CN1954995A - 风涡轮转子叶片的制造方法 - Google Patents

风涡轮转子叶片的制造方法 Download PDF

Info

Publication number
CN1954995A
CN1954995A CNA2006101428784A CN200610142878A CN1954995A CN 1954995 A CN1954995 A CN 1954995A CN A2006101428784 A CNA2006101428784 A CN A2006101428784A CN 200610142878 A CN200610142878 A CN 200610142878A CN 1954995 A CN1954995 A CN 1954995A
Authority
CN
China
Prior art keywords
resin
core body
microporous barrier
deck
fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006101428784A
Other languages
English (en)
Inventor
J·W·巴克惠斯
A·比伦
S·范布罗伊格尔
J·利文斯顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37685009&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1954995(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1954995A publication Critical patent/CN1954995A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • B29C70/865Incorporated in coherent impregnated reinforcing layers, e.g. by winding completely encapsulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49337Composite blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Moulding By Coating Moulds (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

一种制造风涡轮转子叶片(114)的方法,在一个实施例中,包括以下步骤:提供一个芯体(120),在该芯体上敷设至少一层增强表层(126)从而形成一个叶片子组件(131)。增强表层各由一层增强纤维构成。该方法还包括:敷设一层微孔膜(128)包覆该至少一层增强表层,敷设一层真空膜,包覆该微孔膜,将聚合物树脂引入到芯体上,在该叶片子组件内造成真空,灌注树脂使它通过该芯体和该至少一层增强表层,及使树脂硬化从而形成转子叶片。

Description

风涡轮转子叶片的制造方法
技术领域
本发明总的涉及风涡轮,尤其涉及利用微孔膜制造风涡轮转子叶片的方法。
背景技术
近来,风涡轮作为环境安全、费用较省的可替代能源日益受到人们的注意。由于增长的关注,人们曾作相当大的努力来研发可靠而有效的风涡轮。
一般来说,风涡轮包括一个具有多个叶片的转子。该转子装在一个位于桁架或管塔顶部的壳体或机舱上。公用类的转子(即用来供电到公用电网的风涡轮)能具有巨大的转子(例如直径为30米或以上)。转子上的叶片将风能转变为转矩或力以此来驱动通过齿轮箱可旋转地联接到转子上或直接联接到转子上的一台或多台发电机。该齿轮箱如果存在,可将涡轮转子原有的低转速提高后供给发电机以便有效地将机械能转变为馈送到公用电网内的电能。
已知的风涡轮叶片是用树脂灌注到纤维包扎的芯体内制成的。其时使用一层分配筛来将树脂输送到芯体材料内。通过在该分配筛内的破裂来控制注入流体的前沿,该分配筛需要准确的定位以便得到所需的结果。而且,该分配筛是连同被留在该筛内的每平方米约650克的树脂被舍弃的。
本发明概述
本发明的一个方面提供的制造风涡轮转子叶片的方法,包括提供一个芯体并在其上敷设至少一层增强表层以便形成叶片子组件的步骤。增强表层都由增强纤维层构成。该方法还包括敷设一层微孔膜包覆该至少一层增强表层,敷设一层真空膜包覆该微孔膜,将聚合物树脂引到芯体上,在叶片组合件上造成真空使树脂灌注透过该芯体并透过该至少一层增强表层,及使树脂硬化而形成转子叶片。
本发明的另一个方面提供的制造风涡轮转子叶片的方法,该方法包括提供一个芯体并在其上敷设至少一层增强表层以便形成叶片子组件,并将该叶片子组件定位于模中的步骤。增强表层都由增强纤维层构成。该方法还包括敷设一层微孔膜包覆该至少一层增强表层,敷设一层真空膜包覆该微孔膜,将聚合物树脂引到芯体上,在叶片组合件上造成真空使树脂灌注透过该芯体并透过该至少一层增强表层,及使树脂硬化而形成转子叶片。
附图的简要说明
图1为一风涡轮示例性结构的简略侧视图。
图2为图1中所示风涡轮转子叶片的简略侧视图。
本发明的详细说明
下面详述利用微孔膜制造风涡轮转子叶片的方法。微孔膜阻止树脂通过但允许气体通过。这样便可在整个转子叶片上造成真空而不是像在已知的方法中那样仅在周边上造成真空。微孔膜还可便于控制液流前沿并消除树脂流的任何尾迹。制造周期和工时都可减少,连同减少的还有制造过程中消耗材料的费用。使用微孔膜还可提高叶片质量,例如,较低的空隙含量和优化的增强纤维对树脂的比率。
参阅附图,图1为一具有水平轴线的风涡轮100的侧立面略图。该风涡轮100包括一个从支承表面104升起的塔102、一个装在塔102的座架108上的机舱106、和一个联接到机舱106上的转子110。转子110包括一个毂部112和多个联接到毂部112上的叶片114。在该示例性实施例中,转子110包括三个转子叶片114。在一可替代的实施例中,转子110包括多于或少于三个转子叶片114。在该示例性实施例中,塔102由钢管制成并包括一个在支承表面104和机舱106之间延伸的空腔。在一可替代的实施例中,塔102为一格构塔。
在该示例性实施例中,风涡轮100的各个构件被容纳在风涡轮100塔顶102的机舱106内。塔102的高度根据本行业所知的各种因素和条件来选定。在有些设计中,在控制系统中有一个或多个微控制器被用来作为整个系统的监视和控制包括倾斜和速率的调整、高速轴和偏转制动器的应用、偏转和泵电动机的应用、及事故监控。在风涡轮100的另外一些实施例中使用可替代的分散或集中的控制结构。在该示例性实施例中,叶片114的倾角(pitch)是被个别控制的。毂部112和叶片114一同被固定在风涡轮的转子110上。转子112的旋转使发电机(图上未示出)产生电力。
使用时,叶片114被定位于转子毂部的周围以便转动转子110将来自风的动能转变为可用的机械能。当风冲击叶片114并且当叶片114被转动而受到离心力时,叶片114受到各种弯曲力矩。这样,叶片114就会偏斜及/或从一个中间的或不偏斜的位置旋转到偏斜的位置。另外,叶片114的俯仰角能被俯仰机构(未示出)改变以便增加或减少叶片114的速率,并且以便减少塔102所受冲击。
参阅图2,叶片114包括一个由聚合物泡沫材料、木材及/或金属蜂窝格栅构成的芯体120。有一主椽子122和一端椽子124被埋在芯体120内。合适的聚合物泡沫材料例如包括但并不限于,聚氯乙烯、聚烯烃、环氧树脂、聚氨酯、聚异氰脲酸酯等泡沫材料和其混合物。芯体120被至少一层增强表层126包裹。增强表层126各由一层增强纤维构成,可以是织造的或非织造的。合适的增强纤维例如包括但并不限于,玻璃纤维、石墨纤维、碳纤维、聚合物纤维、陶瓷纤维、芳族聚酰胺纤维、洋麻纤维、黄麻纤维、亚麻纤维、大麻纤维、纤维素纤维、剑麻纤维、椰纤维、和其混合物。
树脂被灌注到芯体120和增强表层126内以便给叶片114提供整体性和强度。合适的树脂例如包括但并不限于,乙烯基酯树脂、环氧树脂、聚酯树脂、和其混合物。有一微孔膜128被敷设到叶片114的外表面上以便进行树脂灌注过程。树脂在真空下被引入到芯体120内。真空使树脂流动通过芯体120和增强表层126。微孔膜128允许被树脂驱赶的空气从芯体120和增强表层126中逸出。但微孔膜128不允许树脂通过膜128流出。在一个示例性实施例中,微孔膜上孔的平均大小约为0.01微米(μ)到约10μ,而在另一个实施例中则为0.1μ到约5。微孔膜128例如可由聚四氟乙烯、聚烯烃、聚酰胺、聚酯、聚砜、聚醚、丙烯酸和甲基丙烯酸聚合物、聚苯乙烯、聚氨酯、聚丙烯、聚乙烯、聚亚苯基砜(polyphenelene)和其混合物构成。在有一个实施例中,微孔膜128还包括一个层压到一表面上的衬垫材料。该衬垫材料系由聚合物纤维,例如聚酯纤维、尼龙纤维、聚乙烯纤维、和其混合物构成。有一层空气输送材料129位于微孔膜128之上,允许被灌注树脂驱赶的空气逸出到大气中,用来协助芯体除气。空气输送材料可由任何合适的网格材料例如聚乙烯网构成。
在该示例性实施例中,芯体120包括多条沟槽130以便树脂流动通过芯体120。在另外一些实施例中,芯体120则不包括沟槽130。
为了形成转子叶片114,增强表层126被包裹在芯体120的周围形成一个叶片子组件131,然后被定位于一模型132内。而在另外一些实施例中则没有使用模型132。有一树脂灌注输入连管134被定位于外增强表层126的邻近。然后将微孔膜128定位于外增强表层126和树脂灌注输入连管之上。再把空气输送材料129定位于微孔膜128之上,并将一个真空连管定位于空气输送材料129的邻近。有一用合适材料,例如聚酰胺制成的真空膜138被定位于空气输送材料129之上,其时真空连管136通过真空膜138伸出。当通过真空连管136建立起真空时,树脂就通过输入连管134被引入到芯体120和增强表层126内。真空使树脂容易流动并灌注到芯体120和增强表层126内。微孔膜128阻止树脂从芯体120和增强表层126内向外流出,同时允许被灌注树脂驱赶的空气逸出到大气中。树脂然后被硬化,而树脂输入连管134、真空连管136、空气输送材料129、和真空膜138随后都被从叶片114上撤走。
虽然本发明已用各个具体实施例说明,本行业的行家将会认识到,在权利要求书限定的精神和范围内实施本发明是可以作出各种修改的。

Claims (10)

1.一种制造风涡轮(100)转子叶片(114)的方法,包括:
提供一个芯体(120);
将至少一层增强表层(126)敷设到该芯体上,各增强表层由一增强纤维垫构成,从而形成一个叶片子组件(131);
将一层微孔膜(128)敷设在该至少一层增强表层上;
将一真空膜(138)敷设在该微孔膜上;
将聚合物树脂引入到该芯体上;
通过对该叶片子组件施以真空经该芯体和该至少一层增强表层灌入该树脂;及
使该树脂硬化以形成该转子叶片。
2.权利要求1的方法,其特征在于,提供一个芯体(120),包括提供一个具有多条沟槽(130)的芯体以允许该树脂流过该芯体的步骤。
3.权利要求1的方法,其特征在于,该增强纤维包括下列各材料中的至少一种:玻璃纤维、石墨纤维、碳纤维、陶瓷纤维、芳族聚酰胺纤维、洋麻纤维、黄麻纤维、亚麻纤维、大麻纤维、纤维素纤维、剑麻纤维和柳纤维。
4.权利要求1的方法,其特征在于,还包括在真空膜(138)和微孔膜(128)之间敷设一空气输送材料层(129)。
5.权利要求1的方法,其特征在于,该树脂包括乙烯基酯树脂、环氧树脂和聚酯树脂中的至少一种。
6.权利要求1的方法,其特征在于,芯体(120)包括聚合物泡沫材料、木材和金属蜂窝中的至少一种。
7.权利要求1的方法,其特征在于,微孔膜(128)包括下列各材料中的至少一种:聚四氟乙烯、聚烯烃、聚酰胺、聚酯、聚砜、聚醚、丙烯酸和甲基丙烯酸的聚合物、聚苯乙烯、聚氨酯、聚丙烯、聚乙烯和聚亚苯基砜。
8.权利要求1的方法,其特征在于,微孔膜(128)具有多个微孔,其平均直径约从0.01μ到约10μ。
9.权利要求1的方法,其特征在于,微孔膜(128)具有多个微孔,其平均直径约从0.1μ到约10μ。
10.权利要求1的方法,其特征在于,该微孔膜(128)在一个表面上具有一层衬垫材料。
CNA2006101428784A 2005-10-28 2006-10-27 风涡轮转子叶片的制造方法 Pending CN1954995A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/261,028 US8402652B2 (en) 2005-10-28 2005-10-28 Methods of making wind turbine rotor blades
US11/261028 2005-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410294955.2A Division CN104149359A (zh) 2005-10-28 2006-10-27 风涡轮转子叶片的制造方法

Publications (1)

Publication Number Publication Date
CN1954995A true CN1954995A (zh) 2007-05-02

Family

ID=37685009

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410294955.2A Pending CN104149359A (zh) 2005-10-28 2006-10-27 风涡轮转子叶片的制造方法
CNA2006101428784A Pending CN1954995A (zh) 2005-10-28 2006-10-27 风涡轮转子叶片的制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410294955.2A Pending CN104149359A (zh) 2005-10-28 2006-10-27 风涡轮转子叶片的制造方法

Country Status (7)

Country Link
US (1) US8402652B2 (zh)
EP (1) EP1779997B2 (zh)
CN (2) CN104149359A (zh)
BR (1) BRPI0604899B8 (zh)
DK (1) DK1779997T4 (zh)
ES (1) ES2545074T5 (zh)
MX (1) MXPA06012386A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992554A (zh) * 2009-08-13 2011-03-30 西门子公司 生产风力涡轮机叶片的方法和装置
CN102251935A (zh) * 2010-05-21 2011-11-23 西门子公司 风力涡轮机的叶片
CN102753345A (zh) * 2009-12-12 2012-10-24 拜尔知识产权有限责任公司 多层结构在风力发电站中的应用
CN103619579A (zh) * 2011-02-25 2014-03-05 拜耳知识产权有限责任公司 多层结构在风力发电装置中的应用
CN104416920A (zh) * 2013-08-28 2015-03-18 上海艾郎风电科技发展有限公司 风力发电叶片主梁灌注方法
CN104690987A (zh) * 2015-04-03 2015-06-10 郑伟 一种基于rtm的风机风扇叶片制造工艺
CN101623932B (zh) * 2008-07-10 2015-06-24 上海艾郎风电科技发展有限公司 风力机叶片根端灌注装置
CN105014993A (zh) * 2014-10-23 2015-11-04 深圳九星智能航空科技有限公司 一种无人机螺旋桨制作方法
US9856357B2 (en) 2013-07-05 2018-01-02 Covestro Deutschland Ag Polyurethane resin composition and polyurethane composite prepared from the same
WO2022002784A1 (en) 2020-06-30 2022-01-06 Covestro Deutschland Ag A polyurethane composition for preparing composites
EP4130083A1 (en) 2021-08-03 2023-02-08 Covestro Deutschland AG Polyol composition
EP4134387A1 (en) 2021-08-11 2023-02-15 Covestro Deutschland AG Polyol composition
WO2024099826A1 (en) 2022-11-07 2024-05-16 Covestro Deutschland Ag Resin composition for preparing a thermoplastic polymer matrix
EP4406986A1 (en) 2023-01-24 2024-07-31 Covestro Deutschland AG Resin composition for preparing a thermoplastic polymer matrix

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2856055B1 (fr) * 2003-06-11 2007-06-08 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques, composites les renfermant et composition utilisee
FR2879591B1 (fr) * 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
US8338319B2 (en) * 2008-12-22 2012-12-25 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US7823417B2 (en) 2005-11-04 2010-11-02 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
US8586491B2 (en) 2005-11-04 2013-11-19 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US9187361B2 (en) 2005-11-04 2015-11-17 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
US9656903B2 (en) 2005-11-04 2017-05-23 Ocv Intellectual Capital, Llc Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from
US7799713B2 (en) * 2005-11-04 2010-09-21 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US7351040B2 (en) * 2006-01-09 2008-04-01 General Electric Company Methods of making wind turbine rotor blades
US7517198B2 (en) * 2006-03-20 2009-04-14 Modular Wind Energy, Inc. Lightweight composite truss wind turbine blade
US20090116966A1 (en) * 2007-11-06 2009-05-07 Nicholas Keane Althoff Wind turbine blades and methods for forming same
US7722348B1 (en) * 2007-12-31 2010-05-25 Quenneville Marc A Vacuum assisted molding
EP2110552B2 (en) 2008-04-15 2018-12-26 Siemens Aktiengesellschaft Wind turbine blade with an integrated lightning conductor and method for manufacturing the same
US20090273111A1 (en) * 2008-04-30 2009-11-05 Bha Group, Inc. Method of making a wind turbine rotor blade
ES1068142Y (es) * 2008-05-29 2008-12-01 Acciona Windpower Sa Carcasa mejorada para un aerogenerador
DK2138716T4 (da) * 2008-06-27 2024-03-11 Siemens Gamesa Renewable Energy Innovation & Technology SL Vingeindsats
CA2741479A1 (en) * 2008-10-22 2010-04-29 Vec Industries, L.L.C. Wind turbine blade and method for manufacturing thereof
USD615218S1 (en) 2009-02-10 2010-05-04 Owens Corning Intellectual Capital, Llc Shingle ridge vent
USD628718S1 (en) 2008-10-31 2010-12-07 Owens Corning Intellectual Capital, Llc Shingle ridge vent
US8388885B2 (en) * 2008-11-18 2013-03-05 General Electric Company Membrane structure for vacuum assisted molding fiber reinforced article
WO2010065928A1 (en) 2008-12-05 2010-06-10 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US8252707B2 (en) * 2008-12-24 2012-08-28 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US9073270B2 (en) * 2009-01-21 2015-07-07 Vestas Wind Systems A/S Method of manufacturing a wind turbine blade by embedding a layer of pre-cured fibre reinforced resin
US8303882B2 (en) * 2009-02-23 2012-11-06 General Electric Company Apparatus and method of making composite material articles
US20120135099A1 (en) * 2009-05-04 2012-05-31 Mag Ias, Llc Method and apparatus for rapid molding of wind turbine blades
US8753091B1 (en) 2009-05-20 2014-06-17 A&P Technology, Inc. Composite wind turbine blade and method for manufacturing same
US20120159785A1 (en) * 2009-09-04 2012-06-28 BayerMaerialScience LLC Automated processes for the production of polyurethane wind turbine blades
US9500179B2 (en) 2010-05-24 2016-11-22 Vestas Wind Systems A/S Segmented wind turbine blades with truss connection regions, and associated systems and methods
JP5927183B2 (ja) * 2010-07-02 2016-06-01 ヘクセル ホールディング ゲーエムベーハー 繊維強化複合成形品
CN102248685A (zh) * 2011-07-01 2011-11-23 东莞杰腾造船有限公司 一种玻璃纤维增强塑料的成型方法
EP2682256A1 (en) * 2012-07-03 2014-01-08 Fiberline A/S A method of producing an assembly for use in a fibre reinforced structural element
DE102012107932C5 (de) 2012-08-28 2024-01-11 Siemens Gamesa Renewable Energy Service Gmbh Verfahren zur Fertigung eines Rotorblattes und ein Rotorblatt einer Windenergieanlage
USD710985S1 (en) 2012-10-10 2014-08-12 Owens Corning Intellectual Capital, Llc Roof vent
US10370855B2 (en) 2012-10-10 2019-08-06 Owens Corning Intellectual Capital, Llc Roof deck intake vent
US9470205B2 (en) 2013-03-13 2016-10-18 Vestas Wind Systems A/S Wind turbine blades with layered, multi-component spars, and associated systems and methods
CN104070684A (zh) * 2014-06-04 2014-10-01 洛阳双瑞风电叶片有限公司 一种夹芯复合材料无管路真空灌注成型方法
US20160032889A1 (en) * 2014-08-02 2016-02-04 Ting Tan Sustainable hybrid renewable energy system
GB2534171A (en) * 2015-01-15 2016-07-20 Rolls Royce Plc Assembly for forming a composite material part
US11572861B2 (en) * 2017-01-31 2023-02-07 General Electric Company Method for forming a rotor blade for a wind turbine
DE102017108902A1 (de) * 2017-04-26 2018-10-31 Wobben Properties Gmbh Verfahren zur zeitgleichen Herstellung von zwei oder mehr Faserverbundbauteilen sowie Faserverbundbauteil
US11225942B2 (en) * 2017-07-05 2022-01-18 General Electric Company Enhanced through-thickness resin infusion for a wind turbine composite laminate
DE102018130550A1 (de) * 2018-11-30 2020-06-04 Tpi Composites Germany Gmbh Verfahren zur Herstellung einer Rotorblatthalbwurzel und eine Herstellungsform dafür
CN113382849B (zh) * 2018-12-11 2023-06-23 通用电气公司 用于制造纤维增强聚合物复合梁、特别是用于风力涡轮转子叶片的翼梁式梁的方法
US12053908B2 (en) 2021-02-01 2024-08-06 Regen Fiber, Llc Method and system for recycling wind turbine blades
EP4083101A1 (en) 2021-04-29 2022-11-02 Covestro Deutschland AG Method for preparing a polyurethane composite material by vacuum infusion process
US20240165897A1 (en) 2021-03-24 2024-05-23 Covestro Deutschland Ag Method for preparing a polyurethane composite material by vacuum infusion process
USD998548S1 (en) * 2021-08-31 2023-09-12 The Goodyear Tire & Rubber Company Tire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350545A (en) * 1979-10-12 1982-09-21 Armen Garabedian Method of laminating plastic sheets
GB2124130B (en) 1982-07-24 1985-11-27 Rolls Royce Vacuum moulding fibre reinforced resin
DE10013409C1 (de) * 2000-03-17 2000-11-23 Daimler Chrysler Ag Verfahren und Vorrichtung zur Herstellung von faserverstärkten Bauteilen mittels eines Injektionsverfahrens
EP3219981B1 (en) * 2001-07-19 2021-09-01 Vestas Wind Systems A/S Wind turbine blade
EP1415782B1 (en) * 2001-08-07 2016-10-05 Toray Industries, Inc. Method for producing upsized frp member
DE10140166B4 (de) 2001-08-22 2009-09-03 Eads Deutschland Gmbh Verfahren und Vorrichtung zur Herstellung von faserverstärkten Bauteilen mittels eines Injektionsverfahrens
DK176335B1 (da) 2001-11-13 2007-08-20 Siemens Wind Power As Fremgangsmåde til fremstilling af vindmöllevinger
CN100385113C (zh) 2005-01-21 2008-04-30 同济大学 大型复合材料风力机叶片及其制备方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101623932B (zh) * 2008-07-10 2015-06-24 上海艾郎风电科技发展有限公司 风力机叶片根端灌注装置
CN101992554A (zh) * 2009-08-13 2011-03-30 西门子公司 生产风力涡轮机叶片的方法和装置
CN102753345A (zh) * 2009-12-12 2012-10-24 拜尔知识产权有限责任公司 多层结构在风力发电站中的应用
US11904582B2 (en) 2009-12-12 2024-02-20 Covestro Deutschland Ag Use of layer structures in wind power plants
US10293586B2 (en) 2009-12-12 2019-05-21 Covestro Deutschland Ag Use of layer structures in wind power plants
CN102753345B (zh) * 2009-12-12 2015-08-12 拜尔知识产权有限责任公司 多层结构在风力发电站中的应用
CN102251935A (zh) * 2010-05-21 2011-11-23 西门子公司 风力涡轮机的叶片
CN102251935B (zh) * 2010-05-21 2015-04-22 西门子公司 风力涡轮机的叶片
CN103619579B (zh) * 2011-02-25 2015-07-08 拜耳知识产权有限责任公司 多层结构在风力发电装置中的应用
CN103619579A (zh) * 2011-02-25 2014-03-05 拜耳知识产权有限责任公司 多层结构在风力发电装置中的应用
US9856357B2 (en) 2013-07-05 2018-01-02 Covestro Deutschland Ag Polyurethane resin composition and polyurethane composite prepared from the same
CN104416920A (zh) * 2013-08-28 2015-03-18 上海艾郎风电科技发展有限公司 风力发电叶片主梁灌注方法
CN105014993A (zh) * 2014-10-23 2015-11-04 深圳九星智能航空科技有限公司 一种无人机螺旋桨制作方法
CN104690987A (zh) * 2015-04-03 2015-06-10 郑伟 一种基于rtm的风机风扇叶片制造工艺
WO2022002784A1 (en) 2020-06-30 2022-01-06 Covestro Deutschland Ag A polyurethane composition for preparing composites
EP4130083A1 (en) 2021-08-03 2023-02-08 Covestro Deutschland AG Polyol composition
EP4134387A1 (en) 2021-08-11 2023-02-15 Covestro Deutschland AG Polyol composition
WO2024099826A1 (en) 2022-11-07 2024-05-16 Covestro Deutschland Ag Resin composition for preparing a thermoplastic polymer matrix
EP4406986A1 (en) 2023-01-24 2024-07-31 Covestro Deutschland AG Resin composition for preparing a thermoplastic polymer matrix

Also Published As

Publication number Publication date
US8402652B2 (en) 2013-03-26
BRPI0604899A (pt) 2007-09-04
ES2545074T5 (es) 2023-05-08
EP1779997B1 (en) 2015-06-24
EP1779997A2 (en) 2007-05-02
DK1779997T3 (en) 2015-08-03
BRPI0604899B8 (pt) 2019-03-06
ES2545074T3 (es) 2015-09-08
US20070107220A1 (en) 2007-05-17
BRPI0604899B1 (pt) 2019-02-12
DK1779997T4 (da) 2023-04-24
EP1779997A3 (en) 2012-11-21
EP1779997B2 (en) 2023-01-25
CN104149359A (zh) 2014-11-19
MXPA06012386A (es) 2007-04-27

Similar Documents

Publication Publication Date Title
CN1954995A (zh) 风涡轮转子叶片的制造方法
CN100999137B (zh) 制造风力涡轮机转子叶片的方法
US20140178204A1 (en) Wind turbine rotor blades with fiber reinforced portions and methods for making the same
CN101062594B (zh) 制造叶片的方法及装置
US9181923B2 (en) Method of manufacturing a wind turbine blade comprising steel wire reinforced matrix material
CN105848860B (zh) 风轮机叶片
EP2255957B1 (en) A method of manufacturing a composite structure with a prefabricated reinforcement element
US8444792B2 (en) Method of manufacturing aerogenerator blades
CN106457719B (zh) 具有改进的纤维过渡的风力涡轮机叶片
CN102049864A (zh) 风力涡轮机叶片和其它结构的制造方法
CN109311252B (zh) 制造风力涡轮机叶片的方法
CN102052236A (zh) 风力涡轮机叶片
CN102371688A (zh) 利用树脂浸渍纤维材料的设备和形成纤维加强的塑料部件的方法
CN108700028A (zh) 风力涡轮机叶片及相关制造方法
WO2015192867A1 (en) A method of producing a continuous fibre reinforcement layer from individual fibre mats
CN108839398B (zh) 一种具有碳纤维-多孔尼龙复合结构的螺旋桨及其制备方法
CN110809515B (zh) 用于风力涡轮复合层压体的增强式全厚度树脂注入
EP2954199A1 (en) Limp, elongate element with glass staple fibres
CN104325653B (zh) 一种玻璃钢管道的连续制造方法及制得的玻璃钢管道
CN202656483U (zh) 纤维增强树脂基复合芯棒环形补胶装置
US11590718B2 (en) Method of manufacturing a wind turbine blade
CN205689359U (zh) 一种垂直轴复合材料风电叶片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20070502