CN1955459A - 用于风能涡轮转子的叶片 - Google Patents
用于风能涡轮转子的叶片 Download PDFInfo
- Publication number
- CN1955459A CN1955459A CNA2006101495350A CN200610149535A CN1955459A CN 1955459 A CN1955459 A CN 1955459A CN A2006101495350 A CNA2006101495350 A CN A2006101495350A CN 200610149535 A CN200610149535 A CN 200610149535A CN 1955459 A CN1955459 A CN 1955459A
- Authority
- CN
- China
- Prior art keywords
- air
- blade
- outlet slit
- air outlet
- slit hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract description 22
- 239000003570 air Substances 0.000 claims description 129
- 239000012080 ambient air Substances 0.000 claims description 5
- 238000004891 communication Methods 0.000 abstract description 5
- 238000007599 discharging Methods 0.000 abstract description 3
- 230000007704 transition Effects 0.000 description 9
- 239000007921 spray Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000006757 chemical reactions by type Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
- F03D1/0633—Rotors characterised by their aerodynamic shape of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
- F03D15/05—Transmission of mechanical power using hollow exhausting blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S415/00—Rotary kinetic fluid motors or pumps
- Y10S415/905—Natural fluid current motor
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种用于风能涡轮(10)的转子(12)的叶片(16)包括相对的上、下表面(20,22),连接上、下表面的相对的前缘和后缘(24,26),产生压缩空气的装置(64),以及至少一个空气出口孔(40),该空气出口孔(40)与压缩空气产生装置流体连通并且至少布置在上表面、下表面和后缘中的一者上,从而将压缩空气排到上、下表面和前缘、后缘中的至少一者的周围的空气中。
Description
技术领域
本发明涉及一种用于风能涡轮转子的叶片,并且尤其涉及一种在经受气流时影响叶片周围的空气动力边界层的系统。
背景技术
提高风能涡轮的整体性能的一个方法是改进转子叶片的空气动力特性。转子叶片的空气动力性能受到叶片根部和端部的不希望产生的涡流以及叶片上、下表面的过渡线的位置的限制,沿着这些过渡线气流从层流变为斋流,并不再能用于作用在叶片上的空气动力提升作用。尤其是,根部和端部的涡流是不利的,不仅是就空气动力性能而言,而且也是就风场中不希望的噪声的产生和影响邻近风能涡轮的斋流屏蔽而言。
发明内容
一方面,提供了一种用于风能涡轮转子的叶片。叶片包括:相对的上、下表面,连接上、下表面的相对的前缘和后缘,产生压缩空气的装置,以及至少一个空气出口孔,该空气出口孔与压缩空气产生装置流体连通并且至少布置在上表面、下表面和后缘中的一者上从而将压缩空气排到上表面、下表面、前缘和后缘中的至少一者的周围的空气中。
另一方面,提供了一种影响风能涡轮的转子叶片周围的空气流动的方法。该方法包括将压缩空气从至少一个空气出口孔排出并且排到沿转子叶片流动的气流的边界层中。
附图说明
图1示出了风能涡轮的总图,该风能涡轮具有用于排出压缩空气射流的空气出口孔的转子叶片,
图2以较大比例示出了转子叶片的端部,来描述根据本发明一实施例的压缩空气产生装置的基本结构特征,
图3示出了沿转子叶片的前缘方向在其端部处的视图,
图4示出了没有按照根据本发明的建议配备空气出口孔的情况下,风能涡轮的转子叶片的横截面图,以及
图5示出了具有空气出口孔的风能涡轮的转子叶片的横截面图,该空气出口孔用于朝着叶片的前缘方向将过渡从层流转变成斋流。
具体实施方式
在本发明的一个实施例中,用于排出压缩空气的至少一个出口孔布置在相对的上、下表面和/或叶片的后缘中的至少一者上,沿该后缘连接叶片的上、下表面,就象沿叶片前缘那样。利用产生压缩空气的装置产生压缩空气。借助于风扇或类似装置,或通过接收叶片在工作过程中经受的空气气流的空气,并且通过至少一个出口孔释放该空气作为压缩空气,该装置可操作为产生压缩空气的主动或被动装置。
在一个实施例中,至少一个出口孔布置在例如转子叶片的端部处,且布置在转子叶片的受沿表面流动的空气的吸入影响的表面中。围绕着端部,在吸入侧和叶片周围的压力侧之间有空气动力捷径。该捷径和风能涡轮的转子的旋转一起引起三维涡流的产生,该涡流则减小作用在叶片端部的空气动力升力。由于压缩空气喷向端部,就会阻止在端部周围产生涡流并且使该涡流从端部移开,从而端部的空气动力性能增强。对风能涡轮的叶片的根部也同样如此,也会产生三维涡流。此外,将这至少一个出口孔或多个出口孔布置在叶片的顶端或顶面,并朝叶片的后缘喷射压缩空气,这样会引起层流和斋流之间的分隔线朝后缘移动,这对于空气动力用途来说则会形成更有效使用的叶片表面。
因此,本发明的一方面涉及沿着叶片表面向着叶片周围的空气动力边界层区域的空气射流的分布和方向,在该区域产生了涡流和/或斋流,这样,叶片的总表面尺寸的能够用作空气动力用途的百分比增加,使转子叶片的空气动力性能更有效率。
在本发明的一个实施例中,压缩空气产生装置包括至少一个布置在叶片的前缘或布置在叶片或转子的另一位置处的空气进口孔。空气进口孔与这至少一个空气出口孔流体连通。作为可选的,压缩空气产生装置包括多个布置在前缘处并且与叶片的这至少一个空气出口孔或多个空气出口孔流体连通的空气进口孔。空气进口孔和每个空气出口孔的流体连通能够通过一个或多个流体管道来实现。为了改善这至少一个空气进口孔的进气性能,压缩空气产生装置还可以包括收集器,该收集器例如为狭窄通道,提供一个文丘里效应作用在进入空气上以向其提供压力。
此外,配备有用于控制从一个空气出口孔或多个出口孔排出的压缩空气的特定流速和特定相对压力的控制装置,例如流量阀,挡板,流量调节器,流动隔板,柔性弹性管道等。借助于该控制装置,有利地,可选择地关闭空气出口孔的单个孔,这取决于围绕叶片流动的空气气流。
本发明的另一方面,压缩空气产生装置包括将压缩空气吹出这至少一个空气出口孔的风扇。该风扇能够经由布置在叶片前缘,或者布置在叶片或转子的另一位置处的空气进口孔而进气。另一方面,除前述的主动压缩空气产生装置之外,风扇也配置作为压缩空气产生装置的一个元件。风扇的出口孔能够可选地进行开启或关闭,从而将由风扇产生的压缩空气加到从被动压缩空气产生装置的空气进口孔产生的压缩空气的气流中。
此外,压缩空气通过至少一个空气出口孔排出,为了产生特定的空气出口孔射流张开形态,或在特定涡流方向产生特定量的射流涡流,该空气出口孔的特征为,具有至少一个终端或至少一个喷嘴形状。
如上所述,本发明可应用到作用型和反作用型的风能涡轮中,也就是可应用到具有水平或竖直旋转轴线的风能涡轮中。更具体地,图1示出了具有根据一个实施例设计的转子叶片的风能涡轮10的整体结构。风能涡轮10包括具有轴心14的转子12,三个转子叶片16从该轴心14沿径向延伸。在可替换的实施例中,转子叶片的数目,能够多于或少于三个。转子12布置在风能涡轮10的机舱上(未示出),该机舱由塔架18支承。机舱能够围绕一个竖直轴线转动,同时,转子12围绕一个水平轴转动。因此,图1的风能涡轮10是作用型的。然而,本发明也能应用到反作用型的风能涡轮的转子上。
每个转子叶片16都包括一个上表面20和一个相对的下表面22(在图1中未示出,但在图3至图5中绘出了),相对于转子12的转动方向28的一个前缘24以及一个相对的后缘26。每个转子叶片16还包括一个根部30以及叶片16的径向端部32,叶片16通过该根部30与轴心14连接。从图1可以看出,出口孔40、42和44的分叉组34、36和38布置在每个叶片16的上表面20上。在可替换的实施例中,叶片16可以是多于或少于三组并且每组可以包括多于和少于图1中所绘出的孔的数量。在进一步的实施例中,组34、36和38和孔40、42和44可以与图1中所绘出的布置不同。
在图2和图3中更详细地示出了在叶片16的端部32处的组34的空气出口孔40的布置。从图3可以看出,在叶片16的端部32处有布置在叶片16的前缘24中的空气进口孔46。然而,需要注意的是,该空气进口孔46也可以布置在前缘24的不同部分中。空气进口孔46与每个空气出口孔40流体连通,在图2中用通道48示出,单个流体导管从该通道48延伸,通向单个空气出口孔40。作为可替换地,所有的空气出口孔40都能布置在一个公共空气通道内。尤其从图3可以看出,空气进口孔40被引导到叶片16的端部32上。在转子12的工作过程中,空气通过空气进口孔46进入端部32并且被引导着通过流体管道50,并如图3中的箭头52所示流出空气出口孔40。单个空气气流52防止叶片16的端部32周围的涡流的产生,从而端部32周围的上、下表面20和22的空气气流更成层流化,并且,因此,能够有效地用作空气动力升力。
在一个实施例中,通过在空气进口孔46处布置一个文丘里收集器54来改善空气进气性能和对通过孔引入的空气的压缩。经由该变窄通道结构空气被推入通道48内,就改善空气的压缩。
在一个实施例中,选择性地关闭和开启单个空气出口孔。因此,如图2所示,布置多个与每个空气出口孔40相关的阀56。在一个实施例中,用一个控制单元58控制阀56。
此外,在一个实施例中,转子叶片16包括风扇60,该风扇布置在转子叶片16内、或轴心14内、或风能涡轮10的内部或外部的任何其它位置中的一者中,用来产生引导到空气出口孔40中的主动空气气流。控制风扇60和关/开挡板62的控制单元在图2的实施例中也控制阀56。当然还需要注意,在没有风扇60的情况下,由空气进口孔56和空气出口孔40连同通道48和流体管道50构成的压缩空气产生装置64也能够工作。
如图2和图3所示,用于将压缩空气排出空气出口孔40的内部流体连通系统与主动和被动系统的组合相关。在没有风扇等的情况下,被动型流体连通系统包括位于进口孔46和出口孔40之间的流体连通;而主动型流体连通系统包括与空气进口孔46和出口孔40流体连通的装电动机的风扇。不考虑主动或被动型流体连通系统,在一个实施例中,将出口孔40设计成喷嘴,以象空气喷射一样喷射压缩空气。
沿着叶片16的上表面20且垂直于转子叶片16所经受的气流,从空气出口孔40喷出压缩空气射流52,通过这种压缩空气射流52,减少和/或阻止在转子叶片16的端部32产生涡流。将图1的空气出口孔42布置在上表面20中,距离后缘26比距离前缘24更近,通过这种空气出口孔42,可能沿叶片16朝着它的后缘26,将过渡从层流转移成斋流。在图4和图5中描述了该现象。在图4中示出了没有出口孔46时的正常状态。作为层流的气流66沿上表面20和下表面22向上流到层流变为斋流的过渡68、70。图5示出了借助于空气出口孔42,压缩空气射流72沿上表面20喷向后缘28,从而上表面20处的过渡68朝着后缘26向后转移,导致用作空气动力提升的表面积百分比增加。
在叶片16的前缘24中布置附加空气进口孔(未示出),和/或由风扇60或配备在风能涡轮10中的另一风扇主动产生空气,通过这些方式,能够吸入通过空气出口孔42而喷出的空气。
叶片16的根部30处的空气出口孔44可进行与图4和图5所示的、通过空气出口孔42的过渡的转移类似的操作。
尽管根据各个具体实施例说明了本发明,然而本领域技术人员将会意识到,在权利要求的精神和范围内可以做出各种修改来实现本发明。
零件明细表
10 | 风能涡轮 |
12 | 转子 |
14 | 轴心 |
16 | 叶片 |
18 | 塔架 |
20 | 上表面 |
22 | 下表面 |
24 | 前缘 |
26 | 后缘 |
28 | 转动方向 |
30 | 根部 |
32 | 端部 |
34 | 组 |
36 | 组 |
38 | 组 |
40 | 空气出口孔 |
42 | 空气出口孔 |
44 | 空气出口孔 |
46 | 空气进口孔 |
48 | 通道 |
50 | 流体管道 |
52 | 空气射流 |
54 | 文丘里收集器 |
56 | 阀 |
58 | 控制单元 |
60 | 风扇 |
62 | 关/开挡板 |
64 | 空气产生装置 |
66 | 气流 |
68 | 过渡 |
70 | 过渡 |
72 | 空气射流 |
Claims (10)
1.一种用于风能涡轮(10)的转子(12)的叶片(16),所述叶片包括:
相对的上、下表面(20,22);
连接所述上、下表面的相对的前缘和后缘(24,26);
产生压缩空气的装置(64);以及
至少一个空气出口孔(40),其与所述压缩空气产生装置流体连通并且至少布置在所述上表面、所述下表面和所述后缘中的一者上,从而将压缩空气排到所述上、下表面和所述前缘、后缘中的至少一者的周围的空气中。
2.根据权利要求1所述的叶片(16),还包括布置在所述前缘、后缘(24,26)的端部处的根部(30)和端部(32),所述至少一个空气出口孔(40)布置在所述根部和所述端部中的至少一者的所述上、下表面(20,22)中的至少一者上。
3.根据权利要求1所述的叶片(16),其中,所述压缩空气产生装置(64)包括至少一个布置在所述前缘(24)上并且与所述至少一个空气出口孔(40)流体连通的空气进口孔(46)。
4.根据权利要求3所述的叶片(16),其中,有多个空气出口孔(40),每个所述出口孔通过至少一个流体管道(50)与所述至少一个空气进口孔(46)流体连通。
5.根据权利要求3所述的叶片(16),其中,所述压缩空气产生装置(64)还包括一个布置在所述至少一个空气进口孔(46)处的收集器。
6.根据权利要求4所述的叶片(16),其中,所述压缩空气产生装置(64)还包括一个布置在所述至少一个空气进口孔(46)处的收集器。
7.根据权利要求1所述的叶片(16),其中,所述压缩空气产生装置(64)包括用于将压缩空气从所述至少一个空气出口孔(40)吹出的风扇(60)。
8.根据权利要求7所述的叶片(16),其中,所述风扇(60)的出口与所述至少一个空气出口孔(40)流体连通,并且其中,为用所述风扇吸入空气而配置所述风扇的进口孔。
9.根据权利要求7所述的叶片(16),其中,所述风扇(60)的所述进口孔与压缩空气产生装置(64)的所述至少一个空气进口孔(46)中的至少一个流体连通。
10.根据权利要求8所述的叶片(16),其中,所述风扇(60)的出口与所述至少一个空气出口孔(40)流体连通,并且其中,为用所述风扇吸入空气配置所述风扇的进口孔。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/259899 | 2005-10-27 | ||
US11/259,899 US7354247B2 (en) | 2005-10-27 | 2005-10-27 | Blade for a rotor of a wind energy turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1955459A true CN1955459A (zh) | 2007-05-02 |
CN1955459B CN1955459B (zh) | 2011-08-24 |
Family
ID=37684954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006101495350A Expired - Fee Related CN1955459B (zh) | 2005-10-27 | 2006-10-27 | 用于风能涡轮转子的叶片 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7354247B2 (zh) |
EP (1) | EP1780408B1 (zh) |
CN (1) | CN1955459B (zh) |
BR (1) | BRPI0604707A (zh) |
DK (1) | DK1780408T3 (zh) |
MX (1) | MXPA06012371A (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102052265A (zh) * | 2009-11-05 | 2011-05-11 | 通用电气公司 | 用于风力涡轮的主动流动控制系统 |
CN102052264A (zh) * | 2009-11-05 | 2011-05-11 | 通用电气公司 | 组装风力涡轮机转子叶片中的空气分配系统的系统和方法 |
CN102052267A (zh) * | 2009-11-04 | 2011-05-11 | 通用电气公司 | 从风力涡轮机叶片表面或向其提供流体流的系统和方法 |
CN102094765A (zh) * | 2009-12-10 | 2011-06-15 | 通用电气公司 | 组装用于风力涡轮转子叶片的空气分配系统的系统和方法 |
CN102588205A (zh) * | 2011-01-04 | 2012-07-18 | 通用电气公司 | 操纵跨过风力涡轮机转子叶片的边界层的系统和方法 |
CN101334004B (zh) * | 2007-06-25 | 2013-04-03 | 通用电气公司 | 使用局部化感测和控制降低紊流风场中的功率损耗 |
CN105658954A (zh) * | 2014-09-22 | 2016-06-08 | 最优叶片有限公司 | 风能设备转子叶片 |
CN111472927A (zh) * | 2020-04-09 | 2020-07-31 | 太原科技大学 | 一种主动减负的大型风力发电机叶片 |
CN111577531A (zh) * | 2020-06-28 | 2020-08-25 | 上海海事大学 | 用于风力发电机的鲨鱼鳃式叶片减阻结构、叶片及制造方法 |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070231151A1 (en) * | 2005-10-10 | 2007-10-04 | General Electric Company | Active flow control for wind turbine blades |
CA2674306C (en) * | 2007-01-05 | 2014-05-13 | Stefano Bove | Wind turbine blade with lift-regulating means in form of slots or holes |
NL2000821C2 (nl) * | 2007-08-17 | 2009-02-18 | Stichting Energie | Windturbine en rotorblad. |
NL2000819C2 (nl) * | 2007-08-17 | 2009-02-18 | Stichting Energie | Windturbine en rotorblad. |
US20100068431A1 (en) * | 2008-09-17 | 2010-03-18 | Vishal Bansal | Article and method for forming an article |
US9239039B2 (en) * | 2008-10-27 | 2016-01-19 | General Electric Company | Active circulation control of aerodynamic structures |
US20120045329A1 (en) * | 2009-02-10 | 2012-02-23 | West Virginia University | Method for circulation controlled vertical axis and turbines |
WO2010093621A1 (en) * | 2009-02-10 | 2010-08-19 | West Virginia University | Method for circulation controlled vertical axis wind turbines |
US7942640B2 (en) * | 2009-03-19 | 2011-05-17 | General Electric Company | Method and apparatus for use in protecting wind turbine blades from lightning damage |
CN101886612A (zh) * | 2009-05-11 | 2010-11-17 | 上海神飞能源科技有限公司 | 调整风力发动机叶片空气动力学特性的方法 |
US8444383B1 (en) * | 2009-05-29 | 2013-05-21 | Glenn James Baker | Wind turbine with internal ram air turbine |
GB0914591D0 (en) * | 2009-08-21 | 2009-09-30 | Rolls Royce Plc | Fluidfoil tip vortex disruption |
US8425190B2 (en) * | 2009-10-26 | 2013-04-23 | United Ship Design And Development Center | Pressure relief device |
WO2011053119A1 (en) * | 2009-10-28 | 2011-05-05 | Actiflow B.V. | Wind turbine blade |
US8321062B2 (en) * | 2009-11-05 | 2012-11-27 | General Electric Company | Systems and method for operating a wind turbine having active flow control |
US8047783B2 (en) * | 2009-11-05 | 2011-11-01 | General Electric Company | Systems and method for operating an active flow control system |
US8092172B2 (en) | 2009-11-05 | 2012-01-10 | General Electric Company | Method for operating a wind turbine with reduced blade fouling |
US8221075B2 (en) * | 2009-11-05 | 2012-07-17 | General Electric Company | Systems and method for operating a wind turbine having active flow control |
US7931445B2 (en) * | 2009-11-05 | 2011-04-26 | General Electric Company | Apparatus and method for cleaning an active flow control (AFC) system of a wind turbine |
US20110211950A1 (en) * | 2009-11-12 | 2011-09-01 | Remco International, Inc. | Method of dynamic energy-saving superconductive propeller interaction with a fluid medium |
US10137542B2 (en) | 2010-01-14 | 2018-11-27 | Senvion Gmbh | Wind turbine rotor blade components and machine for making same |
DK2752577T3 (da) | 2010-01-14 | 2020-06-08 | Senvion Gmbh | Vindmøllerotorbladkomponenter og fremgangsmåder til fremstilling heraf |
WO2011101847A2 (en) * | 2010-02-16 | 2011-08-25 | Technion Research And Development Foundation Ltd. | Flow control on a vertical axis wind turbine (vawt) |
US20110206531A1 (en) * | 2010-02-22 | 2011-08-25 | Desktop Aeronautics | Efficient low-cost wind energy using passive circulation control |
US8449255B2 (en) * | 2010-03-21 | 2013-05-28 | Btpatent Llc | Wind turbine blade system with air passageway |
US20110229329A1 (en) * | 2010-03-22 | 2011-09-22 | Occhipinti Anthony C | Propeller augmentation |
US8016560B2 (en) * | 2010-09-17 | 2011-09-13 | General Electric Company | Wind turbine rotor blade with actuatable airfoil passages |
US20120082562A1 (en) * | 2010-10-05 | 2012-04-05 | Kotler Andrey | Wind turbine |
EP2649310B1 (en) * | 2010-12-09 | 2016-06-22 | Ramot at Tel Aviv University, Ltd. | Method and system of providing fluid flow for a rotor |
US8267653B2 (en) * | 2010-12-21 | 2012-09-18 | General Electric Company | System and method of operating an active flow control system to manipulate a boundary layer across a rotor blade of a wind turbine |
US20110211952A1 (en) * | 2011-02-10 | 2011-09-01 | General Electric Company | Rotor blade for wind turbine |
US9133819B2 (en) | 2011-07-18 | 2015-09-15 | Kohana Technologies Inc. | Turbine blades and systems with forward blowing slots |
US9090343B2 (en) * | 2011-10-13 | 2015-07-28 | Sikorsky Aircraft Corporation | Rotor blade component cooling |
ES2704629T3 (es) * | 2011-11-23 | 2019-03-19 | Lm Wind Power Int Tech Ii Aps | Pala de turbina eólica |
JP5594740B2 (ja) * | 2011-12-28 | 2014-09-24 | 株式会社日本製鋼所 | 風力発電用ブレードおよび風力発電装置 |
CN102619572B (zh) * | 2012-03-21 | 2016-06-01 | 朱晓义 | 叶轮及采用该叶轮的动力装置 |
KR101460188B1 (ko) | 2012-12-07 | 2014-11-10 | 전기재 | 발전장치용 풍차 날개 |
CN104747241A (zh) * | 2015-01-23 | 2015-07-01 | 朱晓义 | 一种压力装置及涡轮发动机 |
WO2016078537A1 (zh) * | 2014-11-17 | 2016-05-26 | 朱晓义 | 一种动力装置以及汽车的发动机 |
EP3034871A1 (en) * | 2014-12-17 | 2016-06-22 | Siemens Aktiengesellschaft | Rotor blade with an opening at the tip section |
US20160177922A1 (en) * | 2014-12-22 | 2016-06-23 | Siemens Aktiengesellschaft | Trailing edge jets on wind turbine blade for noise reduction |
US10302064B2 (en) * | 2015-07-30 | 2019-05-28 | The Boeing Company | Methods and systems for rotary wing active flow control |
WO2017048683A1 (en) * | 2015-09-17 | 2017-03-23 | Sikorsky Aircraft Corporation | Stress reducing holes |
US10240579B2 (en) * | 2016-01-27 | 2019-03-26 | General Electric Company | Apparatus and method for aerodynamic performance enhancement of a wind turbine |
DE102016123412A1 (de) * | 2016-12-05 | 2018-06-07 | Wobben Properties Gmbh | Rotorblatt für eine Windenergieanlage und Windenergieanlage |
US11472536B1 (en) * | 2017-02-06 | 2022-10-18 | Khaled Abdullah Alhussan | System to control flow separation over an airfoil |
US10371121B1 (en) * | 2017-02-21 | 2019-08-06 | Khaled Abdullah Alhussan | Wind turbine blade with a passive porous medium for flow separation control |
DE102017112742A1 (de) * | 2017-06-09 | 2018-12-13 | Wobben Properties Gmbh | Rotorblatt für eine Windenergieanlage und Windenergieanlage |
US10683076B2 (en) | 2017-10-31 | 2020-06-16 | Coflow Jet, LLC | Fluid systems that include a co-flow jet |
GB2600584B (en) | 2019-07-23 | 2024-03-06 | Coflow Jet Llc | Fluid systems and methods that address flow separation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2408788A (en) * | 1939-06-16 | 1946-10-08 | Ludington Charles Townsend | Airfoil |
US5791601A (en) * | 1995-08-22 | 1998-08-11 | Dancila; D. Stefan | Apparatus and method for aerodynamic blowing control using smart materials |
WO2002025109A1 (fr) * | 2000-09-20 | 2002-03-28 | Georges Boulisset | Pales creuses reactives pour eolienne |
WO2003039949A2 (en) * | 2001-10-18 | 2003-05-15 | Dragutin Bosatlic | Wing with lift enhancement by internal air flow |
WO2004081374A1 (fr) * | 2003-02-12 | 2004-09-23 | Georges Boulisset | Dispositif pour ameliiorer le rendement des pales d'eolienne |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB596367A (en) * | 1944-05-23 | 1948-01-02 | Roger Wolcott Griswold O | Improvements in airfoils |
US3005496A (en) * | 1959-08-24 | 1961-10-24 | Hiller Aircraft Corp | Airfoil boundary layer control means |
US3480234A (en) * | 1967-08-18 | 1969-11-25 | Lockheed Aircraft Corp | Method and apparatus for modifying airfoil fluid flow |
US3692259A (en) * | 1970-06-26 | 1972-09-19 | Shao Wen Yuan | Wing-tip vortices control |
US4697769A (en) | 1984-04-23 | 1987-10-06 | Flow Industries, Inc. | Method and apparatus for controlling bound vortices in the vicinity of lifting surfaces |
GB8713097D0 (en) | 1987-06-04 | 1987-07-08 | Adkins R C | Aerofoil/hydrofoil |
US5297764A (en) * | 1993-03-15 | 1994-03-29 | Haney William R | Air foil providing vortex attenuation |
US5632599A (en) | 1996-06-03 | 1997-05-27 | Prime Energy Corporation | Turbine with circumferential support and stationary pressure release means |
US5938404A (en) * | 1997-06-05 | 1999-08-17 | Mcdonnell Douglas Helicopter Company | Oscillating air jets on aerodynamic surfaces |
IL121164A (en) * | 1997-06-26 | 2002-03-10 | Univ Ramot | Airfoil with dynamic stall control by oscillatory forcing |
US6203269B1 (en) | 1999-02-25 | 2001-03-20 | United Technologies Corporation | Centrifugal air flow control |
US6109566A (en) * | 1999-02-25 | 2000-08-29 | United Technologies Corporation | Vibration-driven acoustic jet controlling boundary layer separation |
US6412731B1 (en) | 1999-12-23 | 2002-07-02 | Edwin Zenith Gabriel | Simplified buoyancy system for avoiding aircraft crashes |
DE10126814A1 (de) | 2001-06-01 | 2003-03-20 | Sen Alexander Faller | Windradrotor |
CN1555460A (zh) | 2001-09-19 | 2004-12-15 | 张近锡 | 风车叶片和利用风车叶片产生风能的设备 |
US20030201367A1 (en) | 2002-04-24 | 2003-10-30 | Saiz Manuel Munoz | Process for the recovery of the energy from the air in pressurised areas of aircraft |
US6849964B2 (en) | 2002-09-13 | 2005-02-01 | Axis Usa, Inc. | Wind powered energy generating machine |
RU2218477C1 (ru) * | 2002-12-30 | 2003-12-10 | ООО "Научно-производственное предприятие "Триумф" | Способ повышения эффективности лопасти ротора ветроэнергетической установки (варианты) |
US6887031B1 (en) | 2004-03-16 | 2005-05-03 | Angus J. Tocher | Habitat friendly, pressure conversion, wind energy extraction |
US7134631B2 (en) | 2004-06-10 | 2006-11-14 | Loth John L | Vorticity cancellation at trailing edge for induced drag elimination |
US20070092680A1 (en) | 2005-10-26 | 2007-04-26 | Sterling Chaffins | Laser writable media substrate, and systems and methods of laser writing |
-
2005
- 2005-10-27 US US11/259,899 patent/US7354247B2/en active Active
-
2006
- 2006-10-26 DK DK06255505.7T patent/DK1780408T3/en active
- 2006-10-26 BR BRPI0604707-6A patent/BRPI0604707A/pt not_active IP Right Cessation
- 2006-10-26 EP EP20060255505 patent/EP1780408B1/en not_active Not-in-force
- 2006-10-26 MX MXPA06012371A patent/MXPA06012371A/es active IP Right Grant
- 2006-10-27 CN CN2006101495350A patent/CN1955459B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2408788A (en) * | 1939-06-16 | 1946-10-08 | Ludington Charles Townsend | Airfoil |
US5791601A (en) * | 1995-08-22 | 1998-08-11 | Dancila; D. Stefan | Apparatus and method for aerodynamic blowing control using smart materials |
WO2002025109A1 (fr) * | 2000-09-20 | 2002-03-28 | Georges Boulisset | Pales creuses reactives pour eolienne |
WO2003039949A2 (en) * | 2001-10-18 | 2003-05-15 | Dragutin Bosatlic | Wing with lift enhancement by internal air flow |
WO2004081374A1 (fr) * | 2003-02-12 | 2004-09-23 | Georges Boulisset | Dispositif pour ameliiorer le rendement des pales d'eolienne |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101334004B (zh) * | 2007-06-25 | 2013-04-03 | 通用电气公司 | 使用局部化感测和控制降低紊流风场中的功率损耗 |
CN102052267A (zh) * | 2009-11-04 | 2011-05-11 | 通用电气公司 | 从风力涡轮机叶片表面或向其提供流体流的系统和方法 |
CN102052265A (zh) * | 2009-11-05 | 2011-05-11 | 通用电气公司 | 用于风力涡轮的主动流动控制系统 |
CN102052264A (zh) * | 2009-11-05 | 2011-05-11 | 通用电气公司 | 组装风力涡轮机转子叶片中的空气分配系统的系统和方法 |
CN102052265B (zh) * | 2009-11-05 | 2015-05-06 | 通用电气公司 | 用于风力涡轮的主动流动控制系统 |
CN102052264B (zh) * | 2009-11-05 | 2015-02-25 | 通用电气公司 | 组装风力涡轮机转子叶片中的空气分配系统的系统和方法 |
CN102094765B (zh) * | 2009-12-10 | 2014-09-24 | 通用电气公司 | 组装用于风力涡轮转子叶片的空气分配系统的系统和方法 |
CN102094765A (zh) * | 2009-12-10 | 2011-06-15 | 通用电气公司 | 组装用于风力涡轮转子叶片的空气分配系统的系统和方法 |
CN102588205A (zh) * | 2011-01-04 | 2012-07-18 | 通用电气公司 | 操纵跨过风力涡轮机转子叶片的边界层的系统和方法 |
CN105658954A (zh) * | 2014-09-22 | 2016-06-08 | 最优叶片有限公司 | 风能设备转子叶片 |
CN105658954B (zh) * | 2014-09-22 | 2019-06-14 | 最优叶片有限公司 | 风能设备转子叶片 |
CN111472927A (zh) * | 2020-04-09 | 2020-07-31 | 太原科技大学 | 一种主动减负的大型风力发电机叶片 |
CN111577531A (zh) * | 2020-06-28 | 2020-08-25 | 上海海事大学 | 用于风力发电机的鲨鱼鳃式叶片减阻结构、叶片及制造方法 |
WO2022001691A1 (zh) * | 2020-06-28 | 2022-01-06 | 上海海事大学 | 用于风力发电机的鲨鱼鳃式叶片减阻结构、叶片及制造方法 |
CN111577531B (zh) * | 2020-06-28 | 2024-04-05 | 上海海事大学 | 用于风力发电机的鲨鱼鳃式叶片减阻结构、叶片及制造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1780408A1 (en) | 2007-05-02 |
MXPA06012371A (es) | 2007-04-26 |
US7354247B2 (en) | 2008-04-08 |
BRPI0604707A (pt) | 2007-08-28 |
DK1780408T3 (en) | 2015-06-29 |
CN1955459B (zh) | 2011-08-24 |
US20070098552A1 (en) | 2007-05-03 |
EP1780408B1 (en) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1955459B (zh) | 用于风能涡轮转子的叶片 | |
CN1908383B (zh) | 一种燃气轮机的在线的压缩机水洗系统 | |
KR101209727B1 (ko) | 안티서지밸브를 갖는 터보장치 | |
EP2072398A3 (en) | Nacelle assembly having inlet bleed | |
KR101950862B1 (ko) | 윈드 터빈 회전자 블레이드 | |
CN101936310A (zh) | 无扇叶风扇 | |
SE525924C2 (sv) | Munstycke samt metod för rengöring av gasturbinkompressorer | |
EP1900924A3 (en) | Bleed valve outlet flow deflector | |
US8702042B2 (en) | Flow body, in particular for aircraft | |
EP1793086A3 (en) | Turbine blade | |
CN102052265A (zh) | 用于风力涡轮的主动流动控制系统 | |
EP1780378A3 (en) | Variable geometry inlet guide vane | |
US20150285134A1 (en) | Compressor stage of a turbocharger with flow amplifier | |
WO2011155381A1 (ja) | 吸引捕集装置 | |
WO2008017567A1 (de) | Lufteinlass eines strahltriebwerks | |
CN112649173A (zh) | 一种模拟火星低压低密度尘暴环境的回流型风洞装置 | |
US6763651B2 (en) | Active system for wide area suppression of engine vortex | |
CN113153815A (zh) | 一种基于多孔的超声速吸附式压气机叶片 | |
CN105625238B (zh) | 清洁用吸嘴、气力系统和清洁车 | |
CN105020757B (zh) | 一种可形成人造龙卷风的吸油烟机风机结构 | |
CN1920309A (zh) | 柜式空调室内机的离心风扇 | |
US11414177B2 (en) | Fluidic actuator for airfoil | |
KR102698939B1 (ko) | 공기 후드 장치 | |
CN101050924A (zh) | 出塔气流噪声得到改善的方法及其空气冷却塔 | |
EP4286683A1 (en) | Trailing edge noise reduction using an airfoil with an internal bypass channel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110824 |