CN1974480A - 一种导电负热膨胀陶瓷 - Google Patents
一种导电负热膨胀陶瓷 Download PDFInfo
- Publication number
- CN1974480A CN1974480A CN 200610165031 CN200610165031A CN1974480A CN 1974480 A CN1974480 A CN 1974480A CN 200610165031 CN200610165031 CN 200610165031 CN 200610165031 A CN200610165031 A CN 200610165031A CN 1974480 A CN1974480 A CN 1974480A
- Authority
- CN
- China
- Prior art keywords
- hours
- negative
- thermal expansion
- electrical conductivity
- zro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 6
- 239000000463 material Substances 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims abstract 2
- 238000000498 ball milling Methods 0.000 claims description 4
- 238000010791 quenching Methods 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 2
- 238000003836 solid-state method Methods 0.000 claims description 2
- 230000000171 quenching effect Effects 0.000 claims 2
- 238000005303 weighing Methods 0.000 claims 2
- 150000001875 compounds Chemical class 0.000 abstract description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 12
- 239000007769 metal material Substances 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 238000001308 synthesis method Methods 0.000 abstract description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 abstract 1
- 239000008188 pellet Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910000944 YbGaGe Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种导电负热膨胀陶瓷,属于无机非金属材料领域,特别涉及一种能够在400~700℃范围内使用的且具有导电性能负热膨胀陶瓷。其特征在于利用高温固相法制备Zr1-xYbxW2O8、0.0≤x≤0.1,初始原料为ZrO2、WO3以及Yb2O3;按照Zr1-xYbxW2O8称取符合化学剂量比的ZrO2、WO3以及Yb2O3,称量后的样品在乙醇溶液中球磨1~24小时,球磨后的粉体压制成片,在1100~1300℃温度范围内煅烧1~48小时,淬冷至室温,淬冷后的产物在乙醇溶液中球磨1~24小时后,压制成片,在1100~1300℃温度范围内烧结1~24小时,冷却后的样品即为具有导电性能的负膨胀材料Zr1-xYbxW2O8。本发明化合物合成方法简易,在很宽的温度范围内具有负膨胀特性,同时该化学物在400℃电导率增加到半导体区间。
Description
技术领域
本发明属于无机非金属材料领域,特别涉及一种能够在400~700℃范围内使用的且具有导电性能负热膨胀陶瓷。
背景技术
负膨胀材料具有很高的研究与实际应用价值,随着温度的变化这类材料的体积呈负膨胀特性。这类材料使用范围很广,从日用品到航空航天领域。目前,很多材料被报道具有负膨胀性能,如:立方的负热膨胀材料ZrW2O8,具有各向同性的负热膨胀性能,负膨胀系数为-8.7×10-6K-1;正交结构的Sc2(WO4)3,负膨胀系数为-6.5×10-6K-1;铜铁矿结构的CuLaO2也是具有负膨胀行为的材料,平均负膨胀系数为-6.4×10-6K-1;YbGaGe具有零膨胀性能。但是这些报道都仅集中于材料具有负膨胀性能,对材料同时是否具有其它的性能,至今未见相关的报道。目前,对于高温导电的精密仪器领域,采用普通导电材料制备的精密仪器由于各自的膨胀系数不相匹配,在高温下会由于材料膨胀的变化而引起仪器失衡,既降低了仪器的使用寿命,又影响了仪器的精度。所以,如果一种材料在已经具备负膨胀性能的同时还具有一些其它的性能,它的应用范围将大大增加,具备更高的开发价值。
发明内容
本发明目的在于研究一种既具有负膨胀性能,又在一定温度区间具有导电性能的功能材料。
一种导电负热膨胀陶瓷,其特征在于利用高温固相法制备Zr1-xYbxW2O8(0.0≤x≤0.1)粉体,初始原料为ZrO2、WO3以及Yb2O3。按照Zr1-xYbxW2O8称取符合化学剂量比的ZrO2、WO3以及Yb2O3,称量后的样品在乙醇溶液中球磨1~24小时使其充分混合,球磨后的粉体压制成片,在1100~1300℃温度范围内煅烧1~48小时,淬冷至室温,淬冷后的样品在乙醇溶液中球磨1~24小时后,压制成片,在1100~1300℃温度范围内烧结1~24小时,冷却后的样品即为具有导电性能的负膨胀材料Zr1-xYbxW2O8。
本发明化合物Zr0.90Yb0.10W2O8合成方法简易,在很宽的温度范围内具有负膨胀特性,同时该化学物在400℃电导率增加到半导体区间。
附图说明
图1为ZrW2O8化合物XRD图谱。
图2为300℃ZrW2O8化合物电导率。
图3为400℃ZrW2O8化合物电导率。
图4为500℃ZrW2O8化合物电导率。
图5为600℃ZrW2O8化合物电导率
图6为700℃ZrW2O8化合物电导率
图7为Zr0.90Yb0.10W2O8化合物XRD图谱
图8为Zr0.90Yb0.10W2O8化合物单胞参数与温度的关系
图9为300℃Zr0.90Yb0.10W2O8化合物电导率
图10为400℃Zr0.90Yb0.10W2O8化合物电导率
图11为500℃Zr0.90Yb0.10W2O8化合物电导率
图12为600℃Zr0.90Yb0.10W2O8化合物电导率
图13700℃Zr0.90Yb0.10W2O8化合物电导率
具体实施方式
实施例一:
利用此发明合成ZrW2O8。称取2.0995克ZrO2、7.9005克WO3,在乙醇溶液中球磨12小时后,粉体在80℃烘干,压制成片,于1200℃下煅烧20小时,淬冷至室温,淬冷后样品再次球磨10小时,压制成片,在1200℃烧结1小时,淬冷至室温,即得到负膨胀材料ZrW2O8。
图1说明ZrW2O8化合物为单一相。图2~图6为该化合物电导率与温度的变化关系,从图中可知电导率受温度影响较大,温度越高,该化合物的电导率越高。
实施例二:
利用此发明合成Zr0.90Yb0.10W2O8。称取1.8903克ZrO2、7.9036克WO3以及0.1925克Yb2O3,在乙醇溶液中球磨12小时后,粉体在80℃烘干,压制成片,于1200℃下煅烧20小时,淬冷后样品再次球磨10小时,压制成片,在1200℃烧结1小时,淬冷至室温,即得到负膨胀材料Zr0.90Yb0.10W2O8。
图7说明Zr0.90Yb0.10W2O8化合物为单一相。图8为该化合物单胞参数与温度的变化关系,从此图中可以看出单胞体积基本不受温度变化的影响,具有负膨胀材料特征。图9~图13为该化合物电导率与温度的变化关系,从图中可以知道,温度越高,该化合物的电导率越高。
Claims (1)
1.一种导电负热膨胀陶瓷,其特征在于利用高温固相法制备Zr1-xYbxW2O8、0.0≤x≤0.1,初始原料为ZrO2、WO3以及Yb2O3;按照Zr1-xYbxW2O8称取符合化学剂量比的ZrO2、WO3以及Yb2O3,称量后的样品在乙醇溶液中球磨1~24小时,球磨后的粉体压制成片,在1100~1300℃温度范围内煅烧1~48小时,淬冷至室温,淬冷后的产物在乙醇溶液中球磨1~24小时后,压制成片,在1100~1300℃温度范围内烧结1~24小时,冷却后的样品即为具有导电性能的负膨胀材料Zr1-xYbxW2O8。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101650318A CN100500611C (zh) | 2006-12-12 | 2006-12-12 | 一种导电负热膨胀陶瓷 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101650318A CN100500611C (zh) | 2006-12-12 | 2006-12-12 | 一种导电负热膨胀陶瓷 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1974480A true CN1974480A (zh) | 2007-06-06 |
CN100500611C CN100500611C (zh) | 2009-06-17 |
Family
ID=38124875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101650318A Expired - Fee Related CN100500611C (zh) | 2006-12-12 | 2006-12-12 | 一种导电负热膨胀陶瓷 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100500611C (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110591706A (zh) * | 2019-09-12 | 2019-12-20 | 天津大学 | 一种稀土离子掺杂立方相钨酸锆上转换纳米晶体及其制备方法 |
-
2006
- 2006-12-12 CN CNB2006101650318A patent/CN100500611C/zh not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110591706A (zh) * | 2019-09-12 | 2019-12-20 | 天津大学 | 一种稀土离子掺杂立方相钨酸锆上转换纳米晶体及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN100500611C (zh) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Achieved ultrahigh energy storage properties and outstanding charge–discharge performances in (Na0. 5Bi0. 5) 0.7 Sr0. 3TiO3-based ceramics by introducing a linear additive | |
Gao et al. | The mechanism for the enhanced piezoelectricity in multi-elements doped (K, Na) NbO3 ceramics | |
Li et al. | PE hysteresis loop going slim in Ba 0.3 Sr 0.7 TiO 3-modified Bi 0.5 Na 0.5 TiO 3 ceramics for energy storage applications | |
Hajra et al. | Lead-free flexible Bismuth Titanate-PDMS composites: A multifunctional colossal dielectric material for hybrid piezo-triboelectric nanogenerator to sustainably power portable electronics | |
Wu et al. | Synthesis and microwave dielectric properties of Zn 3 B 2 O 6 ceramics for substrate application | |
Wang et al. | Relaxor ferroelectric Bi0. 5Na0. 5TiO3–Sr0. 7Nd0. 2TiO3 ceramics with high energy storage density and excellent stability under a low electric field | |
Bochenek et al. | Multiferroic ceramics Pb (Fe 1/2 Nb 1/2) O 3 doped by Li | |
Ye et al. | Microstructures, piezoelectric properties and energy harvesting performance of undoped (K0. 5Na0. 5) NbO3 lead-free ceramics fabricated via two-step sintering | |
Wu et al. | A combinatorial improvement strategy to enhance the energy storage performances of the KNN–based ferroelectric ceramic capacitors | |
Zhang et al. | Bond, vibration and microwave dielectric characteristics of Zn1-x (Li0. 5Bi0. 5) xWO4 ceramics with low temperature sintering | |
Veselinović et al. | The effect of Sn for Ti substitution on the average and local crystal structure of BaTi1− xSnxO3 (0≤ x≤ 0.20) | |
Kumar et al. | Phase transformation behavior of Ca-doped zirconia sintered at different temperatures | |
Yadav et al. | High energy storage density and stable fatigue resistance of Na0. 46Bi0. 46Ba0. 05La0. 02Zr0. 03Ti0. 97-xSnxO3 ceramics | |
CN103922714A (zh) | 一种低介电常数多层电容器瓷料及其制备方法 | |
Hu et al. | Electrostrain Enhancement at Tricritical Point for BaTi 1− x Hf x O 3 Ceramics | |
CN101747051A (zh) | CaCu3Ti4O12陶瓷材料的低温烧结方法 | |
Cao et al. | High piezoelectricity in eco-friendly NaNbO3-based ferroelectric relaxor ceramics via phase and domain engineering | |
Ezzeldien et al. | Enhancement of energy storage and pyroelectric properties of (Na0. 5Bi0. 5) TiO3-SrTiO3-BaTiO3 ceramics by addition of (Ba0. 9B0. 1) TiO3 glass-phase | |
Seymour et al. | Thermal expansion of the orthorhombic phase in the Ln2TiO5 system | |
Wang et al. | Effect of sintering temperature and time on densification, microstructure and properties of the PZT/ZnO nanowhisker piezoelectric composites | |
CN1974480A (zh) | 一种导电负热膨胀陶瓷 | |
CN105254297A (zh) | 一种负热膨胀陶瓷材料ScxIn2-xW3O12及其制备方法 | |
Sumona et al. | Modification of structural, morphological, and dielectric properties of barium calcium titanate ceramics with yttrium addition | |
CN105272192B (zh) | 一种低介电常数ag特性多层瓷介电容器瓷料及其制备方法 | |
Sahu et al. | Structural investigation and dielectric studies on Mn substituted Pb (Zr0. 65Ti0. 35) O3 perovskite ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090617 Termination date: 20111212 |