CN1959400A - 电化学氨气传感器 - Google Patents
电化学氨气传感器 Download PDFInfo
- Publication number
- CN1959400A CN1959400A CN 200610145907 CN200610145907A CN1959400A CN 1959400 A CN1959400 A CN 1959400A CN 200610145907 CN200610145907 CN 200610145907 CN 200610145907 A CN200610145907 A CN 200610145907A CN 1959400 A CN1959400 A CN 1959400A
- Authority
- CN
- China
- Prior art keywords
- ammonia sensor
- electrochemical ammonia
- sensor according
- film
- electrochemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
本发明涉及一种电化学氨气传感器,包括壳体,在所述壳体内灌注有电解液,在所述壳体上设置有催化电极,所述催化电极是由纳米级的贵金属中加入三氧化钨,然后加入无水乙醇搅拌,最后加入聚四氟乙烯乳液,搅拌至絮凝成团状,经碾压制成薄膜,然后将制成的薄膜与聚四氟乙烯防水透气膜复合在一起,构成催化电极。本发明的电化学氨气传感器,在催化电极的制作中,由于采用了贵金属中加入三氧化钨的方式,克服了过去单一催化剂活性不高,易失活的现象,使用效果更好;此外,在电解液中,加入了碘化物,使得氨气的电极反应更快更易地进行,从而缩短了响应恢复时间,提高了传感器的稳定性和可靠性。
Description
技术领域
本发明涉及一种电化学氨气传感器。
背景技术
目前,国内厂家主要有长春应用化学研究所等。国内市场主要以进口CITY、MEMBRAPOR公司为主,尽管他们的产品性能比较优良,CITY的产品灵敏度不高,而MEMBRAPOR的恢复较慢,且灵敏度的衰降也较快。
发明内容
本发明克服了上述缺点,提供了一种催化活性高,不易失活的电化学氨气传感器。
本发明解决其技术问题所采取的技术方案是:一种电化学氨气传感器,包括壳体,在所述壳体内灌注有电解液,在所述壳体上设置有催化电极,所述催化电极是由纳米级的贵金属中加入三氧化钨,然后加入无水乙醇搅拌,最后加入聚四氟乙烯乳液,搅拌至絮凝成团状,经碾压制成薄膜,然后将制成的薄膜与聚四氟乙烯防水透气膜复合在一起,构成催化电极。
所述的电化学氨气传感器,所述贵金属为钌、铂、金、银或铑。
所述的电化学氨气传感器,所述贵金属为400-600mg,三氧化钨为50-200mg,无水乙醇为1.5-3ml,30%的聚四氟乙烯乳液0.15-0.3ml。
所述的电化学氨气传感器,将制成的薄膜在80-150摄氏度,加压与聚四氟乙烯透气膜覆合在一起。
所述的电化学氨气传感器,所述电解液由质量浓度为10-40%氯化锂溶液中加入质量浓度为4-15%碘化合物制成。
所述的电化学氨气传感器,所述碘化合物为碘化钠、碘化锂或碘化钾。
本发明的电化学氨气传感器,在催化电极的制作中,由于采用了贵金属中加入三氧化钨的方式,克服了过去单一催化剂活性不高,易失活的现象,使用效果更好;此外,在电解液中,加入了碘化物,使得氨气的电极反应更快更易地进行,从而缩短了响应恢复时间,提高了传感器的稳定性和可靠性。
具体实施方式
实施方式一
一种电化学氨气传感器,包括壳体,在所述壳体内灌注有电解液,在壳体上设置有催化电极,所述催化电极是由400mg纳米级的铂中加入100mg三氧化钨,然后加入2ml无水乙醇搅拌,最后加入0.2ml的聚四氟乙烯溶液,搅拌至絮凝成团状,经碾压制成薄膜,然后将制成的薄膜与聚四氟乙烯防水透气膜在80-150摄氏度的温度下,加压复合在一起,构成催化电极。聚四氟乙烯防水透气膜为现有技术的产品,可以直接购买。
在电化学氨气传感器中所使用的电解液是由20%浓度的氯化锂溶液加入5%浓度的碘化钠制成。
实施方式二
一种电化学氨气传感器,包括壳体,在所述壳体内灌注有电解液,在壳体上设置有催化电极,所述催化电极是600mg纳米级的金中加入200mg三氧化钨,然后加入3ml无水乙醇搅拌,最后加入0.3ml的聚四氟乙烯乳液,搅拌至絮凝成团状,经碾压制成薄膜,然后将制成的薄膜与聚四氟乙烯防水透气膜在80-150摄氏度的温度下,加压复合在一起,构成催化电极。聚四氟乙烯防水透气膜为现有技术的产品,可以直接购买。
在电化学氨气传感器中所使用的电解液是由40%浓度的氯化锂溶液加入10%浓度的碘化钾制成。
在本发明中,电解液可以是由10-40%浓度的氯化锂溶液中加入碘化钾、碘化锂、碘化钠或其它碘的化合物构成,其主要是为了利用碘离子,因此,碘的化合物均可以实现,优选碘化锂。
在本发明中,贵金属可以是金、银、铑、钌、铂等贵金属都行。
本发明的电化学氨气传感器的工作原理:氨气是一种易溶于水而较难被完全氧化的气体,即使是催化活性很高的贵金属催化剂,对氨气的氧化也是一个很缓慢的过程。故而要加入一种和氨气反应形成比氨气更易被氧化的电化学活性物质,本发明中选择碘的化合物。
具体的反应机理可用以下几个反应方程式表示:
氨气从环境中进入传感器后,迅速溶于水中,产生一个碱性环境,碘在碱性环境中易于发生如上式(2)的氧化还原反应,最后传感器的检测信号是碘离子重新转化成碘产生的电流。
Claims (6)
1.一种电化学氨气传感器,包括壳体,在所述壳体内灌注有电解液,在所述壳体上设置有催化电极,其特征在于:所述催化电极是由纳米级的贵金属中加入三氧化钨,然后加入无水乙醇搅拌,最后加入聚四氟乙烯乳液,搅拌至絮凝成团状,经碾压制成薄膜,然后将制成的薄膜与聚四氟乙烯防水透气膜复合在一起,构成催化电极。
2.根据权利要求1所述的电化学氨气传感器,其特征在于:所述贵金属为钌、铂、金、银或铑。
3.根据权利要求1或2所述的电化学氨气传感器,其特征在于:所述贵金属为400-600mg,三氧化钨为50-200mg,无水乙醇为1.5-3ml,30%的聚四氟乙烯乳液0.15-0.3ml。
4.根据权利要求1所述的电化学氨气传感器,其特征在于:将制成的薄膜在80-150摄氏度,加压与聚四氟乙烯透气膜覆合在一起。
5.根据权利要求1所述的电化学氨气传感器,其特征在于:所述电解液由质量浓度为10-40%氯化锂溶液中加入质量浓度为4-15%碘化合物制成。
6.根据权利要求5所述的电化学氨气传感器,其特征在于:所述碘化合物为碘化钠、碘化锂或碘化钾。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200610145907 CN1959400A (zh) | 2006-11-23 | 2006-11-23 | 电化学氨气传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200610145907 CN1959400A (zh) | 2006-11-23 | 2006-11-23 | 电化学氨气传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1959400A true CN1959400A (zh) | 2007-05-09 |
Family
ID=38071198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200610145907 Pending CN1959400A (zh) | 2006-11-23 | 2006-11-23 | 电化学氨气传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1959400A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104111252A (zh) * | 2013-04-19 | 2014-10-22 | 力合科技(湖南)股份有限公司 | 一种新型的氨气敏电极 |
CN106365204A (zh) * | 2016-11-03 | 2017-02-01 | 河北工业大学 | 用于氨气气敏传感器的三氧化钨敏感材料的制备方法 |
CN110849955A (zh) * | 2019-12-03 | 2020-02-28 | 浙江大学 | 一种高灵敏度的氨气气体传感器及其制备方法 |
-
2006
- 2006-11-23 CN CN 200610145907 patent/CN1959400A/zh active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104111252A (zh) * | 2013-04-19 | 2014-10-22 | 力合科技(湖南)股份有限公司 | 一种新型的氨气敏电极 |
CN104111252B (zh) * | 2013-04-19 | 2016-12-28 | 力合科技(湖南)股份有限公司 | 一种新型的氨气敏电极 |
CN106365204A (zh) * | 2016-11-03 | 2017-02-01 | 河北工业大学 | 用于氨气气敏传感器的三氧化钨敏感材料的制备方法 |
CN106365204B (zh) * | 2016-11-03 | 2017-09-12 | 河北工业大学 | 用于氨气气敏传感器的三氧化钨敏感材料的制备方法 |
CN110849955A (zh) * | 2019-12-03 | 2020-02-28 | 浙江大学 | 一种高灵敏度的氨气气体传感器及其制备方法 |
CN110849955B (zh) * | 2019-12-03 | 2022-01-04 | 浙江大学 | 一种高灵敏度的氨气气体传感器及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Upgrading organic compounds through the coupling of electrooxidation with hydrogen evolution | |
Naikoo et al. | Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for diabetes management-a review | |
Setoudeh et al. | Zeolitic imidazolate frameworks and cobalt-tannic acid nanocomposite modified carbon paste electrode for simultaneous determination of dopamine, uric acid, acetaminophen and tryptophan: Investigation of kinetic parameters of surface electrode and its analytical performance | |
Chatenet et al. | Gold is not a faradaic-efficient borohydride oxidation electrocatalyst: an online electrochemical mass spectrometry study | |
Nie et al. | Rapid synthesis of ZIF-8 nanocrystals for electrochemical detection of dopamine | |
Wang et al. | A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF) | |
Zheng et al. | Carbon nanohorns enhanced electrochemical properties of Cu-based metal organic framework for ultrasensitive serum glucose sensing | |
Arévalo et al. | Development of an electrochemical sensor for the determination of glycerol based on glassy carbon electrodes modified with a copper oxide nanoparticles/multiwalled carbon nanotubes/pectin composite | |
Miao et al. | Synergistic effect of bimetallic Ag and Ni alloys on each other's electrocatalysis to glucose oxidation | |
Wang et al. | Urea electrooxidation in alkaline environment: Fundamentals and applications | |
Rajendran et al. | Electrochemical detection of hydrogen peroxide using micro and nanoporous CeO2 catalysts | |
KR20140073007A (ko) | 이산화탄소 환원방법 및 이를 이용한 이산화탄소 환원장치 | |
Wei et al. | Z-scheme Cu2MoS4/CdS/In2S3 nanocages heterojunctions-based PEC aptasensor for ultrasensitive assay of fumonisin B1 via signal amplification with hollow PtPd–CoSnO3 nanozyme | |
Manibalan et al. | A facile synthesis of Sn-doped CeO2 nanoparticles: high performance electrochemical nitrite sensing application | |
Firdous et al. | CoPtx/γ-Al2O3 bimetallic nanoalloys as promising catalysts for hydrazine electrooxidation | |
CN1959400A (zh) | 电化学氨气传感器 | |
Xu et al. | Coupling Value‐Added Anodic Reactions with Electrocatalytic CO2 Reduction | |
Wayu et al. | A zinc oxide carbon nanotube based sensor for in situ monitoring of hydrogen peroxide in swimming pools | |
Mena et al. | Electrocatalytic processes for the valorization of CO2: synthesis of cyanobenzoic acid using eco-friendly strategies | |
Mena et al. | Electrochemical tuning of CO2 reactivity in ionic liquids using different cathodes: From oxalate to carboxylation products | |
Jagadeesh et al. | Ru (III), Os (VIII), Pd (II) and Pt (IV) catalysed oxidation of glycyl–glycine by sodium N‐chloro‐p‐toluenesulfonamide: comparative mechanistic aspects and kinetic modelling | |
Fratilescu et al. | One A3B porphyrin structure—Three successful applications | |
Yuan et al. | An enhanced chemiluminescence hybrids of luminol by sulfonated polyaniline decorated copper-based metal organic frame composite applicable to the measurement of hydrogen peroxide in a wide pH range | |
McDonagh et al. | 3D printed carbon black-polylactic acid/copper (CB-PLA/Cu) sensor for improved sustainability in monitoring photocatalytic hydrogen peroxide evolution | |
Priya et al. | Deep eutectic solvents-mediated synthesis of barium stannate/halloysite nanotubes-based nanocomposite for electrochemical detection of hazardous 4-nitroaniline |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |