Disclosure of Invention
The invention aims to provide a method and a device for eliminating signal interference of a common-frequency cell based on parallel interference cancellation, which can eliminate the influence of the signal of the common-frequency cell to a great extent and improve the receiving performance of the signal of the cell under the severe condition that the power of a common-frequency adjacent cell is higher than that of the cell with lower implementation complexity.
The invention provides a method for eliminating signal interference of a common-frequency cell based on Parallel Interference Cancellation (PIC), which is characterized in that the cell and each common-frequency adjacent cell respectively and independently adopt a method for reconstructing signals of each cell based on demodulation symbols generated by joint detection, and then carry out interference cancellation in parallel, and the method comprises the following steps:
step 1, for the current bookM +1 Channel Estimation and interference reconstruction units (CEIGU) based on Joint Detection (JD) and M co-frequency neighboring cells, according to sampling input of current received data I/Q path <math><mrow>
<mover>
<mi>r</mi>
<mo>^</mo>
</mover>
<mi></mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>r</mi>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mi>r</mi>
<mn>2</mn>
</msub>
<mo>,</mo>
<mi>Λ</mi>
<mo>,</mo>
<msub>
<mi>r</mi>
<mi>Z</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow></math> Or reconstructing interference signals of M same-frequency adjacent cells and the cell by adopting a processing method for reconstructing cell signals by demodulation symbols generated based on JD (joint detection) to obtain an s-level reconstruction signal of each cell:
<math><mrow>
<msubsup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>j</mi>
<mi>s</mi>
</msubsup>
<mi></mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msubsup>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mi>j</mi>
<mo>,</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mi>s</mi>
</msubsup>
<mo>,</mo>
<msubsup>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mi>j</mi>
<mo>,</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mi>s</mi>
</msubsup>
<mo>,</mo>
<mi>Λ</mi>
<mo>,</mo>
<msubsup>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mi>j</mi>
<mo>,</mo>
<mi>Z</mi>
<mo>)</mo>
</mrow>
<mi>s</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
wherein S is 1, 2, Λ, S, and S represents the number of parallel interference cancellation stages set by the system; j ═ 1, 2, Λ, M + 1; z is the length of the sampling sequence;
the step 1 specifically comprises:
step 1.1, separating effective paths;
step 1.2, generating channel impulse response;
step 1.3, generating a demodulation symbol based on joint detection;
and step 1.4, reconstructing a cell signal.
Step 2, for each cell, the cell reconstruction signal superimposer respectively uses the s-th level reconstruction signals of other cells calculated in the step 1And superposing to obtain an interference signal of the s-th level corresponding to each cell:
<math><mrow>
<msubsup>
<mover>
<mi>I</mi>
<mo>^</mo>
</mover>
<mi>j</mi>
<mi>s</mi>
</msubsup>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msubsup>
<mi>I</mi>
<mrow>
<mo>(</mo>
<mi>j</mi>
<mo>,</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mi>s</mi>
</msubsup>
<mo>,</mo>
<msubsup>
<mi>I</mi>
<mrow>
<mo>(</mo>
<mi>j</mi>
<mo>,</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mi>s</mi>
</msubsup>
<mo>,</mo>
<mi>Λ</mi>
<mo>,</mo>
<msubsup>
<mi>I</mi>
<mrow>
<mo>(</mo>
<mi>j</mi>
<mo>,</mo>
<mi>Z</mi>
<mo>)</mo>
</mrow>
<mi>s</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>.</mo>
</mrow></math>
wherein, S ═ 1, 2, Λ, S, j ═ 1, 2, Λ, M + 1;
3, for each cell, the cell interference signal eliminator removes the signal superposition value generated by the reconstruction of other interference cells in the step 2 from the received signal, namely, the s-th level interference eliminated received signal is calculated
Thereby eliminating the influence of the interference signal of the adjacent cell on the signal received by the cell;
wherein S is 1, 2, …, S, j is 1, 2, …, M +1, 1 ≦ k ≦ Z;
and 4, repeatedly executing the steps 1 to 3 according to the PIC level preset by the system and the received signals obtained by calculating the previous PIC level and after the interference of each cell is eliminated until the PIC operation of all levels is completed.
In step 1, if s is 1, namely cell signal reconstruction is performed at the first stage, the M +1 JD-based ceiigus directly adopt sampling inputs of I/Q paths of received dataAnd completing signal reconstruction of each cell.
In step 1, if S is 2, 3, …, S, the M +1 JD-based ceiigus use the S-1 th interference-cancelled signal to complete signal reconstruction of each cell.
The method for reconstructing signals of each cell by using demodulation symbols generated based on joint detection in step 1 specifically includes:
step 1.1, effective path separation:
step 1.1.1, aiming at each cell, respectively carrying out bit-by-bit cyclic exclusive OR operation on the data of the last 128 chips of the midamble sequence part in the input signal and the basic midamble sequence of the cell through a matched filter, and calculating to obtain the power DP of each bit-by-bit exclusive OR result;
let BM ═ m be the basic midamble sequence of the current cell
1,m
2,…,m
128) The data of the last 128 chips of the midamble sequence portion in the received input signal is
The calculation formula of the power DP on each path is:
<math><mrow>
<msub>
<mi>DP</mi>
<mi>k</mi>
</msub>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>128</mn>
</munderover>
<mo>|</mo>
<mo>|</mo>
<msubsup>
<mi>r</mi>
<mi>n</mi>
<mi>BM</mi>
</msubsup>
<mo>*</mo>
<msub>
<mi>m</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>-</mo>
<mi>k</mi>
<mo>+</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mi>mod</mi>
<mn>128</mn>
</mrow>
</msub>
<mo>|</mo>
<mo>|</mo>
<mo>;</mo>
</mrow></math>
step 1.1.2, detecting an effective path through an effective path detector:
comparing the power DP on each path with a certain threshold Th; selecting a path corresponding to the power DP greater than or equal to the threshold Th as an effective path, otherwise, selecting an invalid path; the L effective paths detected by the final effective path detector are: peff=(p1,p2,…,pL);
Step 1.2, generating channel impulse response:
step 1.2.1, calculating channel estimation ChE on each path through a matched filter and a channel estimator:
let BM ═ m be the basic midamble sequence of the current cell
1,m
2,…,m
128) The data of the last 128 chips of the midamble sequence portion in the received input signal is
The channel estimate ChE on each path is then:
<math><mrow>
<msub>
<mi>ChE</mi>
<mi>k</mi>
</msub>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>128</mn>
</munderover>
<msubsup>
<mi>r</mi>
<mi>n</mi>
<mi>BM</mi>
</msubsup>
<mo>*</mo>
<msub>
<mi>m</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>-</mo>
<mi>k</mi>
<mo>+</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mi>mod</mi>
<mn>128</mn>
</mrow>
</msub>
<mo>;</mo>
</mrow></math>
step 1.2.2, generating a channel impulse response H ═ H (H) by the channel impulse responder according to the effective path obtained in step 1.1.2 and the channel estimation obtained in step 1.2.11,h2,…,hT) The length T represents the maximum delay supported by the system, the value at the position of the effective path of the channel impulse response is the channel estimation value on the path, and the value at the position of the non-effective path is zero, that is:
<math><mrow>
<msub>
<mi>h</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<mfenced open='{' close=''>
<mtable>
<mtr>
<mtd>
<msub>
<mi>ChE</mi>
<mi>i</mi>
</msub>
</mtd>
<mtd>
<msub>
<mi>DP</mi>
<mi>i</mi>
</msub>
<mo>≥</mo>
<mi>Th</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<msub>
<mi>DP</mi>
<mi>i</mi>
</msub>
<mo><</mo>
<mi>Th</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow></math>
ChEiindicating the channel estimate, DP, of the ith pathiRepresents the power of the ith path;
step 1.3, generating demodulation symbols based on joint detection:
step 1.3.1, descrambling and despreading the data part in the input signal by a matched filter:
according to the position P of the active path, the scrambling code ScC of the current cell and the activated spreading code ChC ═ C
1,C
2,…,C
N),
Where N denotes the number of active code channels and SF denotes the spreading factor, and a matched filter is used to match the data portion of the input signal
Descrambling and despreading operations are carried out, and symbols obtained after descrambling and despreading are as follows:
<math><mrow>
<msubsup>
<mi>u</mi>
<mrow>
<mo>(</mo>
<mi>l</mi>
<mo>,</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>SF</mi>
</munderover>
<msub>
<mi>r</mi>
<mrow>
<msub>
<mi>p</mi>
<mi>k</mi>
</msub>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>-</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>·</mo>
<mi>SF</mi>
<mo>+</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>×</mo>
<mi>conj</mi>
<mrow>
<mo>(</mo>
<msubsup>
<mi>c</mi>
<mi>i</mi>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mi>conj</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>ScC</mi>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
wherein,
indicating the symbol corresponding to the nth active code channel,
indicates the nth activationSymbols on the ith effective path of the code channel, K representing the number of symbols, u
(l,k) nSymbol representing the nth active code channel of the kth symbol of the ith active path, ScC
iA scrambling code representing the ith chip;
step 1.3.2, maximum ratio merger carries out maximum ratio merger on the symbols obtained after descrambling and despreading to obtain demodulated symbols:
according to the channel impulse response, namely the channel estimation on the effective path, the maximal ratio combiner carries out the maximal ratio combining operation on the descrambled and despread symbols on different paths to obtain the demodulated symbol on each active code channel:
<math><mrow>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>l</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>L</mi>
</munderover>
<mi>conj</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>ChE</mi>
<mi>l</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msubsup>
<mi>u</mi>
<mrow>
<mo>(</mo>
<mi>l</mi>
<mo>,</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mi>n</mi>
</msubsup>
<mo>;</mo>
</mrow></math>
wherein,indicates the demodulation symbol, u, corresponding to the nth active code channel(l,k) nSymbol representing the nth active code channel of the kth symbol of the ith active path, ChEiA channel estimation value representing an ith path;
step 1.3.3, joint detection:
step 1.3.3.1, the System matrix generator convolves the point product result of the scrambling code and the activated spreading code adopted by the current cell with the channel impulse response to generate a System matrix (System ResponseMatrix):
the active spreading code ChC ═ C (C) according to the scrambling code ScC of the current cell generated by the scrambling code generator and the spreading code generator1,C2,…,CN), Where N denotes the number of active code channels and SF denotes the spreading factorAnd calculating a system matrix A by a system matrix generator according to the channel impulse response H obtained in the step 1.1.2:
<math><mrow>
<msup>
<mi>b</mi>
<mi>n</mi>
</msup>
<mo>=</mo>
<mi>H</mi>
<mo>⊗</mo>
<mrow>
<mo>(</mo>
<mi>ScC</mi>
<mo>.</mo>
<mo>*</mo>
<msub>
<mi>C</mi>
<mi>n</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
B=[b1,b2,…,bN]T;
wherein, the [ alpha ], [ beta ]]TRepresenting matrix transposition, wherein the number of B matrixes in the A matrix is equal to the number of symbols needing joint detection;
step 1.3.3.2, the joint detector performs joint detection operation by adopting Zero-Forcing Block Linear Equalizer algorithm (ZF-BLE for short) or Minimum Mean Square Error Block Linear Equalizer algorithm (MMSE-BLE for short), so as to obtain a demodulation symbol;
by adopting the zero forcing linear block equalizer algorithm, the obtained demodulation symbols are as follows:
<math><mrow>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mo>=</mo>
<msup>
<mrow>
<mo>(</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mo>×</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mover>
<mi>r</mi>
<mo>^</mo>
</mover>
<mo>;</mo>
</mrow></math>
wherein, A represents a system matrix,represents the input I/Q path signal,indicating the demodulated symbols resulting from the joint detection.
The minimum mean square error linear block equalizer algorithm is adopted, and the obtained demodulation symbols are as follows:
<math><mrow>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mo>=</mo>
<msup>
<mrow>
<mo>(</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mi>A</mi>
<mo>+</mo>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
<mo>·</mo>
<mi>I</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mo>×</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mover>
<mi>r</mi>
<mo>^</mo>
</mover>
<mo>;</mo>
</mrow></math>
wherein, A represents a system matrix,
representing the input I/Q-path signal, σ
2Which represents the variance of the noise, is,
indicating the demodulated symbols resulting from the joint detection.
Step 1.3.4, the symbol decision device makes symbol decision to the demodulation symbol generated by the joint detector, and the estimated value of the obtained sending symbol is:
wherein
Indicates the nth activationAnd judging the demodulation symbol corresponding to the code channel.
In step 1.3.4, the symbol decision includes hard decision and soft decision:
the hard decision is operated by a demodulation symbol hard decision device, and the result after the hard decision is obtained is as follows:
<math><mrow>
<msubsup>
<mi>d</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mi>sign</mi>
<mrow>
<mo>(</mo>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfenced open='{' close=''>
<mtable>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>≥</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>-</mo>
<mn>1</mn>
</mtd>
<mtd>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo><</mo>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow></math>
yk na demodulated symbol representing the kth symbol of the nth active code channel.
The soft decision is operated by a demodulation symbol soft decision device, and the result after the soft decision is obtained is as follows:
<math><mrow>
<msubsup>
<mi>d</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mi>tanh</mi>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mo>·</mo>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
</mrow>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
where m represents the mean value of the received signal amplitude, σ2Representing the noise variance of the received signal, tanh representing the hyperbolic tangent function, yk nA demodulated symbol representing the kth symbol of the nth active code channel.
Step 1.4, reconstructing cell signals:
step 1.4.1, the modulation spreader performs modulation spread spectrum operation on the result of symbol decision to obtain a chip sequence on an active code channel:
according to the scrambling code ScC adopted by the current cell and the spreading code ChC ═ on the active code channel (C)1,C2,…,CN), Modulating and spreading the result of the symbol decision by a modulation spreader to obtain a chip-level transmission signal estimation value on each active code channel:
<math><mrow>
<msup>
<mover>
<mi>v</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msubsup>
<mi>v</mi>
<mn>1</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<msubsup>
<mi>v</mi>
<mn>2</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
<mo>,</mo>
<msubsup>
<mi>v</mi>
<mrow>
<mi>K</mi>
<mo>×</mo>
<mi>SF</mi>
</mrow>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
wherein
A transmitted signal estimate representing the chip level on the nth active code channel;
step 1.4.2, correspondingly completing the reconstruction of the received signals on a plurality of active code channels by a plurality of convolvers:
the convolver completes the convolution operation on the chip sequence on each active code channel obtained in step 1.4.1 and the channel impulse response obtained in step 1.2 to obtain a reconstructed signal on each active code channel:
<math><mrow>
<msup>
<mover>
<mi>w</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msubsup>
<mi>w</mi>
<mn>1</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<msubsup>
<mi>w</mi>
<mn>2</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
<mo>,</mo>
<msubsup>
<mi>w</mi>
<mrow>
<mi>K</mi>
<mo>×</mo>
<mi>SF</mi>
</mrow>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
<math><mrow>
<msup>
<mover>
<mi>w</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mi>H</mi>
<mo>⊗</mo>
<msup>
<mover>
<mi>v</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>;</mo>
</mrow></math>
wherein,representing the reconstructed signal on the nth code channel;
step 1.4.3, the activation code channel signal superimposer superimposes the reconstruction signal on each activation code channel to complete the combination of the activation code channels, thereby completing the reconstruction of the cell signal and obtaining the reconstruction signal of the cell
<math><mrow>
<msup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>s</mi>
</msup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>N</mi>
</munderover>
<msup>
<mover>
<mi>w</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
</mrow></math>
Representing the reconstructed signal on the nth code channel;
step 1.4.4, reconstruction signal weighting: reconstructing the signal of the cell
Multiplication by a particular weighting factor p
sPerformance loss due to incorrect symbol decisions is reduced:
<math><mrow>
<msup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>s</mi>
</msup>
<mo>=</mo>
<msup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>s</mi>
</msup>
<mo>×</mo>
<msup>
<mi>ρ</mi>
<mi>s</mi>
</msup>
<mo>.</mo>
</mrow></math>
in step 2, the s-th level interference signal corresponding to each cell includes:
interference signal of the cell:
<math><mrow>
<msubsup>
<mover>
<mi>I</mi>
<mo>^</mo>
</mover>
<mn>1</mn>
<mi>s</mi>
</msubsup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>2</mn>
</mrow>
<mrow>
<mi>M</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</munderover>
<msubsup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>i</mi>
<mi>s</mi>
</msubsup>
<mo>;</mo>
</mrow></math>
and interference signals of M co-frequency adjacent cells;
<math><mrow>
<msubsup>
<mover>
<mi>I</mi>
<mo>^</mo>
</mover>
<mi>j</mi>
<mi>s</mi>
</msubsup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<munder>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>i</mi>
<mo>≠</mo>
<mi>j</mi>
<mo>,</mo>
<mi>i</mi>
<mo>∈</mo>
<mi>U</mi>
</mrow>
</munder>
<mrow>
<mi>M</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</munderover>
<msubsup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>i</mi>
<mi>s</mi>
</msubsup>
<mo>;</mo>
</mrow></math>
where, S ═ 1, 2, …, S, j denotes the jth co-frequency neighbor cell.
In step 2, when stacking the reconstructed signals of different cells, the delays of the respective cells must be considered at the same time, i.e. the delays of the different cells must be aligned before stacking.
In the method, when each co-frequency adjacent cell is subjected to signal reconstruction, the required basic cell information of the current co-frequency adjacent cell, including a basic midamble sequence, a scrambling code, an activated spreading code and the like, is known by a system or is obtained by detection.
Corresponding to the method, the invention also provides a device for eliminating the signal interference of the same-frequency cells based on parallel interference cancellation, which comprises M +1 JD-based CEIGUs, an M +1 cell reconstruction signal superimposer and an M +1 cell interference signal eliminator which are connected in sequence;
the M +1 JD-based CEIGUs input the sampling of the current received data I/Q pathOr the signal after the s-1 level interference elimination adopts a processing method for reconstructing the cell signal by using the demodulation symbol generated based on JD to complete the reconstruction of the interference signals of each cell in parallel, wherein the reconstruction comprises M same-frequency adjacent cells and the interference signal of the cell, and the s level reconstruction signal of each cell is obtained:
wherein S is 1, 2, …, S, and S represents the number of parallel interference cancellation stages set by the system;
j=1,2,…,M,M+1;
z is the length of the sample sequence.
If s is equal to 1, namely, cell signal reconstruction is carried out at the first stage, the M +1 JD-based CEIGUs directly adopt sampling input of an I/Q path of received data
Completing signal reconstruction of each cell;
and if S is 2, 3, …, S, the M +1 JD-based ceiigus use the S-1 th level interference-cancelled signal to complete signal reconstruction of each cell.
The M +1 cell reconstruction signal superimposer respectively and correspondingly superimposes the s-th level reconstruction signals of other cells for each cell
And superposing to obtain an interference signal of the s-th level corresponding to each cell:
wherein S is 1, 2, …, S, j is 1, 2, …, M + 1.
And the M +1 cell reconstruction signal superimposer aligns the delay of each cell when the superimposer superimposes the reconstruction signals of other cells.
The M +1 cell interference signal eliminator removes the reconstructed signal superposition value of other interference cells from the received signal aiming at each cell, namely the cell and M same-frequency adjacent cells, eliminates the influence of the interference signal of the adjacent cell on the received signal of the cell, and obtains the s-level interference eliminated received signal
And adopt
And (3) carrying out interference elimination of the next stage, namely the (s + 1) th stage:
wherein S is 1, 2, …, S, j is 1, 2, …, M +1, 1 ≦ k ≦ Z.
The JD-based CEIGU comprises an effective path separation device, a channel impulse response device, a demodulation symbol generation device based on joint detection and a cell signal reconstruction device which are connected through circuits;
the effective path separation device comprises a first matched filter and an effective path detector which are connected in sequence;
the input of the first matched filter receiving the midamble sequence in the input signalThe last 128 chip data BM ═ (m)1,m2,…,m128) Basic midamble sequence with current cellCarrying out bit-by-bit cyclic XOR operation, and calculating the power of each bit-by-bit XOR result:
<math><mrow>
<msub>
<mi>DP</mi>
<mi>k</mi>
</msub>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>128</mn>
</munderover>
<mo>|</mo>
<mo>|</mo>
<msubsup>
<mi>r</mi>
<mi>n</mi>
<mi>BM</mi>
</msubsup>
<mo>*</mo>
<msub>
<mi>m</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>-</mo>
<mi>k</mi>
<mo>+</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mi>mod</mi>
<mn>128</mn>
</mrow>
</msub>
<mo>|</mo>
<mo>|</mo>
<mo>;</mo>
</mrow></math>
the effective path detector compares the power DP value of each path output by the first matched filter with a specific threshold Th; selecting a path corresponding to the power DP greater than or equal to the threshold Th as an effective path, otherwise, selecting L effective paths detected by the final effective path detector as invalid paths: peff=(p1,p2,…,pL)。
The channel impulse response device comprises a second matched filter, a channel estimator and a channel impulse response device which are connected in sequence;
the input of the second matched filter receives the last 128 chip data BM ═ m (m) of the midamble sequence in the input signal
1,m
2,…,m
128) In conjunction with the current cellBasic midamble sequence of (2)
The channel estimation ChE on each path is calculated by the channel estimator as:
<math><mrow>
<msub>
<mi>ChE</mi>
<mi>k</mi>
</msub>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>128</mn>
</munderover>
<msubsup>
<mi>r</mi>
<mi>n</mi>
<mi>BM</mi>
</msubsup>
<mo>*</mo>
<msub>
<mi>m</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>-</mo>
<mi>k</mi>
<mo>+</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mi>mod</mi>
<mn>128</mn>
</mrow>
</msub>
<mo>;</mo>
</mrow></math>
the input end of the channel impulse responder is also connected with the output end of the effective path detector; the channel impulse response device generates the channel impulse response H ═ (H) according to the effective path and the channel estimation1,h2,…,hT):
<math><mrow>
<msub>
<mi>h</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<mfenced open='{' close=''>
<mtable>
<mtr>
<mtd>
<msub>
<mi>ChE</mi>
<mi>i</mi>
</msub>
</mtd>
<mtd>
<msub>
<mi>DP</mi>
<mi>i</mi>
</msub>
<mo>≥</mo>
<mi>Th</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<msub>
<mi>DP</mi>
<mi>i</mi>
</msub>
<mo><</mo>
<mi>Th</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow></math>
DPiIndicating the power of the ith path, ChEiA channel estimation value representing an ith path;
wherein, the length T of the channel impulse response represents the maximum time delay supported by the system.
The demodulation symbol generating device based on the joint detection comprises a third matched filter, a maximum ratio combiner, a joint detection device and a symbol decision device which are connected in sequence;
the input of the third matched filter receives the data part of the input signal and is connected with the effective path detector, and the third matched filter is based on the position P of the effective path, the scrambling code ScC of the current cell and the activated spreading code ChC ═ C (C)1,C2,…,CN), Wherein N represents the number of active code channels and SF represents the spreading factor for the data portion of the input signalDescrambling and despreading operations are carried out, and symbols obtained after descrambling and despreading are as follows:
<math><mrow>
<msubsup>
<mi>u</mi>
<mrow>
<mo>(</mo>
<mi>l</mi>
<mo>,</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>SF</mi>
</munderover>
<msub>
<mi>r</mi>
<mrow>
<msub>
<mi>p</mi>
<mi>k</mi>
</msub>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>-</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>·</mo>
<mi>SF</mi>
<mo>+</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>×</mo>
<mi>conj</mi>
<mrow>
<mo>(</mo>
<msubsup>
<mi>c</mi>
<mi>i</mi>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mi>conj</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>ScC</mi>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
wherein,
indicating the symbol corresponding to the nth active code channel,
representing symbols on the l effective path of the nth active code channel, K representing the number of symbols, u
(l,k) nSymbol representing the nth active code channel of the kth symbol of the ith active path, ScC
iA scrambling code representing the ith chip;
the input end of the maximal ratio combiner is also connected with a channel impulse responder, and the maximal ratio combiner carries out maximal ratio combining operation on the descrambled and despread symbols on different paths output by the third matched filter according to the channel impulse response, namely the channel estimation on an effective path, so as to obtain the demodulated symbol on each active code channel:
<math><mrow>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>l</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>L</mi>
</munderover>
<mi>conj</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>ChE</mi>
<mi>l</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msubsup>
<mi>u</mi>
<mrow>
<mo>(</mo>
<mi>l</mi>
<mo>,</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mi>n</mi>
</msubsup>
<mo>;</mo>
</mrow></math>
wherein,indicating the demodulated symbol, ChE, corresponding to the nth active code channeliIndicating the channel estimate, u, of the ith path(l,k) nA symbol representing the nth active code channel of the kth symbol of the ith active path;
the joint detection device comprises a scrambling code generator, a spread spectrum code generator, a system matrix generator and a joint detector which are connected in sequence;
the scrambling code ScC of the current cell generated by the scrambling code generator and the spreading code generator, and the activated spreading code ChC ═ C1,C2,…,CN), Wherein N represents the number of active code channels and SF represents the spreading factor;
the input end of the system matrix generator is further connected with the output end of the channel impulse responder, and the system matrix A is obtained by calculation according to the scrambling code ScC of the current cell, the activated spreading code ChC and the channel impulse response H generated by the channel impulse responder, wherein the scrambling code ScC and the activated spreading code ChC are generated by the scrambling code generator and the spreading code generator:
<math><mrow>
<msup>
<mi>b</mi>
<mi>n</mi>
</msup>
<mo>=</mo>
<mi>H</mi>
<mo>⊗</mo>
<mrow>
<mo>(</mo>
<mi>ScC</mi>
<mo>.</mo>
<mo>*</mo>
<msub>
<mi>C</mi>
<mi>n</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
B=[b1,b2,…,bN]T;
wherein, the [ alpha ], [ beta ]]TRepresenting matrix transposition, wherein the number of B matrixes in the A matrix is equal to the number of symbols needing joint detection;
the input end of the joint detector is respectively connected with the system matrix generator and the maximum ratio combiner; adopting zero forcing linear block equalizer algorithm or minimum mean square error linear block equalizer algorithm to carry out joint detection operation to obtain demodulation symbol
The joint detector adopts a zero forcing linear block equalizer algorithm, and the detected demodulated symbols are as follows:
<math><mrow>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mo>=</mo>
<msup>
<mrow>
<mo>(</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mo>×</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mover>
<mi>r</mi>
<mo>^</mo>
</mover>
<mo>;</mo>
</mrow></math>
wherein, A represents a system matrix,
represents the input I/Q path signal,
indicating the demodulated symbols resulting from the joint detection.
The joint detector adopts a minimum mean square error linear block equalizer algorithm, and the detected demodulation symbols are as follows:
<math><mrow>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mo>=</mo>
<msup>
<mrow>
<mo>(</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mi>A</mi>
<mo>+</mo>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
<mo>·</mo>
<mi>I</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mo>×</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mover>
<mi>r</mi>
<mo>^</mo>
</mover>
<mo>;</mo>
</mrow></math>
wherein, A represents a system matrix,
representing the input I/Q-path signal, σ
2Which represents the variance of the noise, is,
indicating the demodulated symbols resulting from the joint detection.
The symbol decision device carries out symbol decision on the demodulation symbol output by the maximal ratio combiner to obtain an estimation value of a sending symbol:
wherein
And the judgment result of the demodulation symbol corresponding to the nth active code channel is shown.
The symbol decision device is a demodulation symbol hard decision device, and the hard decision result obtained by adopting the demodulation symbol hard decision device is as follows:
<math><mrow>
<msubsup>
<mi>d</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mi>sign</mi>
<mrow>
<mo>(</mo>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfenced open='{' close=''>
<mtable>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>≥</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>-</mo>
<mn>1</mn>
</mtd>
<mtd>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo><</mo>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow></math>
yk na demodulated symbol representing the kth symbol of the nth active code channel.
The symbol decision device is a demodulation symbol soft decision device, and the soft decision result obtained by adopting the demodulation symbol soft decision device is as follows:
<math><mrow>
<msubsup>
<mi>d</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mi>tanh</mi>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mo>·</mo>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
</mrow>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
where m represents the mean value of the received signal amplitude, σ2Representing the noise variance of the received signal, tanh representing the hyperbolic tangent function, yk nA demodulated symbol representing the kth symbol of the nth active code channel.
The cell signal reconstruction device comprises a modulation frequency spreader, N convolvers and an active code channel signal superimposer which are connected in sequence;
the modulation frequency spreader is based on the scrambling code ScC adopted by the current cell and the spreading code ChC ═ C (C) on the active code channel
1,C
2,…,C
N),
Modulating and spreading the decision result output by the symbol decision device to obtain a chip-level transmission signal estimation value on each active code channel:
<math><mrow>
<msup>
<mover>
<mi>v</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msubsup>
<mi>v</mi>
<mn>1</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<msubsup>
<mi>v</mi>
<mn>2</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
<mo>,</mo>
<msubsup>
<mi>v</mi>
<mrow>
<mi>K</mi>
<mo>×</mo>
<mi>SF</mi>
</mrow>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
wherein
A transmitted signal estimate representing the chip level on the nth active code channel;
the input ends of the N convolvers are also connected with a channel impulse responder, and the convolving operation is completed on the chip sequence on each active code channel output by the modulation frequency spreader and the channel impulse response generated by the channel impulse responder to obtain a reconstructed signal on each active code channel:
<math><mrow>
<msup>
<mover>
<mi>w</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msubsup>
<mi>w</mi>
<mn>1</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<msubsup>
<mi>w</mi>
<mn>2</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
<mo>,</mo>
<msubsup>
<mi>w</mi>
<mrow>
<mi>K</mi>
<mo>×</mo>
<mi>SF</mi>
</mrow>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
<math><mrow>
<msup>
<mover>
<mi>w</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mi>H</mi>
<mo>⊗</mo>
<msup>
<mover>
<mi>v</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>;</mo>
</mrow></math>
wherein,
representing the reconstructed signal on the nth code channel;
the activation code channel signal superimposer superimposes the reconstruction signal on each activation code channel to complete the combination of the activation code channels, thereby completing the reconstruction of the cell signal and obtaining the reconstruction signal of the cell
<math><mrow>
<msup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>s</mi>
</msup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>N</mi>
</munderover>
<msup>
<mover>
<mi>w</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
</mrow></math>
Representing the reconstructed signal on the nth code channel.
Furthermore, the cell signal reconstruction device also comprises a weighting multiplier, the input end of the weighting multiplier is connected with the output end of the active code channel signal superimposer, and the weighting multiplier is used for reconstructing the cell reconstruction signal output by the active code channel signal superimposerMultiplication by a particular weighting factor psPerformance loss due to incorrect symbol decisions is reduced:
<math><mrow>
<msup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>s</mi>
</msup>
<mo>=</mo>
<msup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>s</mi>
</msup>
<mo>×</mo>
<msup>
<mi>ρ</mi>
<mi>s</mi>
</msup>
<mo>.</mo>
</mrow></math>
the device calculates the received signal after interference elimination according to the PIC level S preset by the system and the previous PIC level
For each PIC stage, the operation of eliminating the signal interference of the same-frequency cells is repeatedly executed until all stages are finishedThe PIC operates.
The method and the device for eliminating the signal interference of the common-frequency cell based on the parallel interference cancellation can eliminate the influence of the signal of the common-frequency cell to a great extent with lower implementation complexity, particularly under the severe condition that the power of the common-frequency adjacent cell is higher than that of the cell, and improve the receiving performance of the signal of the cell.
Detailed Description
The invention is described in detail below with reference to fig. 2 to 3 by way of preferred embodiments.
Taking parallel interference cancellation of a time slot of TD-SCDMA as an example, assume that the received signal of the time slot is
Wherein r is
1~r
352A received signal, r, representing a DATA segment DATA1
113 BM,r
114 BM,…,r
128 BM,r
1 BM,…r
128 BMRepresenting the received midamble sequence signal, r
353~r
704Representing the received signal of the DATA segment DATA 2.
As shown in fig. 3, a schematic structural diagram of a CEIGU based on joint detection demodulation results provided by the present invention includes the following specific operation steps:
step 1, effective path separation:
step 1.1, aiming at each cell, respectively carrying out bit-by-bit cyclic exclusive OR operation on the data of the last 128 chips of the midamble sequence part in the input signal and the basic midamble sequence of the cell through a matched filter 410_1, and calculating power DP;
the basic midamble sequence of the current cell is BM ═ (m)1,m2,…,m128) The data of the last 128 chips of the midamble sequence portion in the received input signal isThe calculation formula of the power DP on each path is:
<math><mrow>
<msub>
<mi>DP</mi>
<mi>k</mi>
</msub>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>128</mn>
</munderover>
<mo>|</mo>
<mo>|</mo>
<msubsup>
<mi>r</mi>
<mi>n</mi>
<mi>BM</mi>
</msubsup>
<mo>*</mo>
<msub>
<mi>m</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>-</mo>
<mi>k</mi>
<mo>+</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mi>mod</mi>
<mn>128</mn>
</mrow>
</msub>
<mo>|</mo>
<mo>|</mo>
<mo>;</mo>
</mrow></math>
step 1.2, the active path is detected by the active path detector 490 connected to the matched filter 410_ 2:
comparing the power DP on each path with a certain threshold Th; selecting a power D equal to or greater than a threshold ThThe path corresponding to the P is an effective path, otherwise, the path is an invalid path; the L effective paths detected by the final effective path detector are: peff=(p1,p2,…,pL);
Step 2, generating channel impulse response:
step 2.1, computing ChE on each path through the matched filter 410_2 and the channel estimator 480 which are connected in sequence:
let BM ═ m be the basic midamble sequence of the current cell
1,m
2,…,m
128) The data of the last 128 chips of the midamble sequence portion in the received input signal is
The channel estimate ChE on each path is then:
<math><mrow>
<msub>
<mi>ChE</mi>
<mi>k</mi>
</msub>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>128</mn>
</munderover>
<msubsup>
<mi>r</mi>
<mi>n</mi>
<mi>BM</mi>
</msubsup>
<mo>*</mo>
<msub>
<mi>m</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>-</mo>
<mi>k</mi>
<mo>+</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mi>mod</mi>
<mn>128</mn>
</mrow>
</msub>
<mo>;</mo>
</mrow></math>
step 2.2, generating channel impulse response by the channel impulse responder 470:
the channel impulse responder 470 is connected to the outputs of the effective path detector 490 and the channel estimator 480, respectively, and generates a channel impulse response H ═ (H ═ H) according to the effective path and the channel estimation output, respectively1,h2,…,hT) The length T represents the maximum delay supported by the system, the value at the position of the effective path of the channel impulse response is the channel estimation value on the path, and the value at the position of the non-effective path is zero, that is:
<math><mrow>
<msub>
<mi>h</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<mfenced open='{' close=''>
<mtable>
<mtr>
<mtd>
<msub>
<mi>ChE</mi>
<mi>i</mi>
</msub>
</mtd>
<mtd>
<msub>
<mi>DP</mi>
<mi>i</mi>
</msub>
<mo>≥</mo>
<mi>Th</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<msub>
<mi>DP</mi>
<mi>i</mi>
</msub>
<mo><</mo>
<mi>Th</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow></math>
DPiindicating the power of the ith path, ChEiA channel estimation value representing an ith path;
step 3, generating a demodulation symbol based on the matched filter;
step 3.1, the matched filter 410_3 descrambles and despreads the data part in the input signal:
the input of the matched filter 410_3 is further connected to an effective path detector 490, which outputs the position P of the effective path, the scrambling code ScC of the current cell and the activated spreading code ChC ═ C (C)
1,C
2,…,C
N),
Where N denotes the number of active code channels and SF denotes spreadingFactoring, matched filter 410_3 pairs data portions of an input signal
Descrambling and despreading operations are carried out, and symbols obtained after descrambling and despreading are as follows:
<math><mrow>
<msubsup>
<mi>u</mi>
<mrow>
<mo>(</mo>
<mi>l</mi>
<mo>,</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>SF</mi>
</munderover>
<msub>
<mi>r</mi>
<mrow>
<msub>
<mi>p</mi>
<mi>k</mi>
</msub>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>-</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>·</mo>
<mi>SF</mi>
<mo>+</mo>
<mi>i</mi>
</mrow>
</msub>
<mo>×</mo>
<mi>conj</mi>
<mrow>
<mo>(</mo>
<msubsup>
<mi>c</mi>
<mi>i</mi>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mi>conj</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>ScC</mi>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
wherein,
indicating the symbol corresponding to the nth active code channel,
the symbol on the l effective path of the nth active code channel is shown, K represents the number of the symbols,
a symbol representing the nth active code channel of the kth symbol of the ith active path;
step 3.2, maximum ratio combiner 420 performs maximum ratio combining on the descrambled and despread symbols to obtain demodulated symbols:
the input end of the maximal ratio combiner 420 is connected to the matched filter 410_3 and the channel impulse responder 470, respectively, and according to the channel impulse response, i.e. the channel estimation on the effective path, the maximal ratio combiner 420 performs the maximal ratio combining operation on the descrambled and despread symbols on different paths to obtain the demodulated symbol on each active code channel:
<math><mrow>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>l</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>L</mi>
</munderover>
<mi>conj</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>ChE</mi>
<mi>l</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msubsup>
<mi>u</mi>
<mrow>
<mo>(</mo>
<mi>l</mi>
<mo>,</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mi>n</mi>
</msubsup>
<mo>;</mo>
</mrow></math>
wherein,indicates the demodulation symbol, u, corresponding to the nth active code channel(l,k) nSymbol representing the nth active code channel of the kth symbol of the ith active pathCode, ChEiA channel estimation value representing an ith path;
step 3.3, joint detection:
step 3.3.1, the system matrix generator 590 performs convolution with the channel impulse response according to the dot product result of the scrambling code generator and the activated spreading code adopted by the current cell, and generates a system matrix:
the input end of the system matrix generator 590 is connected to the scrambling code generator and spreading code generator 580 and the channel impulse responder 470, respectively, and the activated spreading code ChC ═ C (C) is determined according to the scrambling code ScC of the current cell generated by the scrambling code generator and spreading code generator 5801,C2,…,CN), Wherein N represents the number of active code channels, SF represents the spreading factor, and the channel impulse response H generated by the channel impulse response generator 470, and the system matrix a is calculated as:
<math><mrow>
<msup>
<mi>b</mi>
<mi>n</mi>
</msup>
<mo>=</mo>
<mi>H</mi>
<mo>⊗</mo>
<mrow>
<mo>(</mo>
<mi>ScC</mi>
<mo>.</mo>
<mo>*</mo>
<msub>
<mi>C</mi>
<mi>n</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
B=[b1,b2,…,bN]T;
wherein, the [ alpha ], [ beta ]]TRepresenting matrix transposition, wherein the number of B matrixes in the A matrix is equal to the number of symbols needing joint detection;
step 3.3.2, the joint detector 530 adopts a zero-forcing linear block equalizer algorithm or a minimum mean square error linear block equalizer algorithm to carry out joint detection operation to obtain a demodulation symbol;
the input terminals of the joint detector 530 are respectively connected to the system matrix generator 590 and the maximal ratio combiner 420;
the joint detector 530 uses the zero-chase linear block equalizer algorithm to obtain the demodulated symbols as follows:
<math><mrow>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mo>=</mo>
<msup>
<mrow>
<mo>(</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mo>×</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mover>
<mi>r</mi>
<mo>^</mo>
</mover>
<mo>;</mo>
</mrow></math>
wherein, A represents a system matrix,represents the input I/Q path signal,indicating the demodulated symbols resulting from the joint detection.
The joint detector 530 uses the minimum mean square error linear block equalizer algorithm to obtain the demodulated symbols as follows:
<math><mrow>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mo>=</mo>
<msup>
<mrow>
<mo>(</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mi>A</mi>
<mo>+</mo>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
<mo>·</mo>
<mi>I</mi>
<mo>)</mo>
</mrow>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msup>
<mo>×</mo>
<msup>
<mi>A</mi>
<mi>H</mi>
</msup>
<mo>·</mo>
<mover>
<mi>r</mi>
<mo>^</mo>
</mover>
<mo>;</mo>
</mrow></math>
wherein, A represents a system matrix,
representing the input I/Q-path signal, σ
2Which represents the variance of the noise, is,
indicating the demodulated symbols resulting from the joint detection.
Step 3.4, symbol decision device 430 performs symbol decision on the demodulated symbol generated by joint detector 530, and obtains the estimated value of the transmitted symbol as:
whereinAnd the judgment result of the demodulation symbol corresponding to the nth active code channel is shown.
In step 3.4, the symbol decision includes a hard decision and a soft decision, and the symbol decision device 430 may be a demodulation symbol hard decision device or a demodulation symbol soft decision device;
the hard decision is operated by a demodulation symbol hard decision device, and the result after the hard decision is obtained is as follows:
<math><mrow>
<msubsup>
<mi>d</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mi>sign</mi>
<mrow>
<mo>(</mo>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfenced open='{' close=''>
<mtable>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>≥</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>-</mo>
<mn>1</mn>
</mtd>
<mtd>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo><</mo>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow></math>
yk na demodulated symbol representing the kth symbol of the nth active code channel.
The soft decision is operated by a demodulation symbol soft decision device, and the result after the soft decision is obtained is as follows:
<math><mrow>
<msubsup>
<mi>d</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mi>tanh</mi>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mo>·</mo>
<msubsup>
<mi>y</mi>
<mi>k</mi>
<mi>n</mi>
</msubsup>
</mrow>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
where m represents the mean value of the received signal amplitude, σ2Representing the noise variance of the received signal and tanh representing the hyperbolic tangent function.
Step 4, reconstructing cell signals:
step 4.1, the modulation spreader 440 performs modulation spreading operation on the result of symbol decision to obtain the chip sequence on the active code channel:
the input of the modulation spreader 440 is connected to a symbol decider 430, which is based on the current cell acquisitionScrambling code ScC used, spreading code ChC ═ on active code channel (C)
1,C
2,…,C
N),
The decision result output by the symbol decision device 430 is modulated and spread to obtain the chip-level transmit signal estimation value on each active code channel:
<math><mrow>
<msup>
<mover>
<mi>v</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msubsup>
<mi>v</mi>
<mn>1</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<msubsup>
<mi>v</mi>
<mn>2</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
<mo>,</mo>
<msubsup>
<mi>v</mi>
<mrow>
<mi>K</mi>
<mo>×</mo>
<mi>SF</mi>
</mrow>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
whereinA transmitted signal estimate representing the chip level on the nth active code channel;
step 4.2, the N convolvers 460 correspondingly complete the reconstruction of the received signals on the plurality of active code channels:
the input end of the N convolvers 460 is connected to the modulation spreader 440 and the channel impulse responder 470, respectively, and performs convolution operation on the output chip sequence and the channel impulse response on each active code channel to obtain a reconstructed signal on each active code channel:
<math><mrow>
<msup>
<mover>
<mi>w</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msubsup>
<mi>w</mi>
<mn>1</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<msubsup>
<mi>w</mi>
<mn>2</mn>
<mi>n</mi>
</msubsup>
<mo>,</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
<mo>,</mo>
<msubsup>
<mi>w</mi>
<mrow>
<mi>K</mi>
<mo>×</mo>
<mi>SF</mi>
</mrow>
<mi>n</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow></math>
<math><mrow>
<msup>
<mover>
<mi>w</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mi>H</mi>
<mo>⊗</mo>
<msup>
<mover>
<mi>v</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
<mo>;</mo>
</mrow></math>
wherein,
representing the reconstructed signal on the nth code channel;
step 4.3, the activation code channel signal superimposer 450 connected with the N convolvers 460 superimposes the reconstruction signal on each activation code channel to complete the combination of the activation code channels, thereby completing the reconstruction of the cell signal and obtaining the reconstruction signal of the cell
<math><mrow>
<msup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>s</mi>
</msup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>N</mi>
</munderover>
<msup>
<mover>
<mi>w</mi>
<mo>^</mo>
</mover>
<mi>n</mi>
</msup>
</mrow></math>
Denotes the n-thA reconstructed signal on a code channel;
step 4.4, the weighting multiplier connected with the output end of the activated code channel signal adder 450 weights the cell reconstruction signal: reconstructing the signal of the cell
Multiplication by a particular weighting factor p
sPerformance loss due to incorrect symbol decisions is reduced:
<math><mrow>
<msup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>s</mi>
</msup>
<mo>=</mo>
<msup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>s</mi>
</msup>
<mo>×</mo>
<msup>
<mi>ρ</mi>
<mi>s</mi>
</msup>
<mo>.</mo>
</mrow></math>
as shown in fig. 2, a schematic structural diagram of eliminating co-channel interference by using a parallel interference cancellation method, the core idea is to reconstruct signals of each co-channel cell simultaneously and complete interference signal elimination on the basis,
the method comprises the following specific steps:
setting M same-frequency adjacent cells for the current cell; the current received data I/Q way sampling input isWherein Z is the length of the sampling sequence; the number of parallel interference cancellation stages set by the system is S;
step 1, M +1 JD-based ceiigus perform reconstruction of interference signals of M co-frequency neighbor cells and the cell in parallel according to s-1 level interference-eliminated signals and the JD-based demodulation symbol reconstruction cell signal processing method as shown in fig. 3, so as to obtain s-level reconstruction signals of each cell:
wherein S is 1, 2, …, S, j is 1, 2, …, M + 1.
In the
above step 1, if s is 1, that is, if the cell signal is reconstructed in the first stage, the sampling input of the I/Q channel of the received data is directly used
Step 2, for each cell, namely the cell and M same-frequency adjacent cells, the corresponding M +1 cell reconstruction signal superimposer superimposes the s-th level reconstruction signals of other cells calculated in the
step 1
And superposing to obtain an interference signal of the s-th level corresponding to each cell:
wherein S is 1, 2, …, S, j is 1, 2, …, M + 1.
In step 2, the s-th level interference signal corresponding to each cell includes:
interference signal of the cell:
<math><mrow>
<msubsup>
<mover>
<mi>I</mi>
<mo>^</mo>
</mover>
<mn>1</mn>
<mi>s</mi>
</msubsup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>2</mn>
</mrow>
<mrow>
<mi>M</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</munderover>
<msubsup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>i</mi>
<mi>s</mi>
</msubsup>
<mo>;</mo>
</mrow></math>
and interference signals of M co-frequency adjacent cells;
<math><mrow>
<msubsup>
<mover>
<mi>I</mi>
<mo>^</mo>
</mover>
<mi>j</mi>
<mi>s</mi>
</msubsup>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<munder>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>i</mi>
<mo>≠</mo>
<mi>j</mi>
<mo>,</mo>
<mi>i</mi>
<mo>∈</mo>
<mi>U</mi>
</mrow>
</munder>
<mrow>
<mi>M</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</munderover>
<msubsup>
<mover>
<mi>x</mi>
<mo>^</mo>
</mover>
<mi>i</mi>
<mi>s</mi>
</msubsup>
<mo>;</mo>
</mrow></math>
where, S ═ 1, 2, …, S, j denotes the jth co-frequency neighbor cell.
In step 2, when stacking the reconstructed signals of different cells, the delays of the respective cells must be considered at the same time, i.e. the delays of the different cells must be aligned before stacking.
Step 3, for each cell, namely the cell and M same-frequency adjacent cells, the corresponding M +1 cell interference signal eliminator removes the signal superposition value generated by the reconstruction of other interference cells generated in the step 2 from the received signal, thereby eliminating the influence of the adjacent cell interference signal on the received signal of the cell; namely, the cell interference signal eliminator calculates the receiving signals after the interference elimination of the s-th level respectivelyAnd adoptAnd (3) carrying out interference elimination of the next stage, namely the (s + 1) th stage:
wherein S is 1, 2, …, S, j is 1, 2, …, M +1, 1 ≦ k ≦ Z.
And 4, repeatedly executing the steps 1-3 according to the PIC level S preset by the system and the received signal obtained by calculation of the previous PIC level after interference elimination until the PIC operation of all levels is completed.
In the method, when each co-frequency adjacent cell is subjected to signal reconstruction, the required basic cell information of the current co-frequency adjacent cell, including a basic midamble sequence, a scrambling code, an activated spreading code and the like, is known by a system or is obtained by detection.
It is obvious and understood by those skilled in the art that the preferred embodiments of the present invention are only for illustrating the present invention and not for limiting the present invention, and the technical features of the embodiments of the present invention can be arbitrarily combined without departing from the idea of the present invention. The method and the device for eliminating the signal interference of the co-channel cells based on the parallel interference cancellation disclosed by the invention can be modified in many ways, and the invention can also have other embodiments besides the preferred modes specifically given above. Therefore, any method or improvement that can be made by the idea of the present invention is included in the scope of the claims of the present invention. The scope of the invention is defined by the appended claims.