CN1974817A - 金属基纳米复合材料的冶炼方法 - Google Patents
金属基纳米复合材料的冶炼方法 Download PDFInfo
- Publication number
- CN1974817A CN1974817A CN 200610134764 CN200610134764A CN1974817A CN 1974817 A CN1974817 A CN 1974817A CN 200610134764 CN200610134764 CN 200610134764 CN 200610134764 A CN200610134764 A CN 200610134764A CN 1974817 A CN1974817 A CN 1974817A
- Authority
- CN
- China
- Prior art keywords
- metal
- composite material
- nanometer composite
- smelting process
- smelting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003723 Smelting Methods 0.000 title claims abstract description 26
- 239000002131 composite material Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000000843 powder Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 239000000919 ceramic Substances 0.000 claims abstract description 5
- 241001062472 Stokellia anisodon Species 0.000 claims description 5
- 239000012467 final product Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000011858 nanopowder Substances 0.000 claims 1
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- 229910003460 diamond Inorganic materials 0.000 abstract 1
- 239000010432 diamond Substances 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 22
- 239000010959 steel Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 9
- 239000002105 nanoparticle Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000012267 brine Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- 229910001315 Tool steel Inorganic materials 0.000 description 3
- 239000004411 aluminium Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 241001417490 Sillaginidae Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000002929 anti-fatigue Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
金属基纳米复合材料的冶炼方法,其特点是在冶炼过程中,直接将异质纳米粉体加入到冶炼炉中进行复合的冶炼方法。将占被冶炼的金属总量0.5‰至10%,粒度为1nm至10μm的金刚石粉或陶瓷粉加入到冶炼炉中冶炼即可。采用本发明的冶炼方法冶炼的金属具有全新的微观结构和优良的机械性能。与未采用本发明的冶炼方法冶炼的同牌号金属材料相比,其硬度、强度、耐磨性、抗腐蚀性均大幅度提高,抗机械冲击和热冲击以及抗疲劳性能也大大增强。
Description
技术领域
本发明涉及一种金属材料的冶炼方法,具体是涉及一种金属纳米复合材料的冶炼方法。
背景技术
随着国民经济的高速发展和人民生活水平的日益提高,对人类赖以生存的资源和能源消耗量迅速增加,资源和能源的缺乏成为阻碍经济长足发展的关键因素之一,并对人类生存的环境造成破坏和污染。因此,合理利用资源,降低能耗,研究开发新材料,开发新能源,已成为国策。纳米材料是新材料中的佼佼者,而纳米技术的发展和应用有利地推动了工农业生产的发展。目前大块可供工程使用的纳米金属及金属基纳米复合材料仍未开发成功。
发明内容
本发明的目的,是提供一种大块体,可供工程使用的金属基纳米复合材料的冶炼方法。
采用的技术方案是:
金属基纳米复合材料的冶炼方法是在采用常规金属冶炼过程中,将占被冶炼的金属总量0.5‰至10%,粒度为1nm至10μm的金刚石粉或陶瓷粉(也可以是异质其它金属粉)加入到冶炼炉中冶炼即可。
经本发明的纳米复合技术生产的金属基纳米复合材料的微观组织发生了很大的变化,晶粒超细化,以钢材为例,晶粒尺寸在10纳米到100纳米之间,同时出现了特殊的微观组织,这是由于纳米技术的存在,不仅改变了材料的结构,而且改变了材料的性能。
采用光谱实验方法分析了纳米颗粒在钢材内的存在形式,结果表明,从处理表面到材料内部,纳米颗粒的浓度逐渐降低,即,随着深度的改变,纳米颗粒产生浓度梯度,从而也使超级钢的力学性能产生连续梯度。
采用本发明方法生产的金属基纳米复合材料的力学特点:经测试钢材的表面硬度大幅度增加,如40Cr硬度可达HRC68、Cr12和Cr12MoV可达HRC70、高速钢可达HRC76。
表1 几种常见的材料经纳米复合技术处理后的表面硬度
材料 | 处理后的表面硬度(HRC) |
40Cr | 68 |
Cr12/Cr12MoV | 70 |
W18Cr4V | 76 |
65Mn | 64 |
纯铁 | 67 |
球墨铸铁 | 68 |
铝 | 59 |
钛及其合金 | 62 |
采用本发明的方法生产的金属基纳米复合材料的拉伸性能,以钢材为例:
纳米颗粒进入钢材内部,在热处理的过程中,在细化晶粒的同时,大大提高了钢材的强度。出于纳米复合超级钢的强化模式不同于一般的强化手段,其拉伸曲线也与一般的钢材不同,表现出了优异的塑性变形强化特点。对于15Mn这种普通低合金钢,经纳米复合处理后其最高强度超过2000MPa,可以满足高合金高强度钢的断裂强度要求。
采用本发明方法生产的金属基纳米复合材料的耐摩擦磨损性能。
由于纳米复合超级钢超高的表面硬度,使其具有良好的耐摩擦磨损性能。同渗碳处理的样品相比,纳米复合超级钢具有低的摩擦系数,这来自于纳米颗粒的高硬度和自润滑性能。纳米复合处理后20Cr2Ni4A的摩擦系数为0.12,大大小于渗碳处理后的0.4,相对应的磨损深度为5和35微米。
纳米复合钢材的其他特点
纳米复合超级钢还具有其他普通钢材所缺乏的优良特性:
(a)经纳米复合技术处理后,合金元素的成份发生变化,如高速工具钢中W、Mn、Mo等元素发生迁移,与纳米颗粒形成新的结合方式,对材料的性能产生重大的影响。
(b)钢材经纳米复合技术处理后出现了现在还不为人知的新相和新的铁基合金。
(c)经纳米复合技术处理后的钢材热处理性能优良,无淬火裂纹倾向,经纳米复合技术处理后,各种合金钢、工具钢、合金工具钢等均可在1000℃以上用盐水淬火而不产生裂纹。
(d)纳米复合处理技术的处理深度可达几十至一百毫米,甚至更深,且渗透速度高达2mm/hr。
(f)纳米颗粒的性能会对纳米复合超级钢的性能带来巨大的影响,使纳米复合超级钢具有纳米颗粒的部分性能。这里选择的纳米颗粒具有耐酸、碱和盐腐蚀的性能,使纳米复合超级钢也具有耐酸、碱和盐腐蚀的性能。初步的试验表明,纳米复合超级钢与基本材料相比,耐酸、碱和盐腐蚀的性能大大提高。
(g)经过纳米复合技术处理可以使普通钢材成为高硬度、高强度、低弹性模量、抗冲击、耐磨损、抗腐蚀、无渗透界面、超细晶粒(小于100nm)梯度或非梯度的纳米超级钢。
采用本发明的冶炼方法冶炼的金属具有全新的微观结构和优良的机械性能。与未采用本发明的冶炼方法冶炼的同牌号金属材料相比,其硬度、强度、耐磨性、抗腐蚀性均大幅度提高,抗机械冲击和热冲击以及抗疲劳性能也大大增强。
具体实施方式
实施例一
金属基纳米复合材料的冶炼方法,是在冶炼15Mn过程中,将占15Mn总重量0.5‰至10%,粒度为1nm至10μm的金刚石粉或陶瓷粉加入到冶炼炉中冶炼,出炉即为成品。
实施例二
金属基纳米复合材料的冶炼方法,是铝(Al)冶炼过程中,将占铝总重量0.5‰至10%,粒度为1nm至10μm的金刚石粉或陶瓷粉(或其它金属粉)加入到冶炼炉中冶炼,出炉即为成品。
Claims (2)
1、金属基纳米复合材料的冶炼方法,其特征是在冶炼过程中,直接将异质纳米粉体加入到冶炼炉中进行复合的冶炼方法。
2、根据权利要求1所述的金属基纳米复合材料的冶炼方法,其特征是将占被冶炼的金属总量0.5‰至10%,粒度为1nm至10μm的金刚石粉或陶瓷粉加入到冶炼炉中冶炼即可。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101347645A CN100457948C (zh) | 2006-12-14 | 2006-12-14 | 金属基纳米复合材料的冶炼方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101347645A CN100457948C (zh) | 2006-12-14 | 2006-12-14 | 金属基纳米复合材料的冶炼方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1974817A true CN1974817A (zh) | 2007-06-06 |
CN100457948C CN100457948C (zh) | 2009-02-04 |
Family
ID=38125162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101347645A Expired - Fee Related CN100457948C (zh) | 2006-12-14 | 2006-12-14 | 金属基纳米复合材料的冶炼方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100457948C (zh) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100432252C (zh) * | 2005-01-05 | 2008-11-12 | 中国科学院长春光学精密机械与物理研究所 | 制备纳米SiC增强铝基复合材料的方法 |
-
2006
- 2006-12-14 CN CNB2006101347645A patent/CN100457948C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN100457948C (zh) | 2009-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Effects of using (Ti, Mo) C particles to reduce the three-body abrasive wear of a low alloy steel | |
Wang et al. | Fabrication and properties of the TiC reinforced high-strength steel matrix composite | |
Huang et al. | Effect of TiC particles on three-body abrasive wear behaviour of low alloy abrasion-resistant steel | |
Tyagi et al. | Mechanical and tribological properties of AA7075-T6 metal matrix composite reinforced with ceramic particles and aloevera ash via Friction stir processing | |
Emamian et al. | Tribology characteristics of in-situ laser deposition of Fe-TiC | |
CN102912246B (zh) | 用于圆锥破碎机衬套上的高锰钢复合材料 | |
Tong et al. | Influence of oxides on the formation of self-lubricating layer and anti-wear performance during sliding | |
Gou et al. | Bending strength and wear behavior of Fe-Cr-CB hardfacing alloys with and without rare earth oxide nanoparticles | |
Zhang et al. | Effect of Cr on the microstructure and properties of TiC-TiB2 particles reinforced Fe-based composite coatings | |
Tong et al. | Effects of graphite shape on thermal fatigue resistance of cast iron with biomimetic non-smooth surface | |
Yasavol et al. | Wear properties of friction stir processed AISI D2 tool steel | |
CN102206828B (zh) | 一种抽油杆表面合金化高综合性能改性处理工艺 | |
Wang et al. | Effect of carbon content on abrasive impact wear behavior of Cr-Si-Mn low alloy wear resistant cast steels | |
Wang et al. | Relations of counterface materials with stability of tribo-oxide layer and wear behavior of Ti–6.5 Al–3.5 Mo–1.5 Zr–0.3 Si alloy | |
Wang et al. | Achieving excellent mechanical properties and wear resistance in Fe49Mn30Co10Cr10C1 interstitial high-entropy alloy via tuning composition and stacking fault energy by Nb doping | |
Noda et al. | Hard surfacing of TiAl intermetallic compound by plasma carburization | |
CN108070780A (zh) | 一种珠光体铬钼合金钢及其热处理方法 | |
Li et al. | High-temperature wear properties and microstructural characterization of 40CrNiMo structural steel treated by cryogenic laser peening | |
Ma et al. | Effect of MoS2 addition on the wear mechanism of laser cladding AISI M2 coatings | |
Wu et al. | Sliding wear behaviors of low alloy high strength martensite wear-resistant steels | |
Pellizzari | Influence of deep cryogenic treatment on the properties of conventional and PM high speed steels | |
Sebastián et al. | Advances in the Development of Carbidic ADI | |
Luo et al. | Effect of heat treatment on the microstructure, impact toughness and wear resistance of Fe-based/B4C composite coating by vacuum cladding | |
CN100457948C (zh) | 金属基纳米复合材料的冶炼方法 | |
Jia et al. | Effect of Shot Peening on Microstructures and High‐Temperature Tribological Properties of 4Cr9Si2 Valve Steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090204 Termination date: 20111214 |