组织处具有大约50C或更高(例如,大约60℃或更高、大约70℃或更高、大约80℃或更高、大约90℃或更高、大约100℃或更高)的温度。该方法可还包括在将辐射输送到组织时使光纤弯曲。光纤弯曲可以具有大约12cm或更小(例如,大约10cm或更小、大约8cm或更小、大约7cm或更小、大约6cm或更小、大约5cm或更小、大约4cm或更小、大约3cm或更小、大约2cm或更小)的曲率半径。
在此引入多个参考文献作为参考。如果冲突,本申请将进行控制。
下面在附图和描述中阐明了本发明的一个或多个实施例的细节。本发明的其他特征和优点将从描述和附图以及从权利要求书中显而易见。
附图简述
图1是包括光子晶体光纤的激光医疗系统的实施例的示意图。
图2A是光子晶体光纤的实施例的横截面视图。
图2B-2D是光子晶体光纤的限制区域的实施例的横截面视图。
图3是包括具有不对称横截面的包层的光子晶体光纤的横截面视图。
图4A-4D是连在光子晶体光纤输出端的套的实施例的横截面。
图5A和5B是用于将辐射和流体耦合到光子晶体光纤的中空芯的耦合组件的实施例的图。
图6是包括有延展性的导管的机头的图。
图7A是包括光子晶体光纤的激光医疗系统的另一个实施例的示意图。
图7B是内窥镜的图。
图7C是包括光子晶体光纤的医用激光系统的再一个实施例的示意图。
图8是包括光子晶体光纤和第二光纤波导的医用激光系统的一部分的示意图。
图9是包括光子晶体光纤和管的医用激光系统的一部分的示意图,所述管用于从光纤中排出流体。
各幅附图中相同的附图标记表示相同的部件。
发明详述
参考图1,医用激光系统100包括CO2激光器110和光子晶体光纤120,该光子晶体光纤120具有用于将辐射112从该激光器引导到病人的目标位置99的中空芯。辐射112具有10.6微米的波长。耦合组件130将激光辐射112耦合到光子晶体光纤120的中空芯中,中空芯通过机头140传送辐射而到达目标位置99。在使用过程中,操作者(例如医师,如外科医生、牙科医生、眼科医师或兽医)握住机头140的一部分142,并操作该机头,从而将光子晶体光纤120的输出端发出的激光辐射113指引到目标位置99,以便在目标位置执行治疗的功能。例如,该辐射可用于切除、切开、割除或蒸发在目标位置处的组织。
CO2激光器110受电子控制器150的控制,用以设置和显示系统的操作参数。操作者利用远程控制152来控制激光辐射的传送,远程控制如脚踏开关。在一些实施例中,远程控制是机头140的部件,使操作者用一只手或两只手来控制所发出的激光辐射的方向和激光辐射的传送。
机头140除了包括紧握部分142之外,还包括间距端144,该间距端保持光纤120的输出端与目标组织99之间的所需距离(例如从大约0.1毫米至大约30毫米)。该间距端帮助操作者将光子晶体光纤120的输出端设置在与目标位置99分开的位置,并且还能够减少因目标位置处的碎屑而引起的输出端的堵塞。在一些实施例中,机头40包括将光纤发出的光束聚焦为所需光斑尺寸的光学部件(例如一个或多个透镜)。聚集光束的收敛部分可以位于间距端的远端或远端附近。
在一些实施例中,光纤120能够很容易地安装到耦合组件130和机头140(例如,利用常规的光纤连接器)上,并从耦合组件130和机头140上拆下来。这便于将该系统容易地用在单用途应用中,在每个过程之后替换该光纤。
通常,CO2激光器110具有在10.6微米处大约5瓦至大约80瓦(例如大约10瓦或更大、大约20瓦或更大)的平均输出功率。在许多应用中,大约5瓦至大约30瓦的激光功率足够使该系统执行其预期功能。例如,在系统100用于切除或切开组织的情况下,将辐射限制为小光斑尺寸,并且具有在该范围中的平均输出功率的激光器已经足够用了。
但是,在某些实施例中,激光器110可以具有大约100瓦或更高(例如高达大约500瓦)的输出功率。例如,在将系统100用于使相对较大面积(例如几平方毫米或平方厘米)上的组织蒸发的应用中,极高功率的激光器可能是所希望的。
光子晶体光纤能够以相对较高的效率将辐射从激光器110传送到目标位置。例如,光纤的平均输出功率能够是光纤输入能的大约50%或更高(例如,大约60%或更高、大约70%或更高、大约80%或更高)。因此,光纤的输出功率能够是大约3瓦或更高(例如,大约8瓦或更高、大约10瓦或更高、大约15瓦或更高)。但是,在某些实施例中,光纤的平均输出功率可以小于激光功率的50%,并且对于进行预期的过程来说仍然足够高。例如,在一些实施例中,光纤的平均输出功率可以是激光平均输出功率的大约20%至大约50%。
光子晶体光纤120的长度可以根据需要而改变。在一些实施例中,光纤的长度为大约1.2米或更长(例如,大约1.5米或更长、大约2米或更长、大约3米或更长、大约5米或更长)。该长度通常取决于该激光系统所用于的专门应用。在激光器110能够定位于接近病人的应用中,和/或在为了该应用而希望机头的活动范围相对较小的应用中,光纤的长度可以相对较短(例如,大约1.5米或更短、大约1.2米或更短、大约1米或更短)。在某些应用中,光纤120的长度可以非常短(例如,大约50厘米或更短、大约20厘米或更短、大约10厘米或更短)。例如,光子晶体光纤的非常短的长度可能在系统能够通过一些其他装置(例如,不同的波导或关节臂)将辐射从激光器传送到该光纤的过程中是有用的。非常短的光纤长度可能对于例如鼻和眼的治疗过程是有用的。
但是,在不方便将激光器放置在与病人极接近的位置和/或希望机头有大的活动范围的应用中,光纤的长度会更长(例如,大约2米或更长、大约5米或更长、大约8米或更长)。例如,在外科应用中,在需要大队的医师与病人极接近的情况下,可能希望将激光器在远离手术台的位置(例如在手术室的拐角处,或者完全放置在不同的房间内)。在这些情况下,较长的光纤可能是所希望的。
一般来说,光子晶体光纤120是挠性的,可以将其弯曲成在相对较大的角度上的相对较小的曲率半径而不会显著影响其性能(例如,不会使该光纤失效,或者不会将光纤传输降低到在光纤弯曲时系统不能用于其预期用途的程度)。在一些实施例中,操作者可以将光子晶体光纤120弯曲成具有相对较小的曲率半径,如大约15cm或更小(例如,大约10cm或更小、大约8cm或更小、大约5cm或更小、大约3cm或更小),同时仍然将足以使系统执行其功能的足够的功率传送到目标位置。
一般来说,光纤弯曲的角度可以改变,且其通常取决于正在进行的过程。例如,在一些实施例中,光纤能够弯曲大约90°或更大(例如,大约120°或更大、大约150°或更大)。
由于操作者使光子晶体光纤120弯曲而引起的传输功率损失可能相对较小。一般来说,由于弯曲而引起的损失不应该明显地损坏光纤,例如导致其失效,或者将光纤输出功率降低到系统不能再执行其所设计执行功能的程度。光子晶体光纤120(例如长度为大约1米或更长)的实施例是能够被弯曲90°,弯曲半径为大约5cm或更小,并且仍然传输在引导波长处耦合到光纤的辐射的大约30%或更多(例如,大约50%或更多、大约70%或更多)。这些光纤能够提供这种传输特性,并提供大约3瓦或更高(例如,大约5瓦或更高、大约8瓦或更高、大约10瓦或更高)的平均输出功率。
从光纤120的输出端发出的激光辐射光束的质量能够相对较好。例如,该光束能够具有低的M2值,如大约4或更低(例如,大约3或更低、大约2.5或更低、大约2或更低)。M2是通常用于描述激光束质量的参数,大约为1的M2值对应于从激光器发出的TEM00光束,其具有理想的高斯轮廓。M2值与根据下面公式由该光束形成的最小光斑尺寸有关:
ds=1.27fλM2/db                    (1)
其中ds是最小光斑直径,db是由透镜聚焦为光斑之前的光束直径,透镜的焦距为f。因此,聚焦的最小可能光斑尺寸与光束的M2值成比例。实际上,具有较小M2值的光束能够向目标区提供较高的辐射功率密度,同时由于光斑尺寸减小而对周围组织具有较小的损害。
由光子晶体光纤120传送到目标组织的辐射的光斑尺寸可以相对较小。例如,在某些实施例中,该光斑在与光纤的输出端相隔所需工作距离处(例如,从大约0.1mm至大约3mm)具有大约500微米或更小(例如,大约300微米或更小、大约200微米或更小、如大约100微米)的直径。如前面所讨论的,在将系统100用于切除或切开组织的情况下或者在辐射的传送中需要相当大的精度的其他应用中,小的光斑尺寸是所希望的。可选择的是,在将组织割除或蒸发和/或较小的精度级已经足够的应用中,光斑尺寸可以相对较大(例如直径为大约2毫米或更大、大约3毫米或更大、大约4毫米或更大)。
当激光器110是CO2激光器时,光子晶体光纤可以用于使用其他类型的在不同于10.6微米的波长处工作的激光器的医用激光系统中。一般来说,医用激光系统能够提供紫外线(UV)、可见光或红外线(IR)波长的辐射。传送IR辐射的激光器例如发出波长在大约0.7微米和大约20微米之间(例如,在大约2至大约5微米之间或大约8至大约12微米之间)的辐射。具有中空芯的波导,如光子晶体光纤120非常适合于供波长为大约2微米或更大的激光系统使用,因为与许多介电材料(例如,基于硅石的玻璃和各种聚合物)相比,通常占据该芯的气体在这些波长处具有相对较低的吸收。除了CO2激光器之外,能够发射IR辐射的其他激光器的例子包括Nd:YAG激光器(例如,在1.064微米处)、Er:YAG激光器(例如,在2.94微米处)、Er,Cr:YSGG(掺铒、铬的钇钪镓石榴石)激光器(例如,在2.796微米处)、Ho:YAG激光器(例如,在2.1微米处)、自由电子激光器(例如,在6至7微米的范围内),和量子级联激光器(例如,在3至5微米的范围内)。
一般来说,医用激光系统中所用的激光器的类型取决于设计该系统的目的。可以根据该系统是否用于外科过程中、诊断中,或者生理研究中来选择激光器的类型。例如,氩激光器输送可见光谱的蓝光和绿光范围内的光,其具有两个能量峰值,分别在488nm和514nm处,该激光器能够用于光凝固。染料激光器是有机染料溶解在溶剂中作为激活媒质的激光器,其光束在可见光谱中,该激光器能够用于光动力性疗法中。准分子激光器提供紫外光谱中的辐射,仅仅穿透组织一个较小距离,能够用于使组织中分子的化学键断裂来代替产生热而破坏组织。这些激光器能够用在眼科过程和激光血管成形术中。Ho:YAG激光器能够提供近红外光谱中的辐射,并能够用于光凝固和光摘除。氪激光器提供黄红可见光谱中的辐射,并能够用于光凝固。来自KTP激光器的辐射能够是倍频的以提供在绿色可见光谱中的辐射,并能够用于光摘除和光凝固。Nd:YAG激光器能够用于光凝固和光摘除。脉冲染料激光器能够用于提供在黄色可见光谱(例如,波长为577nm或585nm)中,每隔几微秒交替通断阶段,并且该脉冲染料激光器能够用于使着色的损伤脱色。
一般来说,激光系统能够使用连续波或脉冲激光器。而且,当通常在大约5瓦至大约100瓦的平均输出功率处使用CO2激光器时,光子晶体光纤120一般能够与各种激光功率一起使用。例如,平均激光功率能够是在某些系统中的毫瓦范围内,达到在极高功率系统中的几百瓦(例如,大约200瓦或更高)。
一般来说,对于高功率系统,由光纤120引导的平均功率密度可以极高。例如,在该光纤中的功率密度,或离开纤芯的功率密度可以是大约103W/cm2或更高(例如,大约104W/cm2或更高、大约105W/cm2或更高、106W/cm2或更高)。
参考图2A,一般来说,光子晶体光纤120包括芯210,其由沿着波导轴299(垂直于图2A的平面)延伸的限制区域220包围。限制区域220由包层230(例如聚合物包层)包围,其提供机械支撑并保护芯和限制区域不受环境危害。限制区域220包括将波长λ处的辐射基本上限制于芯210的光子晶体结构。参考下面的图2B-2D来描述这种结构的例子。如这里所用的,光子晶体是具有折射率调制(例如,周期性的折射率调制)的结构(例如介电结构),所述折射率调制在光子晶体中产生光子带隙。引起一维折射率调制的这种结构的例子是高和低折射率的介电层的叠加,这些层基本上具有相同的光学厚度。如这里所用的光子带隙是一个频率范围,在该频率范围内介电结构中没有可获得的延伸(即传播、非局限的)状态。通常该结构是周期性介电结构,但是其也可以包括例如更复杂的“准晶体”。通过将光子晶体与偏离带隙结构的“缺陷”区域结合,可以将带隙用于限制光、引导光和/或使光局限在某一地方。此外,对于在该间隙之下和之上的频率,存在可获得的延伸状态,同时将光限制在甚至更低折射率的区域中(与受折射率引导的(index-guided)TIR结构相比)。术语“可获得的”状态意味着耦合没有被系统的一些对称或守恒定律所禁止的那些状态。例如,在二维系统中,将偏振保存,因此仅仅需要从带隙中排除相似的偏振的状态。在具有均匀横截面的波导(如典型的光纤)中,将波矢β保存,因此仅仅需要从带隙中排除具有给定β的状态以支持光子晶体引导的模式。此外,在具有圆柱对称的波导中,将“角动量”指数m保存,因此仅仅需要从带隙中排除具有相同m的模式。简言之,对于高对称系统来说,与不管对称与否将所有状态都排除的“完全的”带隙相比,其显著地放松了对光子带隙的要求。
理论上,当光子晶体中的折射率调制具有无限的程度时,光子晶体在带隙中仅仅是完全反射的。否则,入射辐射能够经由倏逝模式“穿”(tunnel)过光子晶体,其将光子晶体每一侧的传播模式耦合。但是在实践中,这种穿过速率随光子晶体的厚度(例如,交替层的数量)按指数规律减小。其也随限制区域中的折射率反差量而减小。
而且,光子带隙可以在传播矢量的仅仅相对较小的区域上延伸。例如,介电叠层对于垂直入射光线可以是高反射的,而对于斜入射光线仅仅是部分反射的。“完全的光子带隙”是在所有可能的波矢和所有偏振上延伸的带隙。通常,完全的光子带隙仅仅与具有沿三维的折射率调制的光子晶体相关联。但是,在从邻近的介电材料入射在光子晶体上的EM辐射的情况下,我们也可以定义“全向的光子带隙”,其是用于所有可能波矢和偏振的光子带隙,对于该偏振来说,邻近的介电材料支持传播EM模式。等效的是,可以将全向的光子带隙规定为用于在亮线(light line)之上的所有EM模式的光子带隙,其中亮线定义与该光子晶体邻近的材料所支持的最低频率传播模式。例如,在空气中,亮线由ω=cβ来近似地给出,其中ω是辐射的角频率,β是波矢,c是光速。美国专利US6130780中公开了全向平面反射器的描述,该专利的全部内容在此引入作为参考。而且,在公布的PCT申请WO 00/22466中公开了使用交替介电层为圆柱形波导几何体提供(在平面界限内的)全向反射,该申请的内容在此引入作为参考。
当限制区域220引起相对于芯210的全向带隙时,引导的模式受到强烈限制,因为原则上从芯入射在限制区域上的任何EM辐射都被完全地反射。但是,如上所述,这种完全反射仅仅当存在无限数量的层时发生。对于有限数量的层(例如,大约20层),全向光子带隙可以与从0°到80°范围内的所有入射角和具有全向带隙中的频率的EM辐射的所有偏振在至少95%的平面几何形状中的反射率相对应。而且,甚至当光纤120具有非全向的带隙的限制区域时,仍然可以支持强引导的模式,例如,对于带隙中的频率范围来说具有小于0.1dB/km的辐射损失的模式。通常,带隙是否是全向的将取决于由交替层产生的带隙的尺寸(其通常根据两层的折射率对比来确定)和光子晶体的最低折射率的组分。
关于光子晶体光纤120的结构,一般来说,芯210的直径(在图2A中由附图标记211来表示)可以根据系统100的最终使用应用而改变。例如,在需要大的光斑尺寸的情况下,芯可以相对较大(例如,大约1mm或更大、大约2mm或更大)。可选择的是,在需要小的光斑尺寸的情况下,芯直径211可以小得多(例如,大约500微米或更小、大约300微米或更小、大约200微米或更小、大约100微米或更小)。
更一般的是,在将光纤120用于具有其他类型的激光器的系统中的情况下,和/或用于引导不同于10.6微米的波长的情况下,芯的直径取决于由该光纤引导的能量的波长或波长范围,并且取决于光纤是单模还是多模光纤。例如,在光纤是用于引导可见波长(例如,在大约400nm和大约800nm之间)的单模光纤的情况下,芯的半径可以是在亚微米至几微米的范围内(例如,大约0.5微米至大约5微米)。但是,例如在光纤是用于引导IR波长的多模光纤的情况下,芯的半径可以是在几十至几千微米的范围内(例如,大约10微米至大约2000微米,如大约500微米至大约1000微米)。芯的半径可以是大约5λ或更大(例如,大约10λ或更大、大约20λ或更大、大约50λ或更大、大约100λ或更大),其中λ是所引导的能量的波长。
光子晶体光纤的优点在于,因为光纤能够从预制件中拉出,所以具有小的芯直径的光纤可以被很容易地生产出来,在按照受控的方式将该结构的直径减小到小尺寸的同时保持光纤横截面结构的相对比例。
在光子晶体光纤120中,芯220是中空的。可选择的是,在没有经由芯而泵吸出的流体的情况下,芯220可以包括与形成限制区域220的材料流变地相容并且在(多个)引导波长处具有足够高的传输性质的任何材料或材料的组合。在一些实施例中,芯220包括介电材料(例如,无定形的介电材料),如无机玻璃或聚合物。在某些实施例中,芯220可以包括一种或多种掺杂材料,如2002年4月12日提交、美国专利申请序列号为10/121452且以公开号为US20030044158A1而公布的、题为“高折射率反差光纤波导和应用(HIGH INDEX-CONTRASTFIBER WAVEGUIDES AND APPLICATIONS)”的美国专利申请中所记载的,该申请的全部内容在此引入作为参考。
包层230可以由聚合物(例如,丙烯酸盐或硅酮聚合物)或其他材料而形成。包层230可以由也用于作为限制区域220的一部分的材料形成,这在下面进行描述。在包层与病人接触的应用中,该包层可以由符合医疗设备的FDA标准的材料形成。在这些例子中,硅酮聚合物例如可能特别适合于用作包层材料。通常,包层230保护光纤不受外部损害。通过选择适当的厚度、组成成分和/或结构,也可以将包层230设计为限制该光纤的挠性,例如防止受弯曲的小曲率半径的损害。
一般来说,光纤120的厚度可以改变。在图2A中,该厚度由外径(OD)231来表示。可以将OD231选择为使光纤120与设备的其他部分相容。例如,可以将光纤120制成为使OD231足够小从而能够将该光纤穿过内窥镜或其他工具的通道(例如,OD231可以是大约2000微米或更小)。在一些实施例中,光纤120具有相对较小的OD(例如,大约1000微米或更小)。窄光纤在将其插入到狭窄空间的应用中是有用的,如通过病人的尿道。可选择的是,在一些实施例中,直径231可以相比之下相对较大(例如,大约3000微米或更大)。大的OD可能降低光纤的机械挠性,这能够防止光纤弯曲成损坏该光纤或者将其传输降低到系统不再能够执行其预期功能的程度的小曲率半径。
除了包层230之外,光纤200可包括限制弯曲半径的附加部件。例如,光纤可以包括环绕其外径的螺旋形卷绕的材料(例如,螺旋形卷绕的导线)。可选择的是,或者另外,光纤可以包括附加的包层以提供附加的机械支撑。
尽管可以将光纤弯曲(如上面所讨论的),但是在一些实施例中,可能会在所设计的应用的常规使用中限制该光纤弯曲成小于大约20cm(例如,大约10cm或更小、8cm或更小、5cm或更小)的曲率半径。
可以将包层材料选择为使光纤是可消毒的。例如,可以将包层材料选择为使光纤能够耐受高温(例如,在高压灭菌器中使用的那些光纤)。
转向限制区域220的结构和组成成分,在一些实施例中,光子晶体光纤120是布拉格光纤,限制区域220包括多个具有高和低折射率的交替层,其中高和低折射率层具有相似的光学厚度。例如,参考图2B,在一些实施例中,限制区域220A包括不同折射率的多个环形介电层(即,由折射率为nH的高折射率材料组成的层以及由折射率为nL的低折射率材料组成的层),表示为层212、213、214、215、216、217、218、219、222和223。这里,nH>nL且nH-nL可以是例如大约0.01或更大、大约0.05或更大、大约0.1或更大、大约0.2或更大、大约0.5或更大。为方便起见,图2B中仅仅示出了几个介电限制层。在实践中,限制区域220A可以包括更多层(例如,大约15层或更多、大约20层或更多、大约30层或更多、大约40层或更多、大约50层或更多、大约80层或更多)。
在一些实施例中,限制区域220能够引起相对于芯210的全向带隙,其中引导的模式受到强烈地限制,因为原则上从芯入射在限制区域上的任何EM辐射都被完全地反射。但是,这种完全反射仅仅当存在无限数量的层时发生。对于有限数量的层(例如,大约20层),全向光子带隙可以与从0°到80°范围内的所有入射角和具有全向带隙中的频率的EM辐射的所有偏振在至少95%的平面几何形状中的反射率相对应。而且,甚至当光纤120具有非全向的带隙的限制区域时,仍然可以支持强烈引导的模式,例如,对于带隙中的频率范围来说具有小于0.1dB/km的辐射损失的模式。通常,带隙是否是全向的将取决于由交替层产生的带隙的尺寸(其通常根据两层的折射率对比而确定)和光子晶体的最低折射率的组分。
但是,全向带隙的存在对于光纤120的有用的应用来说可以不是必需的。例如,在一些实施例中,用于在该光纤中建立传播场的激光束是TEM00模式。这一模式能够以高效率与适当设计的光纤的HE11模式耦合。这样,为了将该光纤成功地应用于激光能的传输,唯一必需的可能是这一模式的损失足够低。更一般的是,光纤只支持大量低损耗模式可能就足够了(例如,HE11模式和根据简单扰动与之耦合的模式,如光纤的弯曲)。换句话说,可以将光子带隙光纤设计为使光纤中一种或一组模式的损耗减为最小,而不需要具有全向带隙。
对于平面介电反射器,众所周知的是,对于垂直入射,“四分之一波”叠层获得最大带隙,在该叠层中每一层都具有相等的光学厚度λ/4,或者等效的是nhidhi=nlodlo=λ/4,其中dhi/lo和nhi/lo分别指的是叠层中高折射率和低折射率层的厚度和折射率。但是,垂直入射对应于β=0,而对于圆柱形波导,所希望的模式通常处于亮线条ω=cβ附近(在大的R的限制中,最低阶模式基本上是沿着z轴传播的平面波,z轴即波导轴)。在这种情况下,四分之一波条件成为:
d hi n hi 2 - 1 = d lo n lo 2 - 1 = λ / 4 - - - ( 2 )
该方程式可能不是精确地最佳的,因为圆柱几何体修改了该四分之一波条件,其可能需要每一层的光学厚度随其径向坐标平滑地改变。此外,高和低折射率材料的不同吸收能够根据其四分之一波的值来改变最佳层厚度。
在某些实施例中,限制区域220包括多个不满足在方程式2中给出的四分之一波条件的层。换句话说,对于在图2B中所示的例子,层212、213、214、215、216、217、218、219、222和223中的一个或多个比dλ/4更厚或更薄,其中 d λ / 4 = λ 4 n 2 - 1 , n是该层的折射率(即,dλ/4对应于等于四分之一波厚度的光学厚度)。例如,限制区域中的一个或多个层的厚度可以是大约0.9dλ/4或更小(例如,大约0.8dλ/4或更小、大约0.7dλ/4或更小、大约0.6dλ/4或更小、大约0.5dλ/4或更小、大约0.4dλ/4或更小、大约0.3dλ/4或更小),或者大约1.1dλ/4或更大(例如,大约1.2dλ/4或更大、大约1.3dλ/4或更大、大约1.4dλ/4或更大、大约1.5dλ/4或更大、大约1.8dλ/4或更大、大约2.0dλ/4或更大)。在一些实施例中,可以根据四分之一波条件使限制区域中的所有层失谐。在一些实施例中,一个或多个高折射率层的厚度可以与其他高折射率层的厚度不同(例如,更厚或更薄)。例如,最内部的高折射率层的厚度可以与其他高折射率层的厚度不同。可选择的是,或者另外,一个或多个低折射率层的厚度可以与其他低折射率层的厚度不同(例如,更厚或更薄)。例如,最内部的低折射率层的厚度可以与其他低折射率层的厚度不同。
根据四分之一波条件使限制区域中的多个层的厚度失谐与试验光纤相比可以减少光子晶体光纤120的衰减,该试验光纤指的是除了限制区域中的所有层都满足四分之一波条件之外与光子晶体光纤120相同的光纤(即,该试验光纤具有相同的芯,其限制区域具有与光子晶体光纤120相同数量的层,所述层具有与光子晶体光纤120相同的组成成分)。例如,光纤120可以具有一个或多个引导模式的衰减,其与试验光纤的衰减相比减小了大约2倍或更多(例如,减小了大约3倍或更多、大约4倍或更多、大约5倍或更多、大约10倍或更多、大约20倍或更多、大约50倍或更多、大约100倍或更多)。说明减少衰减的光子晶体光纤的例子在2004年11月1日提交的美国专利申请序列号为10/978605、题为“光子晶体波导以及利用这种波导的系统(PHOTONIC CRYSTAL WAVEGUIDES AND SYSTEMS USING SUCHWAVEGUIDES)”的美国专利申请中记载,该申请的全部内容在此引入作为参考。
限制区域内的每一层的厚度可以根据光子晶体光纤的组成成分和结构而改变。厚度也可以根据波长、模式或一组模式而改变,为此使光子晶体光纤最佳。每一层的厚度可以利用理论和/或经验方法来确定。理论方法包括计算模型。一种计算方法是确定不同层厚度的光纤的衰减,并利用最优化程序(例如,非线性最优化程序)来确定使光纤对于引导模式的衰减最小的层厚度的值。例如,可以利用W.Press,S.Teukolsky,W.Vetterling和B Flannery在教科书“在FORTRAN中的数值方法(第二版)(Numerical Recipes in FORTRAN(second edition))”中记载的“单调下降方法(downhill simplex method)”来进行该最优化。
这种模型应该说明在光纤中的不同衰减机制。通过这两种机制能够从引导的EM模式中损失能量,这两种机制是根据吸收损失和辐射损失。吸收损失指的是由于材料吸收而引起的损失。辐射损失指的是由于不完善的限制而从光纤漏泄的能量。这两种损失模式都对于光纤衰减有影响,并且能够例如利用传递矩阵法和微扰理论对这两种损失模式进行理论地研究。传递矩阵法的讨论可以在P.Yeh等人在《J.Opt.Soc.Am.,68》第1196页(1978年)撰写的论文中获得。微扰理论的讨论可以在M.Skorobogatiy等人在《Optics Express,10》第1227页(2002年)撰写的论文中获得。特别是,传递矩阵码找到了在光子晶体光纤结构中的漏泄模式谐振的传播常数β。β的虚部定义了模态辐射损失,这样Lossradiation~Im(β)。利用微扰理论扩展来计算由于材料吸收而引起的损失,并且依据模态场重叠积分可以根据下式来确定该损失:
LOSS absorption ~ 2 πω ∫ 0 ∞ rdr ( α E → β * E → β ) - - - ( 3 )
其中ω是辐射频率,r是光纤半径,α是材料的大量(bulk)吸收,
Figure A20058001894800342
是电场矢量。
可选择的是,能够在光纤中传播的所希望的模式场可以在适当的函数集中进行扩展,如B样条函数(参见例如由C.deBoor撰写的《样条函数实用指南(A Practical Guide to Splines)》)。因此,Galerkin条件的应用(例如参见1984年C.A.J.Fletcher,Springer-Verlag的《计算Galerkin方法(Computational Galerkin Methods)》)将麦克斯韦方程转变成标准的特征值-特征向量问题,该问题可以利用LAPACK软件包(例如从因特网上的netlib库 http://www.netlib.org免费获得)来解决。所需的复数传播常数,包括材料和辐射损失,可以直接由特征向量获得。
引导模式可以分成以下三种类型之一:纯横向电(TE);纯横向磁(TM);以及混合模式。损失经常取决于模式的类型。例如,TE模式能够显示出比TM/混合模式更低的辐射和吸收损失。因此,可以为引导能够经历低辐射和/或吸收损失的模式而将光纤最优化。
尽管限制区域220A包括引起径向折射率调制的多个环形层,但是一般来说,限制区域也可以包括提供限制性质的其他结构。例如,参考图2C,限制区域220B包括具有不同折射率的介电材料(例如,聚合物、玻璃)的连续层240和250,该连续层与多个不连续的同心层相反。连续层240和250形成围绕着轴299的螺旋。这些层中的一个或多个,例如层240是折射率为nH厚度为dH的高折射率层,并且例如层250这样的层是折射率为nL、厚度为dL的低折射率层,其中nH>nL(例如,nH-nL可以是大约0.01或更大、大约0.05或更大、大约0.1或更大、大约0.2或更大、大约0.5或更大)。
由于层240和250是围绕着轴199的螺旋,因此从轴199延伸的径向切面不止一次与每一层相交,提供包括交替的高折射率和低折射率层的径向剖面。
限制区域220B中的成螺旋形的层提供沿径向切面的周期性折射率变化,周期对应于层240和250的光学厚度。一般来说,径向周期性变化具有与n240d240+n250d250相对应的光学周期。
基于与上面对限制区域220A的讨论相同的考虑来选择层240和250的厚度(d240和d250)与光学厚度(n240d240和n250d250)。
对于图2C中所示的实施例,限制区域220B是5个光学周期那么厚。但是在实践中,螺旋形限制区域可以包括更多光学周期(例如大约8个光学周期或更多、大约10个光学周期或更多、大约15个光学周期或更多、大约20个光学周期或更多、大约25个光学周期或更多、如大约40或更多的光学周期)。
具有螺旋形限制区域的光纤可以通过将平面多层膜卷成螺旋而形成螺旋形预制件,并通过使该螺旋的相邻层一起熔化(例如通过加热)将该螺旋结成一体。在一些实施例中,平面多层膜可以卷成围绕着心轴(例如玻璃柱或棒)的螺旋,并且在结成一体之后去掉心轴(例如通过蚀刻或者通过使心轴与螺旋鞘分开并使螺旋滑出该鞘)来提供螺旋形圆柱体。心轴可以由单一材料形成,或者其可以包括不同材料的部分。例如,在一些实施例中,心轴可以涂敷一层或多层,在卷起的螺旋形结构结成一体之后不会去掉所述层。举例来说,心轴可以由中空棒形状的第一材料(例如硅酸盐玻璃)以及涂敷到该中空棒外面上的第二材料(例如另一种玻璃,如硫属玻璃)而形成。第二材料可以与用于形成多层膜的一种材料相同。在结成一体之后,刻蚀该第一材料,第二材料形成光纤预制件的一部分。
在一些实施例中,可以将附加的材料置于卷绕的多层膜的外面。例如,可以围绕着该螺旋的外面卷绕聚合物膜,随后将该聚合物膜熔化到该螺旋从而提供环形聚合物层(例如,包层)。在某些实施例中,可以在单一的熔化步骤中围绕着心轴卷绕多层膜和附加膜,并将其结成一体。在一些实施例中,可以围绕着心轴卷绕多层膜,并将其结成一体,然后可以在第二熔化步骤中围绕着熔化的螺旋来卷绕附加膜并将其结成一体。第二次结成一体在蚀刻该心轴之前或之后发生。可选的是,在利用附加膜进行卷绕之前在该螺旋中淀积一个或多个附加层(例如,利用CVD)。
用于制备螺旋形产品的方法在2003年12月10日提交的美国专利申请序列号为10/733873、题为“光纤波导和制造该光纤波导的方法(FIBER WAVEGUIDES AND METHODS OF MAKING SAME)”的美国专利申请中记载,该专利申请的全部内容在此引入作为参考。
参考图2D,在一些实施例中,光子晶体光纤120包括限制区域220C,该限制区域包括螺旋形部分260和环形部分270。环形部分270和螺旋形部分260中的层的数量(沿着从光纤轴开始的径向方向)可以根据需要而改变。在一些实施例中,环形部分可以包括单个层。可选择的是,如图2D中所示,环形部分270可以包括多个层(例如,2个或更多层、3个或更多层、4个或更多层、5个或更多层、10个或更多层)。
在环形部分270包括多于一个层的实施例中,每一层的光学厚度可以与环形部分中的其他层相同或不同。在一些实施例中,环形部分270中的一个或多个层可以具有对应于四分之一波厚度的光学厚度(即,如方程式(2)所给出的)。可选择的是,或者另外,环形部分270的一个或多个层可以具有与四分之一波厚度不同的厚度。可以利用这里公开的最优化方法将层厚度最优化以减少引导的辐射的衰减(例如,使其最小)。
在某些实施例中,环形部分270可以由具有相对较低缺陷密度的材料形成,其将散射和/或吸收由光子晶体光纤120引导的辐射。例如,环形部分270可以包括具有相对较低密度(concentration)的不均匀性和/或杂质的一种或多种玻璃。不均匀性和杂质可以利用例如光学或电子显微术来确认。也可以利用喇曼光谱学、辉光放电质谱学、溅射中性物质谱学或傅里叶变换红外光谱学(FTIR)来监控光子晶体光纤中的不均匀性和/或杂质。
在某些实施例中,环形部分270由具有比螺旋形部分260更低的缺陷密度的材料形成。一般来说,这些缺陷包括结构缺陷(例如层之间的层离、裂缝)以及材料不均匀性(例如化学组成成分和/或晶体结构的变化)。
可以通过将一个或多个环形层淀积到具有螺旋形横截面的圆柱体的表面上形成预制件来制备具有如图2D中所示的限制区域的光纤。然后可以从该预制件中拉出光子晶体光纤。
可以利用各种淀积法将环形层淀积到螺旋形圆柱体的表面上。例如,在螺旋形部分位于环形部分和芯之间的情况下,可以将材料蒸发或溅射到螺旋形产品的外表面上以形成预制件。
在光子晶体光纤的环形部分位于螺旋形部分和芯之间的实施例中,可以通过例如化学汽相淀积(例如等离子体增强化学汽相淀积)将材料淀积在螺旋形产品的内表面上。用于将例如一种或多种玻璃的层淀积到圆柱形预制件的内表面上的方法在2003年11月24日提交的、美国专利申请序列号为10/720453、题为“介电波导以及制造该介电波导的方法(DIELECTRIC WAVEGUIDE AND METHOD OF MAKINGTHE SAME)”的美国专利申请中记载,该申请的全部内容在此引入作为参考。
一般来说,限制区域可以包括与多层配置不同的光子晶体结构。例如,限制区域220C包括螺旋形部分和环形部分,在一些实施例中,限制区域可包括具有其他非螺旋形结构的部分。例如,限制区域可包括螺旋形部分和有孔的部分(例如由大量沿着光纤轴延伸的孔所贯穿的实心圆柱组成)。这些孔可以沿着同心圆排列,同时提供限制区域的有孔部分的径向折射率变化。
关于限制区域220的组成成分,通常选择高折射率层和低折射率层的组成成分以提供在(多个)光纤工作波长处的层之间的所需折射率反差。每一个高折射率层的组成成分可以与其他高折射率层相同或不同,正如每一个低折射率层的组成成分可以与其他低折射率层相同或不同。
适合于高和低折射率层的材料可以包括无机材料,如无机玻璃或无定形合金。无机玻璃的例子包括氧化物玻璃(例如,重金属氧化物玻璃)、卤化物玻璃和/或硫属玻璃,以及有机材料,如聚合物。聚合物的例子包括丙烯腈-丁二烯-苯乙烯(ABS)、聚甲基丙烯酸甲酯(PMMA)、醋酸丁酸光纤素(CAB)、聚碳酸酯(PC)、聚苯乙烯(PS)(包括,例如共聚物苯乙烯-丁二烯(SBC)、甲基乙烯苯均聚物-丙烯腈、苯乙烯-亚二甲苯基、苯乙烯-乙烯、苯乙烯-丙烯、苯乙烯-丙烯腈(SAN))、聚醚酰亚胺(PEI)、聚醋酸乙烯酯(PVAC)、聚乙烯醇(PVA)、聚氯乙稀(PVC)、聚氧化亚甲基;聚甲醛(聚缩醛)(POM)、乙烯醋酸乙烯酯共聚物(EVAC)、聚酰胺(PA)、聚对苯二甲酸乙二醇酯(PETP)、含氟聚合物(包括,例如聚四氟乙烯(PTFE)、全氟烷氧基乙烯(polyperfluoroalkoxythylene)(PFA)、氟化乙烯丙烯(FEP))、聚对苯二甲酸丁二酯(PBTP)、低密度聚乙烯(PE)、聚丙烯(PP)、聚甲基戊烯(PMP)(以及其他聚烯烃,包括环聚烯烃)、聚四氟乙烯(PTFE)、聚硫化物(包括,例如聚苯硫醚(PPS)),以及聚砜(包括,例如聚砜(PSU)、聚醚砜(polyehtersulfone)(PES)、聚苯基砜(PPSU)、聚芳基烷基砜,以及聚磺酸盐)。聚合物可以是均聚物或共聚物(例如,(共)聚(丙烯酰胺-丙烯腈)和/或丙烯腈苯乙烯共聚物)。聚合物可以包括共混聚合物,例如聚酰胺-聚烯烃、聚酰胺-聚碳酸酯,和/或PES-聚烯烃的混合物。
能够使用的聚合物的其他例子包括环烯烃聚合物(COP)和环烯烃共聚物(COC)。在一些实施例中,可以通过将降冰片烯单体聚合或者将norbornen单体和其他聚烯烃(聚乙烯、聚丙烯)发生共聚作用来制备COP和COC。可以使用商业上可得到的COP和/或COC,包括例如Zeonex聚合物(例如ZeonexE48R)和Zeonor共聚物(例如Zeonor1600),这些都可以从Zeon化学制品L.P.(路易斯维尔市,KY)得到。COC也能够从Promerus LLC(Brecksville,OH)(例如,FS1700)获得。
可选择的是,或者另外,低折射率区域可以通过利用中空结构支撑材料来制造,从而与高折射率层或区域分开,所述材料如硅石球体或中空光纤。包括这种结构支撑的光纤的例子在题为“双折射光纤(BIREFRINGENT OPTICAL FIBRES)”的公开的国际申请WO03/058308中记载,该申请的全部内容在此引入作为参考。
在某些实施例中,限制区域是介电限制区域,其由基本上所有的介电材料组成,如一种或多种玻璃和/或一种或多种介电聚合物。通常,介电限制区域基本上不包括金属层。
在一些实施例中,限制区域的高折射率层或低折射率层可以包括硫属玻璃(例如,包含硫族元素的玻璃,如硫磺、硒,和/或碲)。除了硫族元素之外,硫属玻璃可以包括下面元素的一种或多种:硼、铝、硅、磷、硫、镓、锗、砷、铟、锡、锑、铊、铅、铋、镉、镧和卤化物(氟、氯、溴、碘)。
硫属玻璃可以是二元或三元玻璃,例如,As-S、As-Se、Ge-S、Ge-Se、As-Te、Sb-Se、As-S-Se、S-Se-Te、As-Se-Te、As-S-Te、Ge-S-Te、Ge-Se-Te、Ge-S-Se、As-Ge-Se、As-Ge-Te、As-Se-Pb、As-S-Tl、As-Se-Tl、As-Te-Tl、As-Se-Ga、Ga-La-S、Ge-Sb-Se或合成物、基于这些元素的多组分玻璃,所述元素如As-Ga-Ge-S、Pb-Ga-Ge-S等。硫属玻璃中每种元素的比率可以改变。
在某些实施例中,除了(多种)硫属玻璃之外或者作为该硫属玻璃的替代,限制区域220中的一个或多个层可以包括一种或多种氧化物玻璃(例如,重金属氧化物玻璃)、卤化物玻璃、无定形合金,或其组合物。
一般来说,高和低折射率层的吸收根据其组成成分和光纤的(多个)工作波长而改变。在一些实施例中,形成高和低折射率层的材料可以具有低吸收。低吸收材料在工作波长处具有大约100dB/m或更小(例如大约20dB/m或更小、大约10dB/m或更小、大约5dB/m或更小、大约1dB/m或更小、大约0.1dB/m或更小)的吸收。低吸收材料的例子包括硫属玻璃,其在大约3微米的波长处显示出大约4dB/m的吸收系数。硫属玻璃在大约10.6微米的波长处显示出大约10dB/m的吸收系数。作为另一个例子,氧化物玻璃(例如,硼硅酸铅玻璃,或硅石)对于大约1和2微米之间的波长能够具有低吸收。一些氧化物玻璃在该波长范围内能够具有大约1dB/m至0.0002dB/m的吸收系数。
可选择的是,高和低折射率材料的一个或全部能够具有高吸收(例如,大约100dB/m或更高,如大约1000或更多、大约10000或更多、大约20000或更多、大约50000或更多)。例如,许多聚合物对于在大约3和大约11微米之间的波长显示出大约105dB/m的吸收系数。这些聚合物的例子包括聚醚酰亚胺(PEI)、聚氯三氯乙烯(polychlorotrifluoroethylene)(PCTFE)、全氟烷氧基乙烯(perfluoroalkoxyethylene)(PFA)和聚萘二酸乙二醇酯(polyethylene naphthalate)(PEN)。PEI在3微米处具有比大约105dB/m更高的吸收,而PCTFE、PFA和PEN在10.6微米处具有比大约105dB/m更高的吸收。
在一些实施例中,高折射率材料具有低吸收系数,低吸收材料具有高吸收系数,或者反之亦然。
通过测量穿过该材料的至少两个不同厚度T1和T2的相对透射来确定材料的吸收。假定材料中的场根据Pe-αT而随厚度T发生衰变,P代表入射在该材料上的功率,那么通过厚度T1和T2的测得的透射功率为 P 1 = p e - α T 1 P 2 = p e - α T 2 . 那么得到的吸收系数α为
α = 1 T 2 - T 1 1 n ( P 2 / P 1 ) . 如果需要,可以通过利用几个厚度并进行透射功率的对数的最小二乘拟合来获得α的更精确的估计。
如前面所述,可以为限制区域选择材料以提供有利的光学性质(例如,在(多个)引导波长处具有适当折射率的低吸收)。但是,材料也应当与用于制造该光纤的过程相容。在一些实施例中,高和低折射率材料优选应当对于共同拉制是相容的。用于共同拉制相容性的标准在上述美国专利申请序列号为10/121452、题为“高折射率反差光纤波导和应用(HIGH INDEX-CONTRAST FIBER WAVEGUIDES ANDAPPLICATIONS)”的美国专利申请中提供。此外,高和低折射率材料优选相对于结晶、相位分离、化学侵蚀和对于这些条件(例如,环境条件,如温度、湿度和周围气体环境)的不需要的反作用应该是足够稳定的,在这些条件下形成、配置和使用光纤。
当利用拉制方法制造耐用光纤波导时,并非具有所需光学性质的材料的每一种组合都必然是合适的。通常,应当选择流变地、热机地和物理化学地相容的材料。现在讨论用于选择相容材料的几个标准。
第一个标准是选择流变相容的材料。换句话说,对应于在光纤拉制和工作的不同阶段中的温度体验,应该选择在宽温度范围上具有相似粘度的材料。粘度是在所应用的剪应力下流体对流动的阻力。这里,粘度以泊(Poise)为单位。在详细说明流变相容性之前,为给定的材料定义特性温度的集合是有用的,所述温度是给定材料具有特定粘度的温度。
退火点Ta是材料具有1013泊的粘度时的温度。根据测温陶瓷组织(Orton Ceramic Foundation)(Westerville,OH)利用型号为SP-2A系统可以测量Ta。通常Ta是一块玻璃的粘度足够低以允许释放残余应力时的温度。
软化点Ts是材料具有107.65泊的粘度时的温度。根据测温陶瓷组织(Westerville,OH)利用例如型号为SP-3A的软化点仪器可以测量Ts。软化点与材料的流动在形状上从塑性变为粘性时的温度有关。
工作点Tw是材料具有104泊的粘度时的温度。根据测温陶瓷组织(Westerville,OH)利用例如型号为SP-4A的玻璃粘度计可以测量Tw。工作点与玻璃可以很容易地拉制成光纤时的温度有关。在一些实施例中,例如,在材料是无机玻璃的情况下,该材料的工作点温度可以高于250℃,如大约300℃、400℃、500℃或更高。
熔点Tm是材料具有102泊的粘度时的温度。根据测温陶瓷组织(Westerville,OH)利用例如型号为SP-4A的玻璃粘度计可以测量Tm。熔点与玻璃变为液体的温度有关并且此时相对于光纤的几何形状保持对光纤拉制过程的控制变得非常困难。
为了达到流变相容,两种材料应该在宽温度范围上具有相似的粘度,所述宽温度范围例如从低到拉制光纤时的温度至光纤不再能够以可辨别的速度释放应力时的温度(例如,在Ta)或更低的温度。因此,两种相容材料的工作温度应该相似,从而在拉制时这两种材料以相似的速度流动。例如,如果测量第一种材料在第二种材料的工作温度Tw2下的粘度η1(T),那么η1(Tw2)应该是至少103泊,例如104泊或105泊,并且不大于107泊。此外,由于拉制光纤冷却,因此这两种材料的性能在相似的温度时应该从粘性变为弹性的。换句话说,这两种材料的软化温度应该相似。例如,在第二种材料的软化温度TS2下,第一种材料的粘度η1(Ts2)应该至少为106泊,例如107泊或108泊,并且不大于109泊。在优选实施例中,使这两种材料一起退火应该是可能的,因此在第二种材料的退火温度Ta2下,第一种材料的粘度η1(Ta2)应该至少为108泊(例如至少109泊、至少1010泊、至少1011泊、至少1012泊、至少1013泊、至少1014泊)。
另外,为了流变相容,这两种材料的作为温度的函数的粘度变化(即,粘度斜率)优选应该尽可能紧密地相匹配。
第二个选择标准是每种材料的热膨胀系数(TEC)在退火温度和室温之间的温度处应该相似。换句话说,由于光纤冷却且其流变能力从像流体一样变为像固体一样,因此这两种材料的体积应该改变相似的量。如果两种材料的TEC没有足够匹配,那么在两个光纤部分之间的大的差量体积变化会导致大量残余应力积累,这会使一个或多个部分破裂和/或分为薄层。甚至在应力远低于材料的断裂应力时残余应力也可能导致滞后断裂。
TEC是样品长度随温度变化的微小变化的测量值。可以根据温度-长度(或者等效的是,温度-体积)曲线的斜率为给定材料计算这一参数。材料的温度-长度曲线可以根据测温陶瓷组织(Westerville,OH)利用例如型号为1200D的膨胀计来进行测量。或者在选择的温度范围内或者在给定温度的瞬时变化时测量TEC。该量的单位为℃-1
对于许多材料,在具有不同斜率的温度-长度曲线中有两个线性区域。存在曲线从第一线性区域变为第二线性区域的过渡区域。这一区域与玻璃转化相关联,在该区域中玻璃样品的性能从与固体材料正常相关联过渡到与粘性流体正常相关联。这是一个连续的过渡,并且其特征在于与斜率的非连续变化相反,温度-体积曲线的斜率逐渐变化。玻璃转化温度Tg可以规定为外延的玻璃固体与粘性流体的线相交时的温度。玻璃转化温度是与从脆性固体到能够流动的固体的材料流变能力变化相关联的温度。在物理上,玻璃转化温度与激发材料中各种分子平移和旋转模式所需的热能有关。玻璃转化温度经常被理解为近似退火点,此处的粘度是1013泊,但是事实上,测量的Tg是相对值,并且取决于测量技术。
膨胀计也可用于测量膨胀软化点Tds。膨胀计通过对样品施加小的压缩负载并加热该样品来工作。当样品温度变得足够高时,材料开始软化并且压缩负载导致样品发生变形,此时观察到体积或长度的减小。该相对值称为膨胀软化点,并且通常是当材料粘度在1010和1012.5泊之间时发生。材料的精确Tds值通常取决于仪器和测量参数。当使用类的仪器和测量参数时,该温度提供在粘性状态中的不同材料流变相容性的有用的测量。
如上所述,匹配TEC是对于获得不受过度残余应力的光纤的一种重要因素,所述残余应力能够在拉制过程中在光纤中产生。通常,当两种材料的TEC不充分匹配时,产生作为弹性应力的残余应力。弹性应力分量源于在光纤从玻璃转化温度冷却到室温(例如25℃)时在光纤中不同材料之间的体积收缩之差。体积变化由TEC和温度变化来确定。对于在拉制过程中光纤内的材料在任何界面处成为熔化的或者粘合的实施例,其各自的TEC之差将导致在界面处的应力。一种材料将处于拉伸(正应力),另一种材料处于压缩(负应力),因此总应力为零。适度的压应力本身通常不是对于玻璃光纤主要关心的问题,但是拉应力是不希望的,并且可能随时间导致失效。因此,希望使部件材料的TEC之差最小,从而使拉制过程中光纤内产生的弹性应力最小。例如,在由两种不同材料形成的复合光纤中,在利用加热速率为3℃/分的膨胀计测得的每块玻璃在Tg和室温之间的TEC的绝对差应该不大于大约5×10-6-1(例如,不大于大约4×10-1-1、不大于大约3×10-6-1、不大于大约2×10-6-1、不大于大约1×10-6-1、不大于大约5×10-7-1、不大于大约4×10-7-1、不大于大约3×10-7-1、不大于大约2×10-7-1)。
尽管选择具有相似TEC的材料能够使弹性应力分量最小,但是残应力也可以由粘弹性应力分量来产生。粘弹性应力分量在部件材料应变点或玻璃转化温度之间有足够大的差时出现。当材料冷却到Tg下时,其经历相当大的体积收缩。由于粘度在冷却时的这一转化中生变化,减轻应力所需的时间从零(瞬时)增加为几分钟。例如,考复合预制件由具有不同玻璃转化范围(和不同的Tg)的玻璃和聚合物成。在初始拉制过程中,玻璃和聚合物像是粘性流体一样,并由于制应变而引起的应力立刻减轻。在离开拉制炉的最热部分之后,光快速地损失热量,使光纤材料的粘度连同应力减轻时间按指数规律增大。在冷却到其Tg时,由于应力减轻时间与拉制速度相比已经变得非常大,因此玻璃和聚合物实际上不能再释放应力。因此,假定部件材料具有不同的Tg值,冷却到其Tg的第一材料不再减小应力,而第二材料仍然在其Tg之上并能够释放在材料之间产生的应力。一旦第二材料冷却到其Tp,就不再有效地减轻在材料之间产生的应力。此外,在这一点上,第二块玻璃的体积收缩比第一材料(现在该材料低于其Tg并变得像是脆性固体一样)的体积收缩大得多。这种情况能够导致在玻璃和聚合物之间的足够多的应力积累,因此一个或两个部分关于机械方面而失效。这让我们得到用于选择光纤材料的第三选择标准:希望使部件材料的Tg之差最小从而使拉制过程中光纤内产生的粘弹性应力最小。优选的是,第一材料的玻璃转化温度Tg1应该在第二材料的玻璃转化温度Tg2的100℃内(例如,|Tg1-Tg2|应该小于90℃、小于80℃、小于70℃、小于60℃、小于50℃、小于40℃、小于30℃、小于20℃、小于10℃)。
由于存在两种机制(即弹性和粘弹性)来产生因组分材料之差而引起的在拉制光纤中的永久应力,因此可以采用这些机制使其彼此抵消。例如,如果材料Tg中的不匹配导致相反符号的应力,那么构成光纤的材料可以自然地抵消由热膨胀不匹配而引起的应力。相反地,如果材料的热膨胀将减小全部的永久应力,那么材料之间的Tg的较大差值是可接受的。估计热膨胀和玻璃转化温度差的组合效应的一种方式是将每个部件材料的温度-长度曲线进行比较。在利用上述斜率-切线方法查找到每种材料的Tg之后,沿纵轴移动曲线中的一条,从而使这些曲线在较低Tg温度值重合。如果玻璃没有结合,那么在室温处的y轴截距之差产生所期望的应变ε。所期望的显示出在从Tg到室温的温度范围内的较大收缩量的材料的拉应力σ可以根据下面的方程式简单地进行计算:
       σ=E·ε                         (4)
其中E是该材料的弹性模量。通常,小于大约100Mpa(例如,大约50Mpa或更小、大约30Mpa或更小)的残余应力值足够小以表明两种材料相容。
第四选择标准是使参选材料的热稳定性匹配。热稳定性的测量由温度间隔(Tx-Tg)给出,其中Tx是当材料缓慢地冷却到足以使每个模量能够找到其最低能态时在结晶开始的温度。因此,结晶相是对于材料来说比玻璃相更加高能的有利状态。但是,材料的玻璃相在达到光纤波导应用时通常具有优于结晶相的性能和/或制造优点。结晶温度越接近玻璃转化温度,材料在拉制过程中就越有可能结晶,这对于该光纤来说是有害的(例如,通过将光学不均匀性引入到光纤中,这会增大传输损失)。通常,至少大约80℃(例如,至少大约100℃)的热稳定性间隔(Tx-Tg)足够允许通过从预制件拉制光纤来进行材料的光纤化。在优选实施例中,热稳定性间隔是至少大约120℃,如大约150℃或更高,如大约200℃或更高。可以利用热分析仪器来测量Tx,如差热分析仪(DTA)或差示扫描量热仪(DSC)。
选择能够被共同拉制的材料时的另一个考虑是材料的熔化温度Tm。在熔化温度下,材料的粘度变得太低而不能在光纤拉制过程中成功地保持精确的几何形状。因此,在优选实施例中,一种材料的熔化温度高于流变相容的第二种材料的工作温度。换句话说,当加热预制件时,在该预制件中任一种材料熔化之前预制件达到能够被成功拉制的温度。
能够被共同拉制并且向光子晶体光纤波导提供限制区域的层之间的高折射率反差的一对材料的一个例子是As2Se3和聚合物PES。As2Se3具有大约180℃的玻璃转化温度(Tg)和大约24×10-6/℃的热膨胀系数(TEC)。As2Se3在10.6μm处的折射率为2.7775,如由Hartouni和同事们测量并将其记载在《Proc.SPIE》,505,11(1984)中,As2Se3的吸收系数α是5.8dB/m,如由Voigt和Linke测量并将其记载在由Ed.A.Andriesh和M.Bertolotti在NATO ASI Series,3High Technology第36卷,第155页(1996)发表的题为“非晶半导体在光电子学中的物理现象和应用(Physics and Application of Non-Crystalline Semiconductors inOptoelectronics)”的论文中。这两份参考文献整体在此引入作为参考。PES具有大约55×10-6/℃的TEC,并具有大约1.65的折射率。
光子晶体光纤和用于形成光子晶体光纤的方法的实施例记载在下列专利和专利申请中:美国专利号为US6625364、题为“具有大的芯半径的低损耗光子晶体波导(LOW-LOSS PHOTONIC CRYSTALWAVEGUIDE HAVING LARGE CORE RADIUS)”的美国专利;美国专利号为US6563981、题为“在光子晶体多模波导中的电磁模式变换(ELECTROMAGNETIC MODE CONVERSION IN PHOTONICCRYSTAL MULTIMODE WAVEGUIDES)”的美国专利;2002年1月25日提交的、美国专利申请序列号为10/057440、题为“具有特制的分散轮廓的光子晶体光波导(PHOTONIC CRYSTAL OPTICALWAVEGUIDES HAVING TAILORED DISPERSION PROFILES)”的美国专利申请;2002年4月12日提交的、美国专利申请序列号为10/121452、题为“高折射率反差光纤波导及应用(HIGHINDEX-CONTRAST FIBER WAVEGUIDES AND APPLICATIONS)”的美国专利申请;美国专利号为US6463200、题为“增强光波导的全向多层器件(OMNIDIRECTIONAL MULTILAYER DEVICE FORENHANCED OPTICAL WAVEGUIDING)”;2002年11月22日提交的、临时号为60/428382、题为“高功率波导(HIGH POWER WAVEGUIDE)”的美国专利;2002年7月16日提交的、美国专利申请序列号为10/196403、题为“形成反射介电反射镜的方法(METHOD OFFORMING REFLECTING DIELECTRIC MIRRORS)”的美国专利申请;2003年11月24日提交的、美国专利申请序列号为10/720606、题为“介电波导和制造该介电波导的方法(DIELECTRIC WAVEGUIDE ANDMETHOD OF MAKING THE SAME)”的美国专利申请;2003年12月10日提交的、美国专利申请序列号为10/733873、题为“光纤波导和制造该光纤波导的方法(FIBER WAVEGUIDES AND METHODS OFMAKING SAME)”的美国专利申请。上述每一篇专利和专利申请的内容整体在此引入作为参考。
再参考图1,在一些实施例中,可以将光子晶体光纤120设计为使该光纤优选在某一平面内弯曲。例如,参考图3,光子晶体光纤300包括具有不对称横截面的包层360,其沿着长轴361的直径与沿着垂直于该长轴的短轴362的直径相比更大。长轴和短轴均与轴399正交。在包层外表面的形状中也显示出不对称的横截面,这包括不同曲率的部分。特别是,包层360包括弓形部分331和332以及两个直线部分333和334。弓形部分331和332位于沿着长轴321的包层的相对侧。直线部分333和334位于沿短轴322的包层的相对侧。
一般来说,包层360的横截面轮廓的不对称足以致使光纤300在其正常使用过程中优选在光纤轴399和短轴362所确定的平面内弯曲。
光纤300沿长轴的直径与其沿短轴的直径之比可以改变。通常,选择该比例使光纤300优选在弯曲面内弯曲,同时包层300仍然提供所希望的机械支撑或作为设计目的的其他(多个)功能(例如,光学功能、热力管理)。在一些实施例中,该比率相对较低,如大约1.5∶1或更低(如约1.3∶1或更低、大约1.1∶1或更低)。可选择的是,在某些实施例中,该比率能高于大约1.5∶1(例如大约1.8∶1或更高、大约2.1∶1或更高)。
光子晶体光纤300还包括芯320和限制区域310,限制区域310包括螺旋层330、340和350,并具有内接缝321和外接缝322,其对应于形成限制区域的连续层的边缘。内接缝321位于沿着从短轴362开始移动α角的方位323。α可以是大约10°或更大(例如,大约20°或更大、大约30°或更大、大约40°或更大、大约50°或更大、大约60°或更大、大约70°或更大、大约80°或更大)。在一些实施例中,α是大约90°。
内接缝不位于光纤的优选弯曲面中。在光纤300中,这通过使内接缝321定位在远离短轴的位置来实现。将内接缝定位在远离优选弯曲面的位置是有利的,因为这里认为与限制区域的其他部分相比在该接缝处的引导辐射的损耗(例如,由于散射和/或吸收)更大。此外,可以相信,相对于芯的其他部分的能量密度,引导辐射在芯中的朝向光纤中弯曲的外部的能量密度更大。通过相对于短轴来定位内接缝从而使该接缝不可能位于优选弯曲面(例如,α是大约90°)中,可以降低内接缝位于朝向光纤弯曲的外面的可能性。因此,可以避免在引导辐射的能量密度很高的区域处具有限制区域的相对较高损耗部分的复合影响,同时降低与该光纤中的弯曲有关联的损耗。
尽管内接缝321和外接缝322位于相对于光纤300中的轴399的相同的方位,但是在其他实施例中,内和外接缝也可以沿着相对于光纤轴的不同的相对方位而定位。
如上所述,包层为光纤的限制区域提供机械支撑。因此,包层360的厚度可以根据需要沿着长轴361而改变。包层360沿着短轴362的厚度也可以改变,但是通常小于其沿长轴的厚度。在一些实施例中,包层360沿长轴的厚度基本上比限制区域310更厚。例如,包层360沿长轴的厚度与限制区域310相比可以是大约10倍或更厚(例如,大于大约20倍厚、大于大约30倍厚、大于大约50倍厚)。
通过修整预制件,然后从具有不对称横截面的预制件拉制光纤可以产生光纤不对称性。可选择的是,在一些实施例中,可以在从预制件拉制光纤之后产生光纤不对称性。例如,可以修整或研磨光纤作为在拉制之后但是在缠绕之前的生产过程的一部分。
尽管光纤300包括具有接缝的限制区域,但是一般来说,不对称光纤的实施例可以包括不具有接缝的限制区域(例如,由大量环形层所形成的限制区域)。
而且,尽管光纤300具有由两个圆弧和两条直线组成的形状,但是一般来说,光纤可以具有其他形状。例如,光纤可以具有不对称的多边形形状,并且光纤可以由具有不同曲率半径的弓形部分和/或由沿相反方向弯曲的弓形部分来形成。通常,所述形状应该向该光纤提供优选的弯曲面。
尽管上述光纤相对于其横截面形状是不对称的,但是一般来说,光纤能够是以各种方式形成的不对称以便提供优选的弯曲面。例如,在一些实施例中,光纤可以包括产生优选弯曲面的材料不对称性。材料不对称性指的是光纤不同部分的材料性质之间的变化,其致使光纤以特定方式优选地弯曲。例如,光纤包层的一部分可以由与其他部分相比机械刚性稍差的材料形成,致使该光纤优选在该部分弯曲。机械变化可以由组成成分变化而引起,或者由具有相同组成成分的那些部分的物理差异而引起。可以例如通过将改变光纤的机械性质的掺杂剂掺杂到光纤或者光纤预制件的多个部分来引入组成成分的差异。作为另一个例子,可以通过由不同的化合物形成光纤的不同部分来引入组成成分的差异。物理差异指的是例如光纤的不同部分中的结晶度的差异。通过在光纤制造过程中有选择性地加热和/或冷却光纤的多个部分,和/或利用在不同光纤部分的加热/冷却的不同速度来引入诸如结晶度差异的物理差异。
而且,在一些实施例中,光纤可以包括对称的第一包层,但也能够包括包层外面的附加结构,该附加结构致使光纤优选在特殊平面内弯曲。例如,可以将光纤放置在一个或多个鞘中,所述鞘在使得光纤弯曲时是不对称的。
再参考图1,激光系统100还包括冷却装置170,其经由输送管171和耦合组件130将冷却流体(例如气体或液体)输送到光纤120。冷却流体被泵送通过芯,并从与该芯邻近的光纤表面吸收热量。在本实施例中,冷却流体沿着与来自激光器110的辐射相同的方向流动,但是在一些实施例中,可以沿着与激光辐射的传播方向相反的方向来泵送该冷却流体。
冷却流体通过光子晶体光纤120的芯的流速可以根据需要而改变。通常,流速取决于例如激光器的工作功率、在工作波长处的光纤的吸收、光纤的长度以及纤芯的尺寸。一般来说,流速应该足以在其工作功率处冷却该光纤。在一些实施例中,流速可以是大约0.1升/分或更大(例如,大约0.5升/分或更大、大约1升/分或更大、大约2升/分或更大、大约5升/分或更大、大约8升/分或更大、大约9升/分或更大、大约10升/分或更大)。
从光纤中流出的冷却流体的压力可以改变。在一些实施例中,冷却流体的压力可以相对较高。例如,在该流体从与射出辐射相同的光纤的那一端流出的情况下,冷却气体可以处于足以从病人的目标组织中清除碎屑的高压力。气体压力可以是大约0.2PSI或更高(例如大约0.5PSI或更高、大约1PSI或更高)。在一些实施例中,离开纤芯的气体的压力可以对应于流过1米长的纤芯直径为大约500μm的光纤时的大约1升/分或更大(例如,大约2升/分或更大、大约5升/分或更大、大约8升/分或更大、大约10升/分或更大)的流速。
当系统启动时,该流速可以是额定不变的,或者可以根据激光系统的状态操作而改变。例如,在一些实施例中,可以根据是否引导辐射通过光纤120来调整流速。在启动激光器并引导辐射通过该光纤时,流速可以处于足以适当地冷却光纤的水平。但是,在辐射剂量之间,系统可以将流速降低到较低的水平(例如,在启动激光器时用于冷却光纤的速率的大约10%或更低)。可以利用远程控制152或者操作者在使用该系统时能够很容易操作的附加远程控制来触发气体流速。
一般来说,引导到光纤的冷却流体的温度可以改变。在一些实施例中,在环境温度(例如,室温)下将冷却流体引导到光纤。在某些实施例中,在冷却光纤之前,将该冷却流体冷却到环境温度之下。可以将冷却流体冷却到使光纤排出的流体在一定的温度范围内。例如,可以将冷却流体足够冷却,使光纤排出的流体在其接触到病人时不会烫伤病人。作为另一个例子,可以将冷却流体足够冷却,使光纤排出的流体在室温和体温之间。在一些实施例中,引导到光纤的冷却流体可以冷却为使其具有低于室温的温度。例如,该流体可以具有大约20℃或更低(例如,大约10℃或更低、大约0℃或更低、大约-10℃或更低、大约-20℃或更低、大约-50℃或更低)的温度。
在某些实施例中,冷却流体沿激光辐射传播方向流过纤芯的情况下,其可以执行冲击病人的目标组织的附加功能。例如,在一些实施例中,从光纤流出的加热流体(例如,气体)可以通过增强血液的凝结而减少切开的血管处的出血。可以认为在大约60℃或更高的温度时可以加速血液的凝结。因此,在离开光纤并冲击目标组织的气体是大约60℃或更高的情况下,可以增大血液凝结的速度,这通过降低对从工作区吸出血液的需求来帮助外科医生。在一些实施例中,离开光纤的气体的温度可以是例如大约50℃或更高、大约60℃或更高、大约65℃或更高、大约70℃或更高、大约80℃或更高、大约90℃或更高、大约100℃或更高)。可选择的是,在某些实施例中,离开光纤的气体的温度可以低于室温(例如大约10℃或更低、大约0℃或更低)。例如,该系统能够在有益于在照射组织之前冷却组织的过程中向目标位置提供冷却气体。在某些实施例中,离开光纤的气体的温度可以近似体温(例如,大约37℃)。
可以通过大约5-10℃/瓦(例如,大约7-8℃/瓦)的输入功率对流过纤芯的气体进行加热。例如,具有大约20瓦的输入功率的光纤可以将流过纤芯的气体加热大约100-200℃。
在一些实施例中,流过纤芯的流体可以用于将其他物质输送到目标组织。例如,雾化的药用化合物可以引入到流过纤芯的气体中并经由光子晶体光纤输送到目标组织。
一般来说,冷却流体的类型可以根据需要而改变。冷却流体可以是液体、气体或超流体。在一些实施例中,冷却流体包括惰性气体(例如,氦、氖、氩、氪和/或氙)、氧、二氧化碳,和/或氮。冷却流体可以基本上由单一化合物组成(例如,纯度为大约98%或更高、大约99%或更高、大约99.5%或更高、大约99.8%或更高、大约99.9%或更高),或者可以是混合物(例如,空气或氦氧混合气)。
在一些实施例中,可以根据其冷却光纤的能力来选择冷却流体。流体的冷却能力可以取决于流体流速和/或流体热导率。例如氦气与其他气体相比具有相对较高的热导率。而且,对于给定的压降,氦可以具有比诸如氮的其他气体更高的流速。因此,在一些实施例中,根据氦具有比其他气体更好的冷却光纤的能力而选择氦。
可选择的是,或者另外,根据是否与病人有任何不利的相互作用来选择冷却流体。例如,在冷却流体与病人极接近的实施例中,可以根据冷却流体所具有的相对较低的毒性来选择冷却流体。在某些实施例中,可以根据与其他流体相比的溶解度来选择冷却流体。具有在血液中的相对较低溶解度的流体能够降低具有因暴露于冷却流体中而使病人栓塞的危险。具有相对较低毒性和相对较低溶解度的流体的例子是氦气。
也可以根据其他标准来选择冷却流体,如与其他元素的反应性(例如,易燃性(flammability))。在一些实施例中,根据冷却流体的惰性特性(例如,易燃性(inflammability))来选择冷却流体,例如氦。
在某些实施例中,可以将保护套连到光子晶体光纤120的输出端。套可以用于防止碎屑积累以及光纤输出端的堵塞。图4A中示出了套401的例子。套401连到光子晶体光纤410的输出端。套401包括套环425,该套环保持光纤的输出端与套的远端开口430之间的间距405。通常,间距405是大约0.5cm至大约4cm长。从光纤410的芯420射出的辐射411通过远端开口430从该套射出。
套401还可以包括孔眼,这些孔眼降低在远端开口430处流出光纤的流体的压力。例如,套401包括第二开口435和436,所述开口与远端开口430一起提供从芯420流出的流体能够从该套流出的路径。
通常,套由刚性材料形成,所述刚性材料可以被很容易地消毒。例如,套可以由不锈钢形成。套可以是一次性的或者是可重复使用的。
套的另一个例子是图4B中所示的套401A。套401A沿其长度变窄,其具有与远端开口附近的直径402A相比的较大直径402B,该较大直径安装到光纤401的输出端。变窄的套增大了在套中从芯420流出的流体的压力,增大了开口435A和435B处的流体压力,由此减少了将碎屑通过这些开口吸入到套中的可能性。
在一些实施例中,套可以包括一个或多个光学部件。例如,参考图4C,套401B可以包括连到远端开口附近的反射器440(例如,反射镜)。反射器440将从芯420射出的辐射411重定向,并且使操作者能够将辐射引导到以另外的方式不能到达的限制空间中。
在一些实施例中,套还可以包括透射光学部件。例如,参考图4D,套401C包括安装在远端开口430附近的透镜450。透镜由透镜架451安装在套中,该透镜架位于远端开口430和第二开口435、436之间,从而使来自光纤的流体仍然能够通过开口435和436从套401C流出。透镜450将从芯420射出的辐射411聚焦为远端开口430之外某一位置处的收敛部分。能够安装在套中的透射光学部件的另一个例子是透射光学平板,其能够用作在防止流体流过远端开口430时将从纤芯射出的辐射透射的窗。
如上所述,在激光系统100中,来自激光器110的光与来自流体源170的流体通过耦合组件130耦合到光纤120中。参考图5A,用于将气体和辐射耦合到光子晶体光纤中的耦合器的例子是耦合组件500。耦合组件500包括接收来自激光器的辐射和来自气体源的气体的第一部分510,以及连接到光子晶体光纤120的第二部分。第一部分510通过挠性接合505(例如,金属波纹管或橡皮管)耦合到第二部分520。
第一部分510包括透镜架502和用于该透镜架的转接器504。该透镜架可以是商业上可获得的透镜架。当耦合到透镜架502时,转接器504将透镜501紧固在透镜架中。O形环503形成在转接器504和透镜501之间的密封。转接器504还包括接头504a,该接头用于连接到向系统供应气体的管。在一些实施例中,接头504a包括有倒刺的软管接头。
部分520包括连接器对准台508,其包括光纤连接器插座(例如商业上可获得的台,如从Newport(Irvine,CA)可获得的部件LP-1A)。台508由转接器506连接到挠性接合505。O形环507形成在台508和转接器506之间的密封。光纤连接器509将光子晶体光纤510与台58耦合。另一个O形环511形成在光纤连接器509和台508之间的密封。
图5B中示出了耦合组件的另一个例子。耦合组件530包括激光器连接器540,该激光器连接器连到激光器110的输出终端111。耦合组件530包括连到激光器连接器540的外壳531。该外壳包括流体入口533和辐射输出端口534。光纤连接器550附于辐射输出端口534上,同时相对于该辐射输出端口来定位光子晶体光纤551的一端。另外,连接器560通过连到流体输入口533而将流体导管561与外壳连接。
延迟反射器532位于外壳531中。延迟反射器532将从激光器入射到外壳的线偏振辐射541朝辐射输出端口534引导,同时改变偏振态,从而使反射的辐射542是圆偏振的。更一般的是,该反射延迟器改变激光辐射的偏振态,以便向光纤551提供较低损失的偏振。在一些实施例中,圆偏振辐射的平均损失可以低于线偏振辐射,在线偏振辐射中,光纤具有与偏振面重合的高损失区域。例如,与圆偏振光相比,具有带接缝的限制区域的光子晶体光纤对于在接缝的平面中偏振的辐射表现出较高的损失。作为具有延迟器的可选择的技术方案,或者除了具有延迟器之外,还可以将光纤551安装为使得其接缝(或者其他高损失区域)相对于来自激光器的辐射的偏振态沿特殊朝向。
适合于10.6微米辐射的反射延迟器的例子是PRR系列:(从激光器研究光学系统(Providence,RI)商业上可获得的)硅和铜相位延迟反射器。可以使用(例如由双折射晶体形成的)透射延迟器来代替延迟反射器532,或者除了延迟反射器532之外使用该透射延迟器。
耦合组件530还包括利用框架535安装在外壳531中的透镜545,该透镜将反射辐射542聚焦为辐射输出端口534的收敛部分,其耦合到光纤551的芯。适合于在10.6微米波长处使用的透镜例如可以由ZnSe形成。
在不将冷却流体耦合到纤芯中的实施例中,可以使用其他耦合组件。一般来说,在这些实施例中,可以使用适合于激光系统工作的波长和强度的任何耦合器。R.Nubling和J.Harrington在《应用光学》34,第3号,第372-380页(1996)的“用于大功率工业CO2激光器的中空波导输送系统(Hollow-waveguide delivery systems for high-power,industrial CO2 lasers)”中记载了一种类型的耦合器。耦合器的其他例子包括一个或多个聚焦元件,如一个或多个透镜。更一般的是,耦合器可以包括附加光学部件,如光束整形光学系统、滤光器等。
一般来说,耦合效率能够相对较高。例如,耦合组件130可以将引导波长处输出的大于大约70%(例如,大约80%或更多、90%或更多、95%或更多、98%或更多)的激光耦合到光纤中的引导模式中。耦合效率指的是由所需模式引导的功率与入射在光纤上的总功率之比。
当激光系统100包括机头140时,根据机头所应用的医疗应用,系统可以包括不同类型的机头。一般来说,机头包括操作者例如在他/她手掌或指尖能够紧握的部分,并且可以包括其他部件。在某些实施例中,机头可以包括内窥镜(例如,柔性或刚性内窥镜),诸如膀胱镜(用于检查病人的膀胱)、肾镜(用于检查病人的肾)、气管镜(用于检查病人的支气管)、喉镜(用于检查病人的喉)、检耳镜(用于检查病人的耳)、关节镜(用于检查病人的关节)、腹腔镜(用于检查病人的腹部),以及胃肠内窥镜。机头的另一个例子是导液管,其允许操作者将光子晶体光纤的输出端定位到管、脉管、通道,和/或体腔中。
此外,机头可以结合其他部件一起使用,而不是将其他部件集成到机头中。例如,机头可以结合套管针一起使用,从而将光子晶体光纤的输出端定位在病人的腹腔中。在另一个例子中,机头可以结合刚性内窥镜一起使用,该刚性内窥镜没有连到机头的紧握部分,或者没有连到光子晶体光纤。
参考图6,在一些实施例中,机头680包括窄导管684,该窄导管包括将光子晶体光纤120插入通过的通道。导管684可以由刚性但是可变形的材料(例如,不锈钢)制成。这使得操作者在操作过程中将该导管(例如通过手或者利用工具)弯曲所需的量(例如,在转弯处686),导管保持弯曲直到操作者将其弄直或者将其以不同的方式弯曲。机头680还包括连到导管684的紧握部分682,其使得操作者舒适地握住该机头。
在某些实施例中,机头还包括致动器,其允许操作者例如在系统的工作过程中远程地将光纤弯曲。例如,参考图7A,在一些实施例中,利用内窥镜610可以将激光辐射112传送到病人601之内的目标组织699。内窥镜610包括紧握部分611和软导管615,通过内窥镜主体616使紧握部分和软导管彼此相连。容纳光纤束的成像电缆622穿过紧握部分611中的通道和软导管615。成像电缆622经由软导管615向目标组织699提供照明。该成像电缆还将从目标组织反射的光引导到控制器620,在控制器620处成像并显示,从而向操作者提供可视信息。可选择的是,或者另外,内窥镜可以包括目镜,该目镜允许操作者直接通过成像电缆来观察目标区。
内窥镜610还包括致动器640,该致动器允许操作者将软导管615弯曲或弄直。在一些实施例中,致动器640允许软导管615只在一个平面内弯曲。可选择的是,在某些实施例中,该致动器允许软导管在多于一个平面内弯曲。
内窥镜610还包括辅助导管630(例如,可拆卸的导管),其包括光纤120穿过的通道。该通道与软导管615中的第二通道相连,允许光纤120穿过该辅助导管而进入软导管615中。以保持光纤相对于通过软导管615的通道的朝向的方式将光纤120连到辅助导管上,从而使光子晶体光纤绕其在软导管中的波导轴的扭转最小。在光子晶体光纤120具有包括接缝的限制区域的实施例中,光纤能够连到辅助导管上,从而使接缝不与软导管的弯曲面重合。
一般来说,光子晶体光纤能够结合商业上可获得的内窥镜一起使用,所述内窥镜如从PENTAX医疗公司(Montvale,NJ)以及Olumpus外科和工业美国有限公司(Orangeburg,NY)获得的内窥镜。
辅助导管630可以配置为允许用户延伸和收缩软导管615中光子晶体光纤的输出端。例如,参考图7B,在一些实施例中,内窥镜610的辅助导管630可以包括两个部分631和632,这两个部分相对于彼此是可移动的。部分632连到内窥镜主体616上,而部分631套接(telescope)部分632。部分632包括连接器636,该连接器与连到光纤120的光纤连接器638相连。连接器636和光纤连接器638的配套机构可以允许快速和简单地将光子晶体光纤从内窥镜上拆卸下来以及将光子晶体光纤连到内窥镜上。当连接时,连接器636和光纤连接器638基本上能防止光纤120扭转,保持其在软导管615中关于光纤轴的朝向。这些连接器能够保持例如导管中的光纤与远离导管的弯曲面而定位的光纤中的接缝的朝向。而且,当部分631相对于部分632延伸或收缩时,使光纤120的输出端645相对于软导管615的远端618延伸或收缩。辅助导管630也包括锁定机构634(例如,闩锁或夹钳),该锁定机构允许用户相对于部分632来锁定部分631。该锁定机构防止光纤120在软导管615中的不需要的运动,同时将辐射输送给病人。
当激光系统100和600包括单一的用于将辐射从激光器110输送到目标位置的一段光子晶体光纤时,也可以使用多段连接起来的光子晶体光纤。例如,参考图7C,激光系统700包括两段光子晶体光纤720和721而不是单段光子晶体光纤作为激光系统100和600。光子晶体光纤长度720和721由连接器730耦合在一起,该连接器连到内窥镜610的辅助导管630上。
激光系统700除了包括冷却装置170之外还包括第二冷却装置740,或者,激光系统700包括第二冷却装置740作为冷却装置170的可选择方案。光子晶体光纤段720放置在鞘744中,鞘由输送管742连接到第二冷却装置740。第二冷却装置740通过泵送冷却流体通过鞘744来冷却光子晶体光纤段720。
第二冷却装置740可以将泵送通过鞘744的冷却流体再循环。例如,鞘744可以包括使该冷却流体返回到第二冷却装置740的附加导管。配有第二冷却系统的热交换器可以在第二冷却系统将流体泵送回到鞘744之前主动地冷却排出的冷却流体。
冷却流体可以与通过冷却装置170泵送到光子晶体光纤的芯中的冷却流体相同或不同。在一些实施例中,冷却装置170将气体泵送通过光纤的芯,同时第二冷却装置740利用液体(例如,水)冷却该光纤。
鞘744能够执行保护功能,保护光子晶体光纤长度720不受环境危害。在一些实施例中,鞘744包括相对刚性的材料(例如,使得鞘744比光子晶体光纤长度720的刚性更大),同时降低光子晶体光纤长度720的挠曲。在一些实施例中,鞘744由相对刚性的材料形成,如镍钛合金(从Bethel,CT的Memry有限公司商业上可以获得的)。
在一些实施例中,利用两段光子晶体光纤能够延长至少一段光纤的可用寿命。例如,由于通过冷却装置740和/或鞘744给予光纤段的额外冷却和/或保护,因此光子晶体光纤段720通常比光纤段721更换的次数要少。在一些实施例中,光纤段721可以使用多次,而光纤段721在每次使用之后丢弃。
尽管激光系统700利用光子晶体光纤的两个连接的段,但是更一般的是,也可以将与光子晶体波导不同的波导连接到一段光子晶体光纤,从而提供用于将辐射从激光器输送到目标位置的输送方式。例如,可以将一段中空金属波导连接到一段光子晶体光纤从而对IR辐射提供输送方式。
而且,一般来说,可以将其他导管与医用激光系统中的光子晶体光纤捆在一起,从而例如在操作过程中向目标组织输送东西、从目标组织中移开东西或者观察目标组织。例如,如参考图7A所讨论的,可以将光子晶体光纤与其他光波导捆在一起,如用于照亮和/或利用成像系统将目标组织成像的成像电缆。在某些实施例中,激光系统可以通过将来自激光辐射的辐射输送通过光子晶体光纤以及将来自第二源(例如,第二激光器)的辐射输送通过另一个导管(例如,光纤)而将来自多于一个辐射源的辐射输送给病人。举例来说,参考图8,在某些实施例中,系统800包括光纤波导830和光子晶体光纤810,一部分光纤波导与光子晶体光纤810捆扎在外壳850(例如挠性外壳,如挠性聚合物外壳)中。光子晶体光纤810与激光器820耦合,该激光器将波长λ1的辐射输送通过光子晶体光纤810的芯812。光纤波导830与另一个辐射源840耦合,该辐射源将不同波长λ2的辐射输送通过光纤波导830的芯832。光子晶体光纤810和光纤波导830分别将波长λ1和λ2的辐射(分别用附图标记822和842来表示)输送到公共位置。
光纤波导830可以是例如光纤或光子晶体光纤。辐射源840可以是激光器或其他光源(例如,灯泡或发光二极管)。举例来说,在一些实施例中,辐射源840是发射可见光辐射(例如,λ2在从大约400nm到大约800nm的范围内,诸如633nm)的激光器,诸如氦氖激光器,光纤波导830是光纤。在输送来自激光器820的激光辐射之前,从光纤830射出的可见光辐射允许操作者将光子晶体光纤的输出端对准适当的组织。在另一个例子中,另一个辐射源840是Nd:YAG激光器,其也能够为了光凝固或光摘除的目的而将辐射输送给病人。
外壳850可以具有足够小的外径以允许该外壳结合各种机头一起使用。例如,外壳可以具有大约2mm或更小的外径,允许外壳插入到内窥镜的标准尺寸的通道中。
在一些实施例中,光子晶体光纤可以与用于向目标位置处的碎屑输送气体(例如用于血液凝固的热气)或者用抽真空的方式打扫目标位置处的碎屑的管捆扎在一起,作为与光纤波导捆扎在一起的可选择方案或者除了与光纤波导捆扎在一起之外的方案。
例如,参考图9的系统900,光子晶体光纤910与用于在光纤输出端将光子晶体光纤的芯912流出的流体(例如,冷却流体)排出的管930捆扎在一起。图9中所示的系统包括激光器920和流体源926,所述激光器和流体源将辐射和流体经由耦合组件924输送到光子晶体光纤的芯912。该系统还包括泵,该泵将从芯912流出的流体通过管930吸出以远离病人。
光纤910的输出端和管930的输入端由盖960连接在一起,所述盖套在光纤和管的端部。盖960包括窗962,所述窗由对从激光器920输送的辐射的波长基本上透明的材料制成。盖960将窗962设置在辐射922从芯912射出的路径中,使得该系统将该辐射输送给病人。但是,从芯912流出的流体通过排出口964流到管942中。与管930的相反端连接的泵940将流体942通过管进行泵吸,以使其远离病人。
一部分管930和光子晶体光纤910一起捆扎在外壳950中,同时提供挠性管道,所述挠性管道穿过机头(例如,包括内窥镜的机头)中的通道。
系统900可用于不希望将流体(例如,冷却流体)排出到暴露于辐射的组织的过程中。例如,在内部输送辐射的情况下,在排出的流体有毒的情况下,或者排出的流体在不希望的温度(例如非常热足以烧伤暴露的组织)的情况下,可以包括排出管和光子晶体光纤,从而防止组织暴露于流体中。
在一些情况下,医用激光系统中的机头可以用机器人来代替,该机器人能够被远程地操作。例如,在外科医生不容易或快速到达病人的应用中(例如,战场上的伤兵)正在考虑机器人执行的外科手术。
由于光子晶体光纤用在医疗过程中,因此它们应该是可消毒的。例如,光子晶体光纤应该能够承受住消毒过程,如高压灭菌。通常,向用户提供的多段光子晶体光纤是预消毒的并且密封在容器(例如真空密封在容器中,该容器具有足够的防护性能以防止在存储和运输过程中对光纤段的污染)中。例如,可以提供密封(例如,真空密封)在塑料容器(例如,包括阻挡膜层)中的多段消毒的光子晶体光纤(例如,大约0.5米到大约2.5米的段)。
一般来说,上述激光系统可以用于大量不同的医疗应用中。通常,可以根据应用而连同其他系统参数一起选择激光器的类型、波长、光纤长度、光纤外径和光纤内径。医疗应用包括美容医疗术、外科医疗手术、眼科手术、兽医手术,和牙科手术。
美容医疗术包括以下治疗:脱毛;用于缓解细小皱纹线、日光损害、年龄斑、雀斑、一些胎记、红斑痤疮、不规则的色素沉着、破碎的毛细管、良性的褐色素和色素沉着的脉冲光子嫩肤治疗;换肤术;下肢静脉;血管疾病;着色的损伤;痤疮;牛皮癣和白癫风;和/或化妆品色素再生。
外科手术包括用于妇科学、腹腔镜检查、湿疣和外生殖器的损伤,和/或粘膜白斑病的手术。外科应用还可以包括耳/鼻/喉(ENT)手术,如激光辅助悬雍垂腭咽成形术(LAUP)(即,停止打鼾);消除鼻塞的手术;镫骨足板造孔术;气管支气管内窥镜检查;扁桃体摘除术;和/或良性喉部损伤的移除。外科应用还包括胸部活组织切片检查、转移性疾病的细胞减灭术(cytoreduction)、褥疮或淤滞溃疡(statis ulcers)的治疗、痔切除术、腹腔镜检查外科、乳房切除术,和/或乳房缩小成形术。外科手术还可以包括在足病学领域中的手术,如神经瘤、甲周疣、甲下疣和足底疣的治疗、堵塞汗孔(porokeratoma)摘除术,和/或根治性指甲切除手术。可以使用激光器的其他外科领域包括整形外科、泌尿学、胃肠病学和胸部和肺部外科学。
眼科用途包括对青光眼、与年龄相关的黄斑变性(AMD)、类风湿性糖尿病视网膜病变、早产儿视网膜病变、视网膜裂孔和剥离、视网膜静脉阻塞的治疗,和/或用于缓解或消除屈光不正的屈光外科治疗。
兽医用途包括对小动物和大动物的手术。
牙科应用的例子包括硬组织、软组织和牙髓学手术。硬组织牙科手术包括去龋和备洞和激光刻蚀。软组织牙科手术包括切开、切除和汽化、露龈笑的治疗、凝固(止血)、未长出的牙齿的暴露、口疮性溃疡、牙龈整形术、牙龈切除术、牙冠印模的牙龈成槽、植入物暴露、系带切断术、翻瓣术、纤维瘤切除、龈盖切除术(operculectomy)、脓肿的切开和导出、口腔乳头切除术(oral papilectomy)、牙龈肥大的复位、修复前外科手术、冠周炎、植体周围炎、口腔损伤和牙龈沟清创术(sulcular debridement)。牙髓学手术包括牙髓切断术、牙根管清创术和清理。牙科手术也包括牙齿的美白。
通常,根据应用连同其他系统参数一起选择激光器的类型、波长、光纤长度、光纤外径和光纤内径。例如激光器是CO2激光器的实施例,激光系统可用于需要摘除、汽化、切除、切开和凝固软组织的外科手术。CO2激光系统可应用于包括专业美容(例如皮肤病学和/或整形外科)、足病学、耳鼻喉学(例如ENT)、妇科学(包括腹腔镜检查)、神经外科、整形外科学(例如,软组织整形外科学)、关节镜检查(例如,膝盖关节镜检查)、普通和胸外科学(包括开放外科手术和内窥镜外科手术)、牙科和口腔外科、眼科学、泌尿生殖器外科和兽医外科在内的多种医学专业中的外科应用。
在一些实施例中,CO2激光系统在皮肤病学和/或整形外科中执行激光换肤术、激光皮肤磨削术和/或激光烧伤清创术时可用于对组织(例如,软组织)进行摘除、汽化、切除、切开和/或凝固。例如在皱纹、细纹和/或沟纹(包括细线和肌理不规则)的治疗中进行激光嫩肤术(例如通过摘除和/或蒸发)。可以为缓解、除去和/或治疗以下症状而进行激光嫩肤术:角质化物(包括光化性角化病)、Seborrhoecae Vulgares、脂溢性疣(seborrheic wart),和/或疣皮脂溢(verruca seborrheica);嘴唇的朱红切除术(vermillionectomy);皮角;日光/光化性角化病;唇炎(包括光化性唇炎);痣(包括恶性雀斑样痣或Hutchinson恶性雀斑);不均匀的色素沉着/皮服变色;痤疮疤痕;外科疤痕;瘢痕疙瘩(包括颈背痤疮瘢痕(acne keloidlis nuchae));血管瘤(包括颊部的,葡萄酒样的和/或化脓性肉芽肿(pyogenic granulomas)/化脓性肉芽肿(granulomapyogenicum)/肉芽肿telagiectaticum);纹身;毛细管扩张;皮肤瘤(包括甲周纤维瘤和/或甲下纤维瘤)的移除;表层色素病变(superficialpigmented lesions);腺脂肪性肥大(adenosebaceous hypertrophy)和/或脂肪增生;肥大性酒渣鼻的缓解;皮垂;粟粒疹;湿疹性和/或感染皮肤的清创;基底和鳞片细胞癌(basal and squamous cel carcinoma)(包括角化棘皮瘤,Bowen病,和/或Bowenoid丘疹病损伤);痣(包括蛛状的,皮样的,和/或突出的);纤维神经瘤;激光器去黏膜(laserde-epithelialization);毛发上皮瘤;睑黄斑瘤;和/或汗管瘤。CO2激光系统可以用于激光摘除,完整和/或部分指甲基质切除术的汽化和/或切除,皮肤损伤的汽化和/或凝固(例如,良性的和/或恶性的,有血管的和/或无血管的),和/或Moh外科,脂肪切除术。实例还包括将激光系统1300用于执行上和/或下眼睑的眼睑整容术中的软组织的激光切开和/或切除,和/或用于建立毛发移植的受皮区。
在特定实施例中,在进行以下用于缓解、移除、和/或治疗的足病学手术过程中:寻常疣/足底疣(包括甲沟炎性疣、甲周疣和甲下疣);堵塞汗孔摘除术;向内生长指甲的治疗;神经瘤/纤维瘤(包括Moron神经瘤);溃疡的清创术;和/或其他软组织损伤,CO2激光系统用于软组织的激光摘除、汽化、和/或切除。CO2激光系统还在完整和/或部分基质切除术的足病学中用于激光摘除、汽化、和/或切除。
CO2激光系统在用于治疗以下疾病的耳鼻喉学中用于软组织的激光切开、切除、摘除、和/或汽化,所述疾病包括:鼻后孔闭锁;黏膜白斑病(包括口、喉、悬雍垂、腭、上横咽组织(upper lateralpharyngeal));鼻塞;成人和/或青少年乳头状瘤病息肉;鼻和/或鼻孔息肉切除术;淋巴管瘤的移除;声带/声襞小结、息肉和囊肿的移除;口腔、鼻腔、喉、咽和气管(包括悬雍垂、腭、上横咽组织、舌头和声带)中的复发性乳头状瘤的移除;喉、咽、鼻、耳和口部结构和组织的激光/肿瘤外科;Zenker憩室/咽食管(pharynoesophageal)憩室(例如,食管憩室吻合术(esophagodiverticulostomy));狭窄(包括声门下狭窄);扁桃体切除术(包括扁桃体的隐性减退(tonsillar crytolysis),赘生性肿瘤)和扁桃体摘除术/扁桃体切开术;肺支气管和气管损伤的移除;良性和恶性小结、肿瘤和纤维瘤(如喉的、咽的、气管的、气管支气管的/支气管内的);良性和/或恶性损伤和/或纤维瘤(例如,鼻的或鼻孔的);良性和/或恶性肿瘤和/或纤维瘤(例如,口的);镫骨足板造孔术/镫骨切除术;耳内听神经瘤;耳部的表层损伤(包括慢性螺旋结节性软骨皮炎(chondrodermatitis nondularis chronica helices)/Winkler病);喉、咽、和/或气管(包括悬雍垂、腭、和/或上横咽组织)的毛细管扩张/血管瘤;索带切除术;声带切开术(例如,用于声带麻痹/声襞运动损害),和/或喉、咽、和/或气管的带损伤;鼓膜切开术/鼓膜造孔术(例如,鼓膜开窗术);悬雍垂腭咽成形术(例如,LAUP);鼻甲切除术和/或鼻甲骨复位/摘除;鼻中隔棘(septal spur)的摘除/复位和/或鼻中隔成形术;部分舌截除术;口部、面下和/或颈部组织上的肿瘤切除术;肥大性酒渣鼻;寻常疣;和/或牙龈整形术/牙龈切除术。
在一些实施例中,在用于治疗以下疾病的妇科医学中CO2激光系统用于对软组织进行激光切开、切除、摘除、和/或汽化,所述疾病包括:子宫颈的锥形切除术(包括子宫颈上皮内的新生物,外阴和/或阴道上皮内的新生物);尖锐湿疣(包括子宫颈、生殖器、外阴、会阴(preineal)、和/或Bowen病、和/或Bowenoid丘疹病损伤);黏膜白斑病(例如外阴营养不良);前庭大腺囊肿和/或纳博特囊肿(nubuthiancysts);疱疹的汽化;尿道肉阜的汽化;子宫颈非典型增生;良性和/或恶性肿瘤;和/或血管瘤。
CO2激光系统在用于治疗以下疾病的包括妇科学腹腔镜的内窥镜和/或腹腔镜外科中用于对软组织进行汽化、切开、切除、摘除和/或凝固,所述疾病包括:子宫内膜损伤(包括子宫内膜异位摘除术);粘连的切除/减退;输卵管复通术;卵巢摘除术/卵巢切除术;输卵管整复术(fimbroplasty);子宫成形术;输卵管显微外科;子宫肌瘤和/或纤维瘤;卵巢纤维瘤和/或滤泡性囊肿;子宫骶韧带的摘除;和/或子宫切除术。
在特定的实施例中,CO2激光系统在用于治疗以下颅部疾病的神经外科中用于对软组织进行激光切开、切除、摘除和/或汽化,所述疾病包括:后颅窝肿瘤;周围神经切断;良性和/或恶性肿瘤和/或囊肿(例如,神经胶质瘤、脑脊膜瘤、听神经瘤、脂肪瘤、和/或大肿瘤);动静脉畸形;和/或脑下垂体瘤。在一些实施例中,CO2激光系统在用于治疗脊髓疾病的神经外科中用于对软组织进行激光切开、切除、摘除和/或汽化,包括对良性和/或恶性肿瘤和/或囊肿;硬膜内和/或硬膜外损伤;和/或椎板切除术/椎板切开术/显微切除(microdisectomy)。
CO2激光系统用于在包括关节内窥镜外科和/或普通外科的整形外科的应用中,对软组织进行切开、切除、和/或汽化。内窥镜应用包括:半月板切除术;关节软骨病;软骨成形术;韧带的放松(ligamentrelease)(例如,外侧韧带的放松);皱襞的切除;和/或部分滑膜切除术。普通外科应用包括:创伤的清创;褥疮和/或糖尿病性溃疡的清创;显微外科;人工关节修正;和/或聚合体(例如,聚甲基丙烯酸酯)的移除。
CO2激光系统还用于在包括内窥镜和/或开放式治疗过程的普通和/或胸外科中,对软组织进行切开、切除、和/或汽化。这样的应用包括:褥疮性溃疡、淤滞(stasis)、糖尿病性和其他溃疡的清创;乳房切除术;烧伤的清创;直肠和/或肛门的痔切除术;乳房活组织切片检查;乳房缩小成形术;转移性疾病的细胞减灭术;剖腹手术和/或腹腔镜应用;纵隔和/或胸损伤和/或畸形;皮垂汽化;动脉粥样化;囊肿(包括脂肪性囊肿,毛发囊肿,和/或嘴唇的粘液囊肿);潜毛性囊肿的移除和/或修复;脓肿;和/或其他软组织应用。
在特定的实施例中,CO2激光系统在牙科和/或口部外科中用于对软组织进行切开、切除、和/或汽化,包括用于:龈切除术;牙龈整形术;切开性/切除性活组织切片检查;溃疡性损伤(包括口疮性溃疡)的治疗;使用抗生素疗法时的感染的切开;系带切断术;良性和/或恶性损伤的切除和/或摘除;内环境平衡;龈盖切除术;牙冠拉伸;软组织、囊肿、和/或肿瘤的移除;口腔肿瘤和/或血管瘤;脓肿;抽血点止血;唾液腺病理;修复前龈准备;黏膜白斑病;部分舌截除术;和/或牙周龈切除术。
在一些实施例中,CO2激光系统在泌尿生殖器治疗过程中用于对软组织进行切开、切除、和/或汽化,包括用于:外生殖器的良性和/或恶性损伤;湿疣;包皮过长;和/或增殖性红斑。
实施例
利用在10.6微米处工作的CO2激光系统进行从狗的身上切除喉的多个部分的外科手术。在该过程中使用的光子晶体纤维具有直径近似为550微米的中空芯。该光纤具有螺旋形限制区域,该限制区域包括近似20个PES/As2Se3双层的径向剖面。该双层的厚度近似为3微米,厚度比例近似为2比1(PES比As2Se3)。光纤的包层由PES形成,光纤的OD近似为1500微米。光纤为1.5米长。
进行完整的整体声门喉切除术,其包括索带切除术。利用具有半刚性机头的光子晶体光纤来输送激光辐射。将机头插入并使其通过刚性喉镜。输入到光纤中的功率近似为20瓦。从光纤输出的辐射功率近似为7瓦。沿着与辐射相同的方向吹送氮并使其通过该光纤。氮的流速近似为1升/分。
将辐射输送给目标组织,同时在光纤的远端和目标组织之间的间距是几毫米(例如大约5mm-1cm)。仅仅一个用于烧灼任何切开的血管或者将任何血液吸出使其远离目标区的停顿就可将声门(supraglottis)切除。从切开的血管中流出的血由于暴露在光纤的外面而发生凝结,因此观察到的出血最小。该过程持续大约45分钟,在该过程中从狗的身上切除声门(supraglottis)和左索带。
附加实施例
已经描述了本发明的多个实施例。然而,应该理解可以在不背离本发明的精神和范围的情况下进行各种修改。因此,其他实施例在下面的权利要求的范围内。

Claims (105)

1.一种系统,其包括:
光子晶体光纤,该光子晶体光纤包括沿波导轴延伸的芯和围绕该芯的介电限制区域,该介电限制区域配置为将辐射沿着该波导轴从光子晶体光纤的输入端引导到输出端;以及
机头,其连到该光子晶体光纤,
其中该机头使得操作者控制该输出端的朝向,从而将该辐射指引到病人的目标位置。
2.根据权利要求1的系统,其中该机头包括内窥镜。
3.根据权利要求2的系统,其中该内窥镜包括软导管,一部分该光子晶体光纤穿过该软导管中的通道。
4.根据权利要求3的系统,其中该内窥镜包括机械地耦合到该软导管的致动器,其配置为使一部分软导管弯曲由此使得该操作者改变该输出端的朝向。
5.根据权利要求4的系统,其中该致动器配置为使一部分该软导管弯曲,从而使该软导管的弯曲部分具有约12厘米或更小的曲率半径。
6.根据权利要求4的系统,其中该致动器配置为使该软导管在弯曲面内弯曲。
7.根据权利要求6的系统,其中该机头连到该光子晶体光纤上以保持该介电限制区域的朝向从而控制该光子晶体光纤关于在该软导管中的其波导轴的朝向。
8.根据权利要求7的系统,其中该机头和该光子晶体光纤之间的连接在保养操作时防止该光纤扭转大于约10度。
9.根据权利要求3的系统,其中该内窥镜还包括辅助导管,该辅助导管包括与该软导管耦合的第一部分,其中将该光子晶体光纤通过该辅助导管中的通道穿入到该软导管的通道中,该辅助导管还包括可相对于该第一部分移动的第二部分,其中该光子晶体光纤连到该第二部分并且移动该第二部分使得操作者使该输出端相对于该软导管的一端延伸或收缩。
10.根据权利要求9的系统,其中该第二部分可以相对于该第一部分延伸或收缩。
11.根据权利要求9的系统,其中该辅助导管是刚性导管。
12.根据权利要求1的系统,其中该机头包括导管,一部分该光子晶体光纤穿过该导管。
13.根据权利要求12的系统,其中该导管包括弯曲部分。
14.根据权利要求12的系统,其中该导管由可变形材料形成。
15.根据权利要求12的系统,其中该机头包括机械耦合到该导管的致动器,其配置为使一部分该导管弯曲,由此使得该操作者改变该输出端的朝向。
16.根据权利要求1的系统,其中该机头包括延伸超过该输出端的尖端,其提供在该输出端和该目标位置之间约1毫米或更大的最小相隔间距。
17.根据权利要求1的系统,其中该光子晶体光纤具有足够的挠性,从而在使一部分该光子晶体光纤弯曲成大约90度或更大的角度并且该部分具有大约12厘米或更小的曲率半径时,将辐射引导到该目标位置。
18.根据权利要求17的系统,其中在使该部分光子晶体光纤弯曲成大约90度或更大的角度并且该部分具有大约12厘米或更小的曲率半径时,该辐射具有在该输出端的大约1瓦或更高的平均功率。
19.根据权利要求17的系统,其中在使该部分光子晶体光纤弯曲成大约90度或更大的角度并且该部分具有大约12厘米或更小的曲率半径时,该辐射具有在输出端的大约5瓦或更高的平均功率。
20.根据权利要求17的系统,其中该光子晶体光纤具有足够的挠性从而在使一部分该光子晶体光纤弯曲成大约90度或更大的角度并且该部分具有大约10厘米或更小的曲率半径时,将辐射引导到该目标位置。
21.根据权利要求20的系统,其中该光子晶体光纤具有足够的挠性从而在使一部分该光子晶体光纤弯曲成大约90度或更大的角度并且该部分具有大约5厘米或更小的曲率半径时,将辐射引导到该目标位置。
22.根据权利要求1的系统,其中该介电限制区域包括一层绕该波导轴螺旋形排列的第一介电材料。
23.根据权利要求22的系统,其中该介电限制区域还包括一层绕该波导轴螺旋形排列的第二介电材料,该第二介电材料具有与该第一介电材料不同的折射率。
24.根据权利要求23的系统,其中该第一介电材料是玻璃。
25.根据权利要求24的系统,其中该玻璃是硫属玻璃。
26.根据权利要求25的系统,其中该第二介电材料是聚合物。
27.根据权利要求1的系统,其中该介电限制区域包括至少一层硫属玻璃。
28.根据权利要求1的系统,其中该介电限制区域包括至少一层聚合材料。
29.根据权利要求1的系统,其中该介电限制区域包括至少一层沿该波导轴延伸的第一介电材料,和至少一层沿该波导轴延伸的第二介电材料,其中该第一和第二介电材料可以与第一介电材料被共同拉制。
30.根据权利要求1的系统,其中该芯是中空芯。
31.根据权利要求30的系统,还包括与该输入端或输出端耦合的流体源,其中在操作过程中,该流体源通过该芯而供应流体。
32.根据权利要求31的系统,其中该流体是气体。
33.根据权利要求1的系统,其中芯具有大约1000微米或更小的直径。
34.根据权利要求1的系统,其中该芯具有大约500微米或更小的直径。
35.根据权利要求1的系统,其中该光子晶体光纤在该输出端具有大约2000微米或更小的外径。
36.根据权利要求1的系统,还包括光波导和连接器,该连接器将该光波导连到该光子晶体光纤上。
37.根据权利要求36的系统,其中该光波导是第二光子晶体光纤。
38.根据权利要求36的系统,还包括围绕该光波导的导管。
39.根据权利要求38的系统,其中该导管比该光波导具有更大的刚性。
40.根据权利要求38的系统,还包括与该导管耦合的流体源,其中在操作过程中,该流体源向该导管供应流体。
41.根据权利要求1的系统,还包括激光器,其产生辐射并朝该光子晶体光纤的输入端引导该辐射。
42.根据权利要求41的系统,其中该激光器是CO2激光器。
43.根据权利要求41的系统,其中该辐射具有大约2微米或更长的波长。
44.根据权利要求41的系统,其中该辐射具有大约10.6微米的波长。
45.根据权利要求41的系统,还包括辅助辐射源和机械耦合到该光子晶体光纤的至少一个附加光纤,该附加波导配置为将辅助辐射从该辅助辐射源输送到该目标位置。
46.根据权利要求45的系统,其中该附加光纤由该机头机械地耦合到该光子晶体光纤。
47.根据权利要求45的系统,其中该辅助辐射源是第二激光器,其不同于为了将该辐射引导到该光子晶体光纤的输入端而设置的激光器。
48.根据权利要求47的系统,其中该第二激光器是Yd:YAG激光器、二极管激光器,或脉冲染料激光器。
49.根据权利要求42的系统,其中该辅助辐射具有在电磁波谱的可见光部分中的波长。
50.根据权利要求1的系统,其中将至少一部分该光子晶体消毒。
51.一种物品,其包括:
一段光子晶体光纤,该光子晶体光纤包括沿波导轴延伸的芯和围绕该芯的介电限制区域,该介电限制区域配置为将辐射沿着该波导轴从该光子晶体光纤的输入端引导到输出端,
其中将该光子晶体光纤的一段消毒。
52.根据权利要求51的物品,还包括密封的封装,其包含该光子晶体光纤的一段。
53.一种方法,其包括:
将辐射引导到光子晶体光纤的输入端中;以及
利用连到该光子晶体光纤的机头来控制该光子晶体光纤输出端的朝向,且朝病人的目标位置引导从该输出端发出的辐射。
54.一种方法,其包括:
将辐射通过光子晶体光纤引导到病人的目标位置,该光子晶体光纤具有中空芯;以及
使流体通过该中空芯流到该病人的目标位置。
55.根据权利要求54的方法,其中该辐射具有足够的功率来切开、切除或摘除在该目标位置处的组织。
56.根据权利要求55的方法,其中该流体具有足够的压力和温度来使该目标位置处的血液凝结。
57.根据权利要求54的方法,还包括在将该辐射和该流体引导到该目标位置时使该光子晶体光纤弯曲。
58.根据权利要求57的方法,其中使该光纤弯曲包括使一部分该光纤弯曲大约45度或更多从而具有大约12厘米或更小的曲率半径。
59.根据权利要求54的方法,其中将该辐射和该流体引导到该目标位置包括保持连到该光子晶体光纤的一部分机头,并利用该机头控制该输出端的朝向。
60.根据权利要求54的方法,其中该流体是气体。
61.根据权利要求60的方法,其中该气体在该输出端具有大约0.5PSI或更大的压力。
62.根据权利要求60的方法,其中该气体在该输出端具有大约1.0PSI或更大的压力。
63.根据权利要求60的方法,其中该气体在该目标位置处具有大约50℃或更高的温度。
64.根据权利要求60的方法,其中该气体在该目标位置处具有大约80℃或更高的温度。
65.根据权利要求60的方法,其中该气体是空气。
66.根据权利要求60的方法,其中该气体包括二氧化碳、氧、氮、氦、氖、氩、氪或氙。
67.根据权利要求66的方法,其中该气体包括大约98%或更高的单一组分气体。
68.根据权利要求60的方法,其中该气体是气体混合物。
69.根据权利要求54的方法,其中该流体以大约1升/分或更大的速度流到该中空芯中。
70.根据权利要求54的方法,其中该流体以大约2升/分或更大的速度流到该中空芯中。
71.根据权利要求54的方法,其中该流体以大约8升/分或更大的速度流到该中空芯中。
72.根据权利要求54的方法,其中该辐射具有大约2微米或更长的波长。
73.根据权利要求54的方法,其中该辐射具有大约10.6微米的波长。
74.根据权利要求54的方法,其中该辐射在该目标位置处具有大约1瓦或更高的平均功率。
75.一种装置,其包括:
光子晶体光纤,该光子晶体光纤包括沿波导轴延伸的芯和围绕该芯的介电限制区域,该介电限制区域配置为将辐射沿波导轴从该光子晶体光纤的输入端引导到输出端;以及
套,其耦合到该光子晶体光纤的输出端从而使得辐射穿过该套并通过第一开口从该套射出,该套还包括一个或多个第二开口,所述第二开口设置为使流入到该套中的气体通过该第二开口离开该套。
76.根据权利要求75的装置,其中流入到该套中的气体除了通过该第二开口之外还通过该第一开口离开该套。
77.根据权利要求75的装置,还包括设置在该第一开口和第二开口之间的透明元件,其在辐射穿过该套时基本上透射该辐射。
78.根据权利要求77的装置,其中该透明元件基本上防止气体通过该第一开口离开该套。
79.根据权利要求77的装置,其中该透明元件包括ZnSe。
80.根据权利要求75的装置,还包括相对于该第二开口设置的导管,从而使得通过该第二开口离开该套的气体被吸入到导管的输入端中。
81.根据权利要求75的装置,其中该第二开口设置在该第一开口附近。
82.根据权利要求75的装置,其中该第一开口的直径小于该光子晶体光纤在输出端的外径。
83.根据权利要求75的装置,还包括连到该套上的聚焦元件,从而聚焦穿过该套的辐射。
84.根据权利要求75的装置,还包括连到套上的反射元件从而反射穿过该套的辐射。
85.一种装置,其包括:
包括辐射输入口和输出口的组件,所述辐射输入口配置为接收来自辐射源的辐射,所述输出口配置为将该辐射与光子晶体光纤耦合,
该组件还包括延迟元件,该延迟元件设置为在从该辐射源接收的辐射耦合到该光子晶体光纤之前改变该辐射的偏振态。
86.根据权利要求85的装置,其中该组件还包括配置为从气体源接收气体的气体输入口。
87.根据权利要求86的装置,其中该光子晶体光纤具有中空芯。
88.根据权利要求87的装置,其中该输出口进一步配置为将从该气体源接收的气体耦合到该光子晶体光纤的中空芯中。
89.根据权利要求85的装置,其中该延迟元件是反射延迟元件。
90.根据权利要求85的装置,还包括辐射源,其中来自该辐射源的辐射包括具有波长λ的辐射。
91.根据权利要求90的装置,其中该反射延迟元件包括反射镜以及置于该反射镜的表面上的光学厚度为大约λ或更小的延迟层。
92.根据权利要求91的装置,其中该延迟层具有沿着相对于该反射镜表面的法线成大约45°方向上的大约λ/4的光学厚度。
93.根据权利要求90的装置,其中λ是大约2微米或更大。
94.根据权利要求90的装置,其中λ是大约10.6微米。
95.根据权利要求85的装置,其中该延迟元件是透射延迟元件。
96.根据权利要求85的装置,其中该延迟元件将辐射的偏振态从基本上线性的偏振态变为基本上非线性的偏振态。
97.根据权利要求96的装置,其中该基本上非线性的偏振态是基本上圆偏振态。
98.根据权利要求85的装置,其中该组件还包括聚焦元件,该聚焦元件配置为将在该辐射输入口射入该组件的辐射聚焦为在该输出口附近的收敛部分。
99.根据权利要求98的装置,其中该聚焦元件将该辐射聚焦为直径是大约1000微米或更小的收敛部分。
100.根据权利要求98的装置,其中该聚焦元件将该辐射聚焦为直径是大约500微米或更小的收敛部分。
101.根据权利要求98的装置,其中该聚焦元件是透镜。
102.根据权利要求101的装置,其中该透镜包括ZnSe。
103.根据权利要求86的装置,还包括该气体源。
104.根据权利要求85的装置,还包括该光子晶体光纤。
105.一种方法,其包括:
改变从激光器发射的辐射的偏振态;
将具有已经改变偏振态的辐射引导到具有中空芯的光子晶体光纤的输入端;以及
将来自气体源的气体耦合到该中空芯的输入端中。
CN 200580018948 2004-04-08 2005-04-08 光子晶体光纤和包括光子晶体光纤的医疗系统 Pending CN1977194A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US56045804P 2004-04-08 2004-04-08
US60/560,458 2004-04-08
US60/561,020 2004-04-09
US60/584,098 2004-06-30
US60/628,462 2004-11-16
US60/640,536 2004-12-30
US60/658,531 2005-03-04

Publications (1)

Publication Number Publication Date
CN1977194A true CN1977194A (zh) 2007-06-06

Family

ID=38126339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200580018948 Pending CN1977194A (zh) 2004-04-08 2005-04-08 光子晶体光纤和包括光子晶体光纤的医疗系统

Country Status (1)

Country Link
CN (1) CN1977194A (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104001271A (zh) * 2014-05-16 2014-08-27 河南科技大学 光子晶体光动力治疗仪
TWI468736B (zh) * 2008-10-28 2015-01-11 Eastman Kodak Co 集光率維持偏光切換系統及其相關方法
CN102245118B (zh) * 2008-10-21 2015-04-15 爱马仕创新有限公司 组织切除系统
CN106691577A (zh) * 2017-01-05 2017-05-24 海南瑞韩医学美容医院管理有限公司海口龙华京华城红妆医学美容门诊部 一种光纤引导式微创治疗手具
CN108793723A (zh) * 2018-06-10 2018-11-13 清远聚航光学材料有限公司 一种光纤及其制备方法和制备模具
US10213246B2 (en) 2009-11-13 2019-02-26 Hermes Innovations Llc Tissue ablation systems and method
CN110441857A (zh) * 2019-07-04 2019-11-12 电子科技大学 一种用于半导体激光器出射光束整形与耦合的纤芯渐变的布拉格光纤
US10517578B2 (en) 2013-10-15 2019-12-31 Hermes Innovations Llc Laparoscopic device
US10617461B2 (en) 2008-10-21 2020-04-14 Hermes Innovations Llc Endometrial ablation devices and system
US10675087B2 (en) 2015-04-29 2020-06-09 Cirrus Technologies Ltd Medical ablation device and method of use
US10912606B2 (en) 2008-10-21 2021-02-09 Hermes Innovations Llc Endometrial ablation method
CN113616330A (zh) * 2021-08-30 2021-11-09 河南大学第一附属医院 一种用于肿瘤组织切割的激光介入手术系统
US11253311B2 (en) 2016-04-22 2022-02-22 RELIGN Corporation Arthroscopic devices and methods
US11554214B2 (en) 2019-06-26 2023-01-17 Meditrina, Inc. Fluid management system
US11576718B2 (en) 2016-01-20 2023-02-14 RELIGN Corporation Arthroscopic devices and methods
US11766291B2 (en) 2016-07-01 2023-09-26 RELIGN Corporation Arthroscopic devices and methods
US11896282B2 (en) 2009-11-13 2024-02-13 Hermes Innovations Llc Tissue ablation systems and method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10617461B2 (en) 2008-10-21 2020-04-14 Hermes Innovations Llc Endometrial ablation devices and system
CN102245118B (zh) * 2008-10-21 2015-04-15 爱马仕创新有限公司 组织切除系统
US11911086B2 (en) 2008-10-21 2024-02-27 Hermes Innovations Llc Endometrial ablation devices and systems
US10912606B2 (en) 2008-10-21 2021-02-09 Hermes Innovations Llc Endometrial ablation method
US12070263B2 (en) 2008-10-21 2024-08-27 Hermes Innovations Llc Endometrial ablation method
TWI468736B (zh) * 2008-10-28 2015-01-11 Eastman Kodak Co 集光率維持偏光切換系統及其相關方法
US11896282B2 (en) 2009-11-13 2024-02-13 Hermes Innovations Llc Tissue ablation systems and method
US10213246B2 (en) 2009-11-13 2019-02-26 Hermes Innovations Llc Tissue ablation systems and method
US10517578B2 (en) 2013-10-15 2019-12-31 Hermes Innovations Llc Laparoscopic device
US11259787B2 (en) 2013-10-15 2022-03-01 Hermes Innovations Llc Laparoscopic device
CN104001271A (zh) * 2014-05-16 2014-08-27 河南科技大学 光子晶体光动力治疗仪
CN104001271B (zh) * 2014-05-16 2016-05-25 河南科技大学 光子晶体光动力治疗仪
US10675087B2 (en) 2015-04-29 2020-06-09 Cirrus Technologies Ltd Medical ablation device and method of use
US11576718B2 (en) 2016-01-20 2023-02-14 RELIGN Corporation Arthroscopic devices and methods
US11253311B2 (en) 2016-04-22 2022-02-22 RELIGN Corporation Arthroscopic devices and methods
US11793563B2 (en) 2016-04-22 2023-10-24 RELIGN Corporation Arthroscopic devices and methods
US11766291B2 (en) 2016-07-01 2023-09-26 RELIGN Corporation Arthroscopic devices and methods
CN106691577A (zh) * 2017-01-05 2017-05-24 海南瑞韩医学美容医院管理有限公司海口龙华京华城红妆医学美容门诊部 一种光纤引导式微创治疗手具
CN108793723A (zh) * 2018-06-10 2018-11-13 清远聚航光学材料有限公司 一种光纤及其制备方法和制备模具
US11554214B2 (en) 2019-06-26 2023-01-17 Meditrina, Inc. Fluid management system
CN110441857A (zh) * 2019-07-04 2019-11-12 电子科技大学 一种用于半导体激光器出射光束整形与耦合的纤芯渐变的布拉格光纤
CN113616330B (zh) * 2021-08-30 2023-03-14 河南大学第一附属医院 一种用于肿瘤组织切割的激光介入手术系统
CN113616330A (zh) * 2021-08-30 2021-11-09 河南大学第一附属医院 一种用于肿瘤组织切割的激光介入手术系统

Similar Documents

Publication Publication Date Title
CN1977194A (zh) 光子晶体光纤和包括光子晶体光纤的医疗系统
US8761561B2 (en) Medical system including a flexible waveguide mechanically coupled to an actuator
US7167622B2 (en) Photonic crystal fibers and medical systems including photonic crystal fibers
US20050259934A1 (en) Photonic crystal fibers and medical systems including photonic crystal fibers
US9063299B2 (en) Two-part surgical waveguide
US7310466B2 (en) Photonic crystal waveguides and systems using such waveguides
US7231122B2 (en) Photonic crystal waveguides and systems using such waveguides
US20070147752A1 (en) Photonic crystal fibers and systems using photonic crystal fibers
WO2005096783A2 (en) Photonic crystal fibers and medical systems including photonic crystal
US20170290932A1 (en) Sterilizing apparatus
SE436321B (sv) Endoskopinstrument med en optisk fibervagledare for overforing av laserenergi
US20090287198A1 (en) Dielectric coatings for total-internal-reflection surface of laser fiber and related methods
CN111132598B (zh) 医疗器械照明用塑料光纤和使用它的医疗器械灯
Subramanian et al. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies
US5868734A (en) Methods of using silica-titania clad fibers
Russo et al. Lens-ended fibers for medical applications: a new fabrication technique
Lee et al. Radial-firing optical fiber tip containing conical-shaped air-pocket for biomedical applications
AU2005234008A1 (en) Photonic crystal waveguides and systems using such waveguides
Shurgalin et al. A new modality for minimally invasive CO2 laser surgery: flexible hollow-core photonic bandgap fibers
US20210173143A1 (en) Optical fiber for transmitting both an illumination light and a laser light beam
WO2005101073A1 (en) Photonic crystal waveguides and systems using such waveguides
CN101999933A (zh) 硬质激光肛肠镜系统
CN201752434U (zh) 硬质激光关节镜系统
US10603109B2 (en) Apparatus and methods for side-fire optical fiber assembly suitable for medical applications
Gulacsik et al. Ophthalmic hazards associated with laser endoscopy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication