CN1949683B - Method and apparatus for cancellation eliminating common-frequency cell signal interference based on serial interference - Google Patents

Method and apparatus for cancellation eliminating common-frequency cell signal interference based on serial interference Download PDF

Info

Publication number
CN1949683B
CN1949683B CN2006101179141A CN200610117914A CN1949683B CN 1949683 B CN1949683 B CN 1949683B CN 2006101179141 A CN2006101179141 A CN 2006101179141A CN 200610117914 A CN200610117914 A CN 200610117914A CN 1949683 B CN1949683 B CN 1949683B
Authority
CN
China
Prior art keywords
mrow
msubsup
cell
signal
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006101179141A
Other languages
Chinese (zh)
Other versions
CN1949683A (en
Inventor
单鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI XUANPU INDUSTRIAL Co Ltd
Original Assignee
SHANGHAI XUANPU INDUSTRIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI XUANPU INDUSTRIAL Co Ltd filed Critical SHANGHAI XUANPU INDUSTRIAL Co Ltd
Priority to CN2006101179141A priority Critical patent/CN1949683B/en
Publication of CN1949683A publication Critical patent/CN1949683A/en
Application granted granted Critical
Publication of CN1949683B publication Critical patent/CN1949683B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Noise Elimination (AREA)

Abstract

The invention provides a serial interference offset-based same-frequency cell signal interference eliminating method and device, for each cell, superposing the reconstructed signal of the cell in the previous-stage interference eliminating course and the residual signal obtained after removing all cell interfering signals in the current-stage interference eliminating course, and restoring the received signal of the cell; then reconstructing cell interfering signal by the demodulation symbol generated, based on matched filter; removing the reconstructed signal of the cell in the current-stage interference eliminating course from the input signal and obtaining the residual signal; according to serial progression, repeating executing the above steps. And the invention can eliminate the influence of same-frequncy cell signals and improve the signal receving performance of the cell on the mal-condition that the powers of the adjacent same-frequency cells are higher than that of the cell.

Description

Method and device for eliminating signal interference of co-frequency cell based on serial interference cancellation
Technical Field
The invention relates to a method and a device for serially eliminating co-channel interference for a Time Division synchronous code Division Multiple Access (TD-SCDMA) mobile communication system, in particular to a method and a device for serially eliminating the influence of co-channel interference signals on useful signals to the maximum extent and improving the receiving performance of a receiver.
Background
In a direct spread spectrum code division multiple access (DS-CDMA) system, because of the code division multiple access technology, there is a possibility that different cells use the same-frequency networking objectively, which means that a certain base station (NodeB) may be interfered by signals of mobile stations (UE) in neighboring cells of the same frequency, or a certain mobile station may be interfered by signals of base stations of multiple same-frequency cells. Due to the different propagation delays of different signals and the existence of scrambling codes, the spreading code sets adopted by the respective signals are not completely orthogonal, and this Interference caused by non-zero cross-correlation coefficient is often called Multiple Access Interference (MAI). In CDMA systems, Matched filters (MF for short) or Multi-user detectors (MUD for short) are usually used to recover data before spreading and scrambling. The traditional Rake receiver can not effectively restrain multiple access interference, and multi-user detection can better eliminate the influence caused by MAI.
The multi-user detection method mainly comprises two methods: linear multi-user detection and non-linear multi-user detection. Since linear multi-user detection (joint detection receiver) needs to complete the operation of system matrix inversion, when the Spreading Factor (SF) adopted by the CDMA system is large, the scrambling code length is long, or the number of interfering users is too large, the dimension of the system matrix will increase, and the operation amount of matrix inversion will become unacceptable. In this case, the nonlinear multi-user detection method (interference cancellation) can achieve better reception performance with lower implementation complexity. The non-linear multi-user detection method is mainly divided into two types: parallel Interference Cancellation (PIC) and Successive Interference Cancellation (SIC). In contrast, the PIC has the advantages of short processing delay, no need of power sequencing of each cell, and the like; and SIC consumes less resources, and has better stability and performance when the signal power difference of each cell is larger.
Fig. 1 is a schematic diagram of a frame structure of a TD-SCDMA system. The structure is given in accordance with the low chip rate time division duplex (LCR-TDD) mode (1.28Mcps) in the 3G partnership project (3GPP) specification TS 25.221(Release 4), or the chinese wireless communication standard (CWTS) specification TSM05.02(Release 3). The chip rate of TD-SCDMA system is 1.28Mcps, and each Radio Frame (Radio Frame)100、101Is 5ms, i.e., 6400 chips (for a 3GPP LCR-TDD system, each radio frame is 10ms in length and can be divided into two subframes (subframes) of 5ms in length, where each Subframe contains 6400 chips). Wherein, each radio frame 10 in TD-SCDMA system (or sub-frame in LCR system)0、101Can be divided into 7 time slots (TS 0-TS 6)110-116And two pilot slots: a downlink pilot time slot (DwPTS)12 and an uplink pilot time slot (UpPTS)14, and a Guard interval (Guard) 13. Further, TS0 time slot 110Is used to carry the system broadcast channel and possibly other downlink traffic channels; and TS 1-TS 6 time slot 111-116It is used to carry the uplink and downlink traffic channels. An uplink pilot time slot (UpPTS)14 and a downlink pilot time slot (DwPTS)12 are used to establish initial uplink and downlink synchronization, respectively. TS 0-TS 6 time slot 110-116Each of 0.675ms or 864 chips in length, which includes two DATA segments DATA1(17) and DATA2(19) of 352 chips in length, and a middle training sequence of 144 chips in length, i.e., Midamble (Midamble) sequence 18. The Midamble sequence has significance in TD-SCDMA, and modules including cell identification, channel estimation and synchronization (including frequency synchronization) and the like are all used. DwPTS slot 12 contains a guard interval 20 of 32 chips and a downlink synchronization code (SYNC-DL) codeword 15 of 64 chips, which is used for cell identification and initial synchronization establishment; the UpPTS timeslot, in turn, contains an uplink synchronization code (SYNC-UL) codeword 16 of length 128 chips, which is used by the ue to perform the relevant uplink access procedure.
DATA carried by two parts of DATA segments DATA1(17) and DATA2(19) of a TD-SCDMA downlink time slot are spread and wound by using spreading codes and scrambling codes. Under the condition of co-channel interference, because the lengths of Spreading codes (Spreading codes) and scrambling codes (scrambling codes) adopted by the TD-SCDMA system are both relatively short (both are only 16 chips), the cross-correlation characteristics between the Spreading codes and the scrambling codes of different cells are not ideal, and the influence of interference signals of adjacent cells cannot be effectively inhibited by a traditional Rake receiver or a single-cell joint detection device (JD for short), which causes the degradation of the receiving performance of the TD-SCDMA system. In order to obtain higher system capacity for the TD-SCDMA system, it is necessary to improve its receiving performance under co-channel interference. The invention introduces a method for counteracting serial interference, and effectively improves the receiving performance of the TD-SCDMA system under the same frequency interference condition.
Disclosure of Invention
The invention aims to provide a method and a device for eliminating signal interference of a common-frequency cell based on serial interference cancellation, which can eliminate the influence of the signal of the common-frequency cell to a great extent and improve the receiving performance of the signal of the cell under the severe condition that the power of a common-frequency adjacent cell is higher than that of the cell with lower implementation complexity.
The invention provides a method for eliminating signal interference of a same-frequency cell based on Serial Interference Cancellation (SIC), which is characterized in that the cell and each same-frequency adjacent cell respectively and independently adopt a method for reconstructing signals of each cell based on demodulation symbols generated by a matched filter, and the method carries out interference cancellation in series and comprises the following steps:
step 1, for each cell, namely the current cell and M same-frequency adjacent cells, the cell received signal recovery unit orderly eliminates the reconstructed signal of the cell in the s-1 level interference elimination processAnd residual signals after removing interference signals of all previous cells in the s-th-stage interference elimination process
Figure DEST_PATH_GSB00000089015400012
Superposing and recovering the received signals of each cell
e ^ j s = r ^ j - 1 s + x ^ j s - 1
Wherein S is 1, 2, …, S, and S represents the number of successive interference cancellation stages set by the system; j ═ 1, 2, …, M + 1;
step 2, according to the sampling input of the current received data I/Q way
Figure DEST_PATH_GSB00000089015400015
And the sum of the signals after the interference elimination of the s-1 level, a Channel Estimation and interference reconstruction Unit (CEIGU for short) reconstructs the signals of each cell by adopting a method based on a demodulation symbol generated by a Matched Filter (MF), and sequentially and serially completes the reconstruction of the interference signals of each cell to obtain a reconstructed signal of each cell of the s level:
<math><mrow> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>j</mi> <mi>s</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>s</mi> </msubsup> <mo>,</mo> <msubsup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>s</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>,</mo> <mi>Z</mi> <mo>)</mo> </mrow> <mi>s</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
wherein S is 1, 2, …, S, j is 1, 2, …, M +1, Z is the length of the sampling sequence;
the step 2 specifically comprises the following steps:
step 2.1, separating effective paths;
step 2.2, generating channel impulse response;
step 2.3, generating a demodulation symbol based on the matched filter;
step 2.4, reconstructing cell signals;
step 3, for each cell, the cell reconstruction signal removing unit sequentially eliminates the reconstruction signal of the cell in the s-th level interference elimination process
Figure DEST_PATH_GSB00000089015400021
From input signals
Figure DEST_PATH_GSB00000089015400022
Medium removal to get the s-th order removal of the smallResidual signal after zone interference
r ^ j s = e ^ j s - x ^ j s ;
Wherein S is 1, 2, …, S, j is 1, 2, …, M + 1;
and 4, repeatedly executing the steps 1-3 according to SIC series preset by the system until SIC operation of all stages is completed.
In step 1, when s is 1, that is, when the first-stage interference cancellation is performed, the reconstructed signal of the cell is set to 0.
In step 1, when j is 1, that is, when interference cancellation is performed in the first cell, the residual signal after removing the interference signals of all the previous cells in the interference cancellation process is 0.
The method for reconstructing a cell signal using a demodulation symbol generated based on a matched filter in step 2 specifically includes:
step 2.1, separating effective paths;
step 2.1.1, for each cell, the last 128 chips of the Midamble sequence (Midamble code) part of the input signal are data-mappedBy matched filteringA filter, which is respectively connected with the Basic Midamble sequence (Basic Midamble) BM ═ m of the cell1,m2,…,m128) Performing bit-by-bit cyclic exclusive-or operation, and calculating the power (Delay Profile, DP) of each bit-by-bit exclusive-or result on each path:
<math><mrow> <msub> <mi>DP</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>128</mn> </munderover> <mo>|</mo> <mo>|</mo> <msubsup> <mi>r</mi> <mi>n</mi> <mi>BM</mi> </msubsup> <mo>*</mo> <msub> <mi>m</mi> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>mod</mi> <mn>128</mn> </mrow> </msub> <mo>|</mo> <mo>|</mo> <mo>;</mo> </mrow></math>
step 2.1.2, detecting the effective path through the effective path detector:
comparing the power DP on each Path (Path) with a certain threshold Th; selecting a path corresponding to the power DP greater than or equal to the threshold Th as an effective path, otherwise, selecting an invalid path; the L effective paths detected by the final effective path detector are: peff=(p1,p2,…,pL);
Step 2.2, generating Channel Impulse response (Channel Impulse):
step 2.2.1, calculating Channel Estimation (ChE) on each path through a matched filter and a Channel estimator:
the basic midamble sequence according to the current cell is BM ═ (m)1,m2,…,m128) And the data of the last 128 chips of the midamble sequence portion in the received input signal is
Figure DEST_PATH_GSB00000089015400027
The channel estimate ChE on each path is calculated as:
<math><mrow> <msub> <mi>ChE</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>128</mn> </munderover> <msubsup> <mi>r</mi> <mi>n</mi> <mi>BM</mi> </msubsup> <mo>*</mo> <msub> <mi>m</mi> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>mod</mi> <mn>128</mn> </mrow> </msub> <mo>;</mo> </mrow></math>
step 2.2.2, generating channel impulse response H ═ H (H) by the channel impulse responder according to the effective path obtained in step 2.1.2 and the channel estimation obtained in step 2.2.11,h2,…,hT) The length T represents the maximum delay supported by the system, the value at the position of the effective path of the channel impulse response is the channel estimation value on the path, and the value at the position of the non-effective path is zero, that is:
<math><mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>ChE</mi> <mi>i</mi> </msub> </mtd> <mtd> <msub> <mi>DP</mi> <mi>i</mi> </msub> <mo>&GreaterEqual;</mo> <mi>Th</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>DP</mi> <mi>i</mi> </msub> <mo><</mo> <mi>Th</mi> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
DPirepresents the power of the ith path;
step 2.3, generating demodulation symbols based on the matched filter:
step 2.3.1, descrambling and despreading the data part in the input signal by the matched filter:
according to the position P of the active path, the scrambling code ScC of the current cell and the activated spreading code ChC ═ C1,C2,…,CN), Where N denotes the number of active code channels and SF denotes the spreading factor, and a matched filter is used to match the data portion of the input signal
Figure DEST_PATH_GSB00000089015400034
Descrambling and despreading operations are carried out, and symbols obtained after descrambling and despreading are as follows:
<math><mrow> <mi>U</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>L</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>l</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>K</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>SF</mi> </munderover> <msub> <mi>r</mi> <mrow> <msub> <mi>p</mi> <mi>k</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>SF</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> <mo>&times;</mo> <mi>conj</mi> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mi>i</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>conj</mi> <mrow> <mo>(</mo> <msub> <mi>ScC</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
wherein,indicating the symbol corresponding to the nth active code channel,representing symbols on the l effective path of the nth active code channel, K representing the number of symbols, u(l,k) nSymbol representing the nth active code channel of the kth symbol of the ith active path, ScCiA scrambling code representing the ith chip;
step 2.3.2, maximum ratio merger carries out maximum ratio merger to the symbol obtained after descrambling and despreading to obtain a demodulated symbol:
according to the channel impulse response, namely the channel estimation on the effective path, the maximal ratio combiner carries out the maximal ratio combining operation on the descrambled and despread symbols on different paths to obtain the demodulated symbol on each active code channel:
<math><mrow> <mi>Y</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>y</mi> <mi>K</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>L</mi> </munderover> <mi>conj</mi> <mrow> <mo>(</mo> <msub> <mi>ChE</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>;</mo> </mrow></math>
wherein,indicates the demodulation symbol, u, corresponding to the nth active code channel(l,k) nA symbol representing the nth active code channel of the kth symbol of the 1 st active path;
step 2.3.3, the symbol decision device makes symbol decision to the demodulation symbol generated by the joint detector, and the estimated value of the obtained sending symbol is:
<math><mrow> <mi>D</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>d</mi> <mi>K</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
whereinAnd the judgment result of the demodulation symbol corresponding to the nth active code channel is shown.
In step 2.3.3, the symbol decision includes hard decision and soft decision:
the hard decision is operated by a demodulation symbol hard decision device, and the result after the hard decision is obtained is as follows:
<math><mrow> <msubsup> <mi>d</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>sign</mi> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo><</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
yk na demodulated symbol representing a kth symbol of an nth active code channel;
the soft decision is operated by a demodulation symbol soft decision device, and the result after the soft decision is obtained is as follows:
<math><mrow> <msubsup> <mi>d</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>tanh</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>m</mi> <mo>&CenterDot;</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
where m represents the mean value of the received signal amplitude, σ2Representing the noise variance of the received signal and tanh representing the hyperbolic tangent function.
Step 2.4, reconstructing cell signals:
step 2.4.1, the modulation spreader performs modulation spread spectrum operation on the result of the symbol decision to obtain a chip sequence on the active code channel:
according to the scrambling code ScC adopted by the current cell and the spreading code ChC ═ on the active code channel (C)1,C2,…,CN), Modulating and spreading the result of the symbol decision by a modulation spreader to obtain a chip-level transmission signal estimation value on each active code channel:
<math><mrow> <mi>V</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>v</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>v</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>v</mi> <mrow> <mi>K</mi> <mo>&times;</mo> <mi>SF</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
whereinA transmitted signal estimate representing the chip level on the nth active code channel;
step 2.4.2, the convolution device correspondingly completes the reconstruction of the received signal on the activation code channel:
the convolver completes the convolution operation on the chip sequence on each active code channel obtained in step 2.4.1 and the channel impulse response obtained in step 2.2 to obtain a reconstructed signal on each active code channel:
<math><mrow> <mi>W</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>w</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>w</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>w</mi> <mrow> <mi>K</mi> <mo>&times;</mo> <mi>SF</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mi>H</mi> <mo>&CircleTimes;</mo> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>;</mo> </mrow></math>
wherein,representing the reconstructed signal on the nth code track,
Figure DEST_PATH_GSB00000089015400055
a transmitted signal estimate representing the chip level on the nth active code channel;
step 2.4.3, the activation code channel signal superimposer superimposes the reconstruction signal on each activation code channel to complete the combination of the activation code channels, thereby completing the reconstruction of the cell signal and obtaining the reconstruction signal of the cell
Figure DEST_PATH_GSB00000089015400056
<math><mrow> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> </mrow></math>
Figure DEST_PATH_GSB00000089015400058
Representing the reconstructed signal on the nth code channel
Step 2.4.4, reconstruction signal weighting: reconstructing the signal of the cell
Figure DEST_PATH_GSB00000089015400059
Multiplication by a particular weighting factor psPerformance loss due to incorrect symbol decisions is reduced:
<math><mrow> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>=</mo> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>&times;</mo> <msup> <mi>&rho;</mi> <mi>s</mi> </msup> <mo>.</mo> </mrow></math>
in the method, when each co-frequency adjacent cell is subjected to signal reconstruction, the required basic cell information of the current co-frequency adjacent cell, including a basic midamble sequence, a scrambling code, an activated spreading code and the like, is known by a system or is obtained by detection.
Corresponding to the method, the invention also provides a device for eliminating the signal interference of the same-frequency cell based on serial interference cancellation, which comprises a cell received signal recovery unit, a CEIGU based on MF and a cell reconstruction signal removing unit which are connected in sequence;
the cell received signal recovery unit is used for sequentially eliminating the reconstructed signal of the cell in the s-1 level interference elimination process for the current cell and M same-frequency adjacent cells
Figure DEST_PATH_GSB000000890154000511
And residual signals after removing interference signals of all previous cells in the s-th-stage interference elimination processSuperposing and sequentially recovering the received signals of all cells
Figure DEST_PATH_GSB000000890154000513
e ^ j s = r ^ j - 1 s + x ^ j s - 1
Wherein S is 1, 2, …, S, and S represents the number of successive interference cancellation stages set by the system; j is 1, 2, …, M + 1.
When s is 1, i.e. the power DP performs the first stage interference cancellation, the reconstructed signal of the cell is set to 0.
When j is 1, that is, the power DP performs interference cancellation in the first cell, then the residual signal after removing the interference signals of all the previous cells in the interference cancellation process is 0.
The MF-based CEIGU is used for inputting samples according to the I/Q paths of the current received data
Figure DEST_PATH_GSB00000089015400061
Interference cancellation with the s-1 st stageAnd the sum of the signals is processed by adopting a processing method for reconstructing cell signals based on demodulation symbols generated by MF to sequentially and serially complete the reconstruction of the received signals of each cell to obtain the reconstructed signal of each cell at the s-th level:
<math><mrow> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>j</mi> <mi>s</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>s</mi> </msubsup> <mo>,</mo> <msubsup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>s</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>,</mo> <mi>Z</mi> <mo>)</mo> </mrow> <mi>s</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
where S is 1, 2, …, S, j is 1, 2, …, M +1, and Z is the length of the sample sequence.
The CEIGU based on MF comprises an effective path separation device, a channel impulse response device, a demodulation symbol generation device based on a matched filter and a cell signal reconstruction device which are connected through circuits;
the cell reconstruction signal removing unit is used for sequentially removing the reconstruction signal of each cell in the s-th level interference elimination process
Figure DEST_PATH_GSB00000089015400063
From input signalsThe s-th residual signal after the interference of the cell is removed is obtained
r ^ j s = e ^ j s - x ^ j s ;
Wherein S is 1, 2, …, S, j is 1, 2, …, M + 1.
The effective path separation device comprises a first matched filter and an effective path detector which are connected in sequence;
the input of the first matched filter receives the last 128 chip data BM ═ m (m) of the midamble sequence in the input signal1,m2,…,m128) Basic midamble sequence with current cellCarrying out bit-by-bit cyclic XOR operation, and calculating the power of each bit-by-bit XOR result:
<math><mrow> <msub> <mi>DP</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>128</mn> </munderover> <mo>|</mo> <mo>|</mo> <msubsup> <mi>r</mi> <mi>n</mi> <mi>BM</mi> </msubsup> <mo>*</mo> <msub> <mi>m</mi> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>mod</mi> <mn>128</mn> </mrow> </msub> <mo>|</mo> <mo>|</mo> <mo>;</mo> </mrow></math>
the effective path detector compares the power DP value of each path output by the first matched filter with a specific threshold Th; selecting a path corresponding to the power DP greater than or equal to the threshold Th as an effective path, otherwise, selecting an invalid path; the L effective paths detected by the final effective path detector are: peff=(p1,p2,…,pL)。
The channel impulse response device comprises a second matched filter, a channel estimator and a channel impulse response device which are connected in sequence;
the input of the second matched filter receives the last 128 chip data BM ═ m (m) of the midamble sequence in the input signal1,m2,…,m128) Combining the basic midamble sequence of the current cell
Figure DEST_PATH_GSB00000089015400071
The channel estimation ChE on each path is calculated by the channel estimator as:
<math><mrow> <msub> <mi>ChE</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>128</mn> </munderover> <msubsup> <mi>r</mi> <mi>n</mi> <mi>BM</mi> </msubsup> <mo>*</mo> <msub> <mi>m</mi> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>mod</mi> <mn>128</mn> </mrow> </msub> <mo>;</mo> </mrow></math>
the input end of the channel impulse responder is also connected with the output end of the effective path detector; the channel impulse response device generates the channel impulse response H ═ (H) according to the effective path and the channel estimation1,h2,…,hT):
<math><mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>ChE</mi> <mi>i</mi> </msub> </mtd> <mtd> <msub> <mi>DP</mi> <mi>i</mi> </msub> <mo>&GreaterEqual;</mo> <mi>Th</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>DP</mi> <mi>i</mi> </msub> <mo><</mo> <mi>Th</mi> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
DPiIndicating the power of the ith path, ChEiA channel estimation value representing an ith path;
wherein, the length T of the channel impulse response represents the maximum time delay supported by the system.
The demodulation symbol generating device based on the matched filter comprises a third matched filter, a maximum ratio combiner and a symbol decision device which are connected in sequence;
the input of the third matched filter receives the data part of the input signal and is connected with the effective path detector, and the third matched filter is based on the position P of the effective path, the scrambling code ScC of the current cell and the activated spreading code ChC ═ C (C)1,C2,…,CN),
Figure DEST_PATH_GSB00000089015400074
Wherein N represents the number of active code channels and SF represents the spreading factor for the data portion of the input signalDescrambling and despreading operations are carried out, and symbols obtained after descrambling and despreading are as follows:
<math><mrow> <mi>U</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>L</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>l</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>K</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>SF</mi> </munderover> <msub> <mi>r</mi> <mrow> <msub> <mi>p</mi> <mi>k</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>SF</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> <mo>&times;</mo> <mi>conj</mi> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mi>i</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>conj</mi> <mrow> <mo>(</mo> <msub> <mi>ScC</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
wherein,
Figure DEST_PATH_GSB000000890154000710
indicating the symbol corresponding to the nth active code channel,
Figure DEST_PATH_GSB000000890154000711
representing symbols on the l effective path of the nth active code channel, K representing the number of symbols, u(l,j) nSymbol representing the nth active code channel of the kth symbol of the ith active path, ScCiA scrambling code representing the ith chip;
the input end of the maximal ratio combiner is also connected with a channel impulse responder, and the maximal ratio combiner carries out maximal ratio combining operation on the descrambled and despread symbols on different paths output by the third matched filter according to the channel impulse response H, namely the channel estimation on an effective path, so as to obtain the demodulated symbol on each active code channel:
<math><mrow> <mi>Y</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>y</mi> <mi>K</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>L</mi> </munderover> <mi>conj</mi> <mrow> <mo>(</mo> <msub> <mi>ChE</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>;</mo> </mrow></math>
wherein,
Figure DEST_PATH_GSB00000089015400084
indicates the demodulation symbol, u, corresponding to the nth active code channel(l,k) nA symbol representing the nth active code channel of the kth symbol of the ith active path;
the symbol decision device carries out symbol decision on the demodulation symbol output by the maximal ratio combiner to obtain an estimation value of a sending symbol:
<math><mrow> <mi>D</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>d</mi> <mi>K</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
wherein
Figure DEST_PATH_GSB00000089015400087
And the judgment result of the demodulation symbol corresponding to the nth active code channel is shown.
The symbol decision device is a demodulation symbol hard decision device, and the hard decision result obtained by adopting the demodulation symbol hard decision device is as follows:
<math><mrow> <msubsup> <mi>d</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>sign</mi> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo><</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
yk na demodulated symbol representing a kth symbol of an nth active code channel;
the symbol decision device is a demodulation symbol soft decision device, and the soft decision result obtained by adopting the demodulation symbol soft decision device is as follows:
<math><mrow> <msubsup> <mi>d</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>tanh</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>m</mi> <mo>&CenterDot;</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
where m represents the mean value of the received signal amplitude, σ2Representing the noise variance of the received signal and tanh representing the hyperbolic tangent function.
The cell signal reconstruction device comprises a modulation frequency spreader, N convolvers and an active code channel signal superimposer which are connected in sequence;
the modulation frequency spreader is based on the scrambling code ScC adopted by the current cell and the spreading code ChC ═ C (C) on the active code channel1,C2,…,CN),
Figure DEST_PATH_GSB000000890154000810
The device outputs the judgment result of the symbol judger according to SIC series S preset by the system and the residual signal of each cell after interference elimination calculated by the last SIC seriesAnd for each SIC stage, repeatedly executing the operation of eliminating the signal interference of the cells with the same frequency until the SIC operation of all stages is completed.
FIG. 2 is a schematic structural diagram of eliminating co-channel interference by a serial interference cancellation method according to the present invention;
<math><mrow> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>w</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>w</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>w</mi> <mrow> <mi>K</mi> <mo>&times;</mo> <mi>SF</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mi>H</mi> <mo>&CircleTimes;</mo> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>;</mo> </mrow></math> the method and the device for eliminating the signal interference of the common-frequency cell based on the serial interference cancellation can eliminate the influence of the signal of the common-frequency cell to a great extent with lower implementation complexity, particularly under the severe condition that the power of the common-frequency adjacent cell is higher than that of the cell, and improve the receiving performance of the signal of the cell.
Wherein,
Figure DEST_PATH_GSB00000089015400095
representing the reconstructed signal on the nth code channel;
the activation code channel signal superimposer superimposes the reconstruction signal on each activation code channel to complete the combination of the activation code channels, thereby completing the reconstruction of the cell signal and obtaining the reconstruction of the cellForm signal
<math><mrow> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> </mrow></math>
Figure DEST_PATH_GSB00000089015400098
Representing the reconstructed signal on the nth code channel.
Furthermore, the cell signal reconstruction device also comprises a weighting multiplier, the input end of the weighting multiplier is connected with the output end of the active code channel signal superimposer, and the weighting multiplier is used for reconstructing the cell reconstruction signal output by the active code channel signal superimposerMultiplication by a particular weighting factor psPerformance loss due to incorrect symbol decisions is reduced:
<math><mrow> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>=</mo> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>&times;</mo> <msup> <mi>&rho;</mi> <mi>s</mi> </msup> <mo>.</mo> </mrow></math>
drawings
FIG. 1 is a frame structure diagram of TD-SCDMA system according to the 3GPP specification in the background art;
FIG. 2 is a schematic structural diagram of eliminating co-channel interference by a serial interference cancellation method according to the present invention;
fig. 3 is a schematic structural diagram of a CEIGU based on a demodulation result of a matched filter according to the present invention.
Detailed Description
The invention is described in detail below with reference to fig. 2 to 3 by way of preferred embodiments.
Taking serial interference cancellation of a time slot of TD-SCDMA as an example, assume that the received signal of the time slot is
Figure DEST_PATH_GSB00000089015400101
Wherein r is1~r352A received signal, r, representing a DATA segment DATA1113 BM,r114 BM,…,r128 BM,r1 BM,…r128 BMRepresenting the received midamble sequence signal, r353~r704Representing the received signal of the DATA segment DATA 2.
Step 1.1, aiming at each cell, carrying out bit-by-bit cyclic exclusive or operation on the data of the last 128 chips of the Midamble code part in the input signal and the Basic Midamble code of the cell respectively through a matched filter 410_1, and calculating power DP;
as shown in fig. 3, a schematic structural diagram of a CEIGU based on demodulation results of a matched filter provided in the present invention is that chip-level data on each active code channel of a cell is obtained from demodulation results of the matched filter, and then reconstruction of received signals of each code channel is completed by convolution with a channel impulse response, where the specific operation steps are as follows:
step 1, effective path separation:
step 1.1, aiming at each cell, carrying out bit-by-bit cyclic exclusive or operation on the data of the last 128 chips of the Midamble code part in the input signal and the Basic Midamble code of the cell respectively through a matched filter 410_1, and calculating DP;
let BM ═ m be the basic midamble sequence of the current cell1,m2,…,m128) The data of the last 128 chips of the midamble sequence portion in the received input signal is
Figure DEST_PATH_GSB00000089015400102
The calculation formula of the power DP on each path is:
<math><mrow> <msub> <mi>DP</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>128</mn> </munderover> <mo>|</mo> <mo>|</mo> <msubsup> <mi>r</mi> <mi>n</mi> <mi>BM</mi> </msubsup> <mo>*</mo> <msub> <mi>m</mi> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>mod</mi> <mn>128</mn> </mrow> </msub> <mo>|</mo> <mo>|</mo> <mo>;</mo> </mrow></math>
step 1.2, the active path is detected by the active path detector 490 connected to the matched filter 410_ 1:
the power DP on each path is compared with a specific threshold ThComparing; selecting a path corresponding to the power DP greater than or equal to the threshold Th as an effective path, otherwise, selecting an invalid path; the L effective paths detected by the final effective path detector are: peff=(p1,p2,…,pL);
Step 2, generating channel impulse response:
step 2.1, computing ChE on each path through the matched filter 410_2 and the channel estimator 480 which are connected in sequence:
let BM ═ m be the basic midamble sequence of the current cell1,m2,…,m128) The data of the last 128 chips of the midamble sequence portion in the received input signal is
Figure DEST_PATH_GSB00000089015400111
The channel estimate ChE on each path is then:
<math><mrow> <msub> <mi>ChE</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>128</mn> </munderover> <msubsup> <mi>r</mi> <mi>n</mi> <mi>BM</mi> </msubsup> <mo>*</mo> <msub> <mi>m</mi> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>mod</mi> <mn>128</mn> </mrow> </msub> <mo>;</mo> </mrow></math>
step 2.2, the channel impulse response H ═ (H) is generated by the channel impulse response device 4701,h2,…,hT):
The channel impulse responder 470 is connected to the effective path detector 490 and the channel estimation, respectivelyThe output of the device 480 generates a channel impulse response H ═ (H) according to the effective path and the channel estimation respectively output1,h2,…,hT) The length T represents the maximum delay supported by the system, the value at the position of the effective path of the channel impulse response is the channel estimation value on the path, and the value at the position of the non-effective path is zero, that is:
<math><mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>ChE</mi> <mi>i</mi> </msub> </mtd> <mtd> <msub> <mi>DP</mi> <mi>i</mi> </msub> <mo>&GreaterEqual;</mo> <mi>Th</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>DP</mi> <mi>i</mi> </msub> <mo><</mo> <mi>Th</mi> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
DPiindicating the power of the ith path, ChEiA channel estimation value representing an ith path;
step 3, generating a demodulation symbol based on the matched filter;
step 3.1, the matched filter 410_3 descrambles and despreads the data part in the input signal:
the input of the matched filter 410_3 is further connected to an effective path detector 490, which outputs the position P of the effective path, the scrambling code ScC of the current cell and the activated spreading code ChC ═ C (C)1,C2,…,CN),
Figure DEST_PATH_GSB00000089015400114
Where N represents the number of active code channels, SF represents the spreading factor, and matched filter 410_3 pairs the data portions of the input signal
Figure DEST_PATH_GSB00000089015400115
Descrambling and despreading operations are carried out, and symbols obtained after descrambling and despreading are as follows:
<math><mrow> <mi>U</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>L</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msubsup> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>l</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>K</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>SF</mi> </munderover> <msub> <mi>r</mi> <mrow> <msub> <mi>p</mi> <mi>k</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>SF</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> <mo>&times;</mo> <mi>conj</mi> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mi>i</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>conj</mi> <mrow> <mo>(</mo> <msub> <mi>ScC</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
wherein,indicating the symbol corresponding to the nth active code channel,representing symbols on the l effective path of the nth active code channel, K representing the number of symbols, u(l,k) nA symbol representing the nth active code channel of the kth symbol of the ith active path;
step 3.2, maximum ratio combiner 420 performs maximum ratio combining on the descrambled and despread symbols to obtain demodulated symbols:
the input end of the maximal ratio combiner 420 is connected to the matched filter 410_3 and the channel impulse responder 470, respectively, and according to the channel impulse response, i.e. the channel estimation on the effective path, the maximal ratio combiner 420 performs the maximal ratio combining operation on the descrambled and despread symbols on different paths to obtain the demodulated symbol on each active code channel:
<math><mrow> <mi>Y</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>y</mi> <mi>K</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>L</mi> </munderover> <mi>conj</mi> <mrow> <mo>(</mo> <msub> <mi>ChE</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>;</mo> </mrow></math>
wherein,indicating the demodulated symbol, ChE, corresponding to the nth active code channeliA channel estimation value representing an ith path;
step 3.3, the symbol decision device 430 connected to the output end of the maximal ratio combiner 420 performs symbol decision on the demodulated symbol to obtain an estimated value of the transmitted symbol:
<math><mrow> <mi>D</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>d</mi> <mi>K</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
whereinAnd the judgment result of the demodulation symbol corresponding to the nth active code channel is shown.
In step 3.3, the symbol decision includes a hard decision and a soft decision, and the symbol decision device 430 may be a demodulation symbol hard decision device or a demodulation symbol soft decision device;
the hard decision is operated by a demodulation symbol hard decision device, and the result after the hard decision is obtained is as follows:
<math><mrow> <msubsup> <mi>d</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>sign</mi> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo><</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
yk na demodulated symbol representing a kth symbol of an nth active code channel;
the soft decision is operated by a demodulation symbol soft decision device, and the result after the soft decision is obtained is as follows:
<math><mrow> <msubsup> <mi>d</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>tanh</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>m</mi> <mo>&CenterDot;</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
where m represents the mean value of the received signal amplitude, σ2Representing the noise variance of the received signal and tanh representing the hyperbolic tangent function.
Step 4, reconstructing cell signals:
step 4.1, the modulation spreader 440 performs modulation spreading operation on the result of symbol decision to obtain the chip sequence on the active code channel:
the input end of the modulation spreader 440 is connected to a symbol decider 430, which is configured to determine (C) the spreading code ChC on the active code channel according to the scrambling code ScC adopted by the current cell1,C2,…,CN), The decision result output by the symbol decision device 430 is modulated and spread to obtain the chip-level transmit signal estimation value on each active code channel:
<math><mrow> <mi>V</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>v</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>v</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>v</mi> <mrow> <mi>K</mi> <mo>&times;</mo> <mi>SF</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
whereinA transmitted signal estimate representing the chip level on the nth active code channel;
step 4.2, the N convolvers 460 correspondingly complete the reconstruction of the received signal on the active code channel:
the input end of the N convolvers 460 is connected to the modulation spreader 440 and the channel impulse responder 470, respectively, and performs convolution operation on the output chip sequence and the channel impulse response on each active code channel to obtain a reconstructed signal on each active code channel:
<math><mrow> <mi>W</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mn>1</mn> </msup> <mo>,</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>N</mi> </msup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>w</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>w</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>w</mi> <mrow> <mi>K</mi> <mo>&times;</mo> <mi>SF</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
<math><mrow> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mi>H</mi> <mo>&CircleTimes;</mo> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>;</mo> </mrow></math>
wherein,
Figure DEST_PATH_GSB00000089015400138
representing the reconstructed signal on the nth code channel;
step 4.3, the activation code channel signal superimposer 450 connected with the N convolvers 460 superimposes the reconstruction signal on each activation code channel to complete the combination of the activation code channels, thereby completing the reconstruction of the cell signal and obtaining the reconstruction signal of the cell
<math><mrow> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> </mrow></math>
Figure DEST_PATH_GSB000000890154001311
Representing the reconstructed signal on the nth code channel;
step 4.4, reconstruction signal weighting: reconstructing the signal of the cell
Figure DEST_PATH_GSB000000890154001312
Multiplication by a particular weighting factor psPerformance loss due to incorrect symbol decisions is reduced:
<math><mrow> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>=</mo> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>&times;</mo> <msup> <mi>&rho;</mi> <mi>s</mi> </msup> <mo>.</mo> </mrow></math>
as shown in fig. 2, a schematic structural diagram of eliminating co-channel interference by using a serial interference cancellation method, the core idea of which is to serially reconstruct signals of each co-channel cell and complete interference signal elimination based on the serial reconstruction, the specific steps are as follows:
setting M same-frequency adjacent cells for the current cell; the current received data I/Q way sampling input isWherein, N is the length of the sampling sequence; the number of series interference cancellation stages set by the system is S;
step 1, for each cell, the cell received signal recovery unit 320 eliminates the reconstructed signal of the cell in the s-1 th level interference elimination process
Figure DEST_PATH_GSB00000089015400141
And residual signals after removing interference signals of all previous cells in the s-th-stage interference elimination processSuperposing and recovering the received signal of the cell
e ^ j s = r ^ j - 1 s + x ^ j s - 1 ;
Wherein S is 1, 2, …, S, j is 1, 2, …, M + 1;
in step 1, each cell multiplexes the cell received signal recovery unit 320;
in step 1, if the first-stage interference cancellation is performed, that is, if s is 1, the reconstructed signal of the cell is set to 0; if the cell is the first cell to perform interference cancellation, that is, j is 1, then the residual signal after removing the interference signals of all the previous cells in the interference cancellation process is 0;
step 2, the MF-based CEIGU 400 receives the signals of the s-th-level cells obtained in step 1According to the processing method for reconstructing cell signals based on the demodulated symbols generated by the MF as shown in fig. 3, the reconstruction of the received signals of each cell is correspondingly and serially completed, and a reconstructed signal of each cell at the s-th level is obtained:
<math><mrow> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>j</mi> <mi>s</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>s</mi> </msubsup> <mo>,</mo> <msubsup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>s</mi> </msubsup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>,</mo> <mi>N</mi> <mo>)</mo> </mrow> <mi>s</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow></math>
wherein S is 1, 2, …, S, j is 1, 2, …, M + 1;
in the step 2, each cell reuses the CEIGU to complete interference signal reconstruction;
step 3, for each cell, the cell reconstruction signal removing unit 330 removes the reconstruction signal of the cell from the input signal in the interference elimination process to obtain a residual signal after the interference of the cell is removed; namely, the cell reconstruction signal removing unit 330 removes the reconstruction signal of the cell in the s-th interference elimination process
Figure DEST_PATH_GSB00000089015400147
From input signalsThe s-th residual signal after the interference of the cell is removed is obtained
Figure DEST_PATH_GSB00000089015400149
r ^ j s = e ^ j s - x ^ j s ;
Wherein S is 1, 2, …, S, j is 1, 2, …, M + 1;
in step 3, each cell multiplexes the cell reconstruction signal removing unit 330.
And 4, repeatedly executing the steps 1-3 according to the SIC series S preset by the system until SIC operation of all stages is completed.
In the method, when each co-frequency adjacent cell is subjected to signal reconstruction, the required basic cell information of the current co-frequency adjacent cell, including a basic midamble sequence, a scrambling code, an activated spreading code and the like, is known by a system or is obtained by detection.
It is obvious and understood by those skilled in the art that the preferred embodiments of the present invention are only for illustrating the present invention and not for limiting the present invention, and the technical features of the embodiments of the present invention can be arbitrarily combined without departing from the idea of the present invention. The method and the device for eliminating the signal interference of the co-channel cells based on the serial interference cancellation disclosed by the invention can be modified in many ways, and the invention can also have other embodiments besides the preferred modes specifically given above. Therefore, any method or improvement that can be made by the idea of the present invention is included in the scope of the claims of the present invention. The scope of the invention is defined by the appended claims.

Claims (16)

1. A method for cancelling and eliminating signal interference of a common-frequency cell based on serial interference is characterized in that the method for reconstructing signals of each cell by a demodulation symbol generated based on a matched filter is independently adopted by a local cell and each common-frequency adjacent cell respectively, and the method for cancelling the interference in serial comprises the following steps:
step 1, for each cell, namely the current cell and M same-frequency adjacent cells, a cell received signal recovery unit (320) eliminates the reconstructed signal of the cell in the s-1 level interference elimination process
Figure FSB00000571970700011
And residual signals after removing interference signals of all previous cells in the s-th-stage interference elimination processSuperposing and recovering the received signals of each cell
e ^ j s = r ^ j - 1 s + x ^ j s - 1 ;
Wherein S is 1, 2, …, S, and S represents the number of successive interference cancellation stages set by the system; j ═ 1, 2, …, M + 1;
step 2, according to the sampling input of the current received data I/Q way
Figure FSB00000571970700015
And the sum of the signals after the s-1 level interference elimination, the channel estimation and interference reconstruction unit (400) adopts a method for reconstructing signals of each cell based on demodulation symbols generated by a matched filter to sequentially and serially complete the reconstruction of the received signals of each cell to obtain the reconstructed signal of each cell of the s level:
x ^ j s = ( x ( j , 1 ) s , x ( j , 2 ) s , . . . , x ( j , Z ) s ) ;
wherein S is 1, 2, …, S, j is 1, 2, …, M +1, Z is the length of the sampling sequence;
the step 2 specifically comprises the following steps:
step 2.1, separating effective paths;
said step 2.1 comprises the following substeps:
step 2.1.1, for each cell, the last 128 chips of the midamble sequence part in the input signal are used for dataThe basic midamble sequences BM of the cells are matched to (m) by a matched filter (410_1)1,m2,…,m128) Performing bit-by-bit cyclic exclusive-or operation, and calculating to obtain the power DP of each bit-by-bit exclusive-or result on each path:
<math> <mrow> <msub> <mi>DP</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>128</mn> </munderover> <mo>|</mo> <mo>|</mo> <msubsup> <mi>r</mi> <mi>n</mi> <mi>BM</mi> </msubsup> <mo>*</mo> <msub> <mi>m</mi> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>mod</mi> <mn>128</mn> </mrow> </msub> <mo>|</mo> <mo>|</mo> <mo>;</mo> </mrow> </math>
step 2.1.2, detecting the effective path by an effective path detector (490):
comparing the power DP on each path with a certain threshold Th; selecting a path corresponding to the power DP greater than or equal to the threshold Th as an effective path, otherwise, selecting the path as an ineffective path; the L valid paths detected by the final valid path detector (490) are: peff=(p1,p2,…,pL) (ii) a Step 2.2, generating channel impulse response;
said step 2.2 comprises the following substeps:
step 2.2.1, calculating the channel estimate ChE on each path through the matched filter (410_2) and the channel estimator (480):
the basic midamble sequence according to the current cell is BM ═ (m)1,m2,…,m128) And the data of the last 128 chips of the midamble sequence portion in the received input signal is
Figure FSB00000571970700021
The channel estimate ChE on each path is calculated as:
<math> <mrow> <msub> <mi>ChE</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>128</mn> </munderover> <msubsup> <mi>r</mi> <mi>n</mi> <mi>BM</mi> </msubsup> <mo>*</mo> <msub> <mi>m</mi> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>mod</mi> <mn>128</mn> </mrow> </msub> <mo>;</mo> </mrow> </math>
step 2.2.2, generating channel impulse response H ═ (H) by channel impulse responder (470) according to the effective path obtained in step 2.1.2 and the channel estimation obtained in step 2.2.11,h2,…,hT) The length T represents the maximum delay supported by the system, the value at the position of the effective path of the channel impulse response is the channel estimation value on the path, and the value at the position of the non-effective path is zero, that is:
<math> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>ChE</mi> <mi>i</mi> </msub> </mtd> <mtd> <msub> <mi>DP</mi> <mi>i</mi> </msub> <mo>&GreaterEqual;</mo> <mi>Th</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>DP</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <mi>Th</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
DPiindicating the power of the ith path, ChEiA channel estimation value representing an ith path;
step 2.3, generating a demodulation symbol based on the matched filter;
the step 2.3 specifically comprises the following steps:
step 2.3.1, input signal pair by matched filterDescrambling and despreading operations are carried out on the data part in the number: according to the position P of the active path, the scrambling code ScC of the current cell and the activated spreading code ChC ═ C1,C2,…,CN),
Figure FSB00000571970700024
Where N represents the number of active code channels and SF represents the spreading factor, a matched filter (410_3) is used to match the data portion of the input signalDescrambling and despreading operations are carried out, and symbols obtained after descrambling and despreading are as follows:
U = ( u ^ 1 , u ^ 2 , . . . , u ^ N ) ;
u ^ n = ( u ^ 1 n , u ^ 2 n , . . . , u ^ L n ) ;
u ^ l n = ( u ^ ( l , 1 ) n , u ^ ( l , 2 ) n , . . . , u ^ ( l , K ) n ) ;
<math> <mrow> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>SF</mi> </munderover> <msub> <mi>r</mi> <mrow> <msub> <mi>p</mi> <mi>k</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>SF</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> <mo>&times;</mo> <mi>conj</mi> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mi>i</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>conj</mi> <mrow> <mo>(</mo> <msub> <mi>ScC</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
wherein,
Figure FSB00000571970700031
indicating the symbol corresponding to the nth active code channel,indicating the symbol on the l effective path of the nth active code, K indicating the number of symbols, ScCiA scrambling code representing the ith chip;
step 2.3.2, maximum ratio merger carries out maximum ratio merger to the symbol obtained after descrambling and despreading to obtain a demodulated symbol:
according to the channel impulse response, namely the channel estimation on the effective path, the maximal ratio combiner (420) carries out the maximal ratio combining operation on the descrambled and despread symbols on different paths to obtain the demodulation symbols on each active code channel:
Y = ( y ^ 1 , y ^ 2 , . . . , y ^ N ) ;
y ^ n = ( y 1 n , y 2 n , . . . , y K n ) ;
<math> <mrow> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>L</mi> </munderover> <mi>conj</mi> <mrow> <mo>(</mo> <msub> <mi>ChE</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>;</mo> </mrow> </math>
wherein,
Figure FSB00000571970700036
indicating the demodulation symbol corresponding to the nth active code channel,
Figure FSB00000571970700037
a symbol representing the nth active code channel of the kth symbol of the ith active path;
step 2.3.3, the symbol decision device makes symbol decision to the demodulation symbol generated by the joint detector, and the estimated value of the obtained sending symbol is:
D = ( d ^ 1 , d ^ 2 , . . . , d ^ N ) ;
d ^ n = ( d 1 n , d 2 n , . . . , d K n ) ;
wherein,
Figure FSB000005719707000310
the decision result of the demodulation symbol corresponding to the nth active code channel is shown;
step 2.4, reconstructing cell signals;
said step 2.4 comprises the following substeps:
step 2.4.1, the modulation spreader (440) performs modulation spread spectrum operation on the result of the symbol decision to obtain a chip sequence on the active code channel:
according to the scrambling code ScC adopted by the current cell and the spreading code ChC ═ on the active code channel (C)1,C2,…,CN),
Figure FSB000005719707000311
The result of the symbol decision is modulated and spread by a modulation spreader (440) to obtain a chip-level transmit signal estimate on each active code channel:
V = ( v ^ 1 , v ^ 2 , . . . , v ^ N ) ;
<math> <mrow> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>v</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>v</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>v</mi> <mi>K&times;SF</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
whereinA transmitted signal estimate representing the chip level on the nth active code channel;
step 2.4.2, the convolution device (460) completes the reconstruction of the received signal on the activated code channel correspondingly:
and (3) a convolver (460) performs convolution operation on the chip sequence on each active code channel obtained in the step 2.4.1 and the channel impulse response obtained in the step 2.2 to obtain a reconstructed signal on each active code channel:
W = ( w ^ 1 , w ^ 2 , . . . , w ^ N ) ;
<math> <mrow> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>w</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>w</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>w</mi> <mrow> <mi>k</mi> <mo>&times;</mo> <mi>SF</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
<math> <mrow> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mi>H</mi> <mo>&CircleTimes;</mo> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>;</mo> </mrow> </math>
wherein,
Figure FSB00000571970700044
representing the reconstructed signal on the nth code channel;
step 2.4.3, the activation code channel signal superimposer (450) superimposes the reconstruction signal on each activation code channel to complete the combination of the activation code channels, thereby completing the reconstruction of the cell signal and obtaining the reconstruction signal of the cell
<math> <mrow> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>;</mo> </mrow> </math>
Step 3, for each cell, the cell reconstruction signal removing unit (330) sequentially eliminates the reconstruction signal of the cell in the s-th level interference elimination process
Figure FSB00000571970700047
From input signals
Figure FSB00000571970700048
The s-th residual signal after the interference of the cell is removed is obtained
Figure FSB00000571970700049
r ^ j s = e ^ j s - x ^ j s ;
Wherein S is 1, 2, …, S, j is 1, 2, …, M + 1;
and 4, repeatedly executing the steps 1-3 according to the serial interference cancellation series preset by the system until the serial interference cancellation operation of all the stages is completed.
2. The method according to claim 1, wherein in step 1, when s is 1, the first stage interference cancellation is performed, and the reconstructed signal of the cell is set to 0.
3. The method according to claim 1, wherein in step 1, when j is 1, that is, interference cancellation is performed on the first cell, and the residual signal after removing interference signals of all previous cells in the interference cancellation process is 0.
4. The method according to claim 1, wherein in step 2.3.3, the symbol decision is a hard decision, and a demodulation symbol hard decision device performs symbol decision on a demodulation symbol, and the obtained hard decision result is:
<math> <mrow> <msubsup> <mi>d</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>sign</mi> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>n</mi> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>y</mi> <mi>n</mi> <mi>k</mi> </msubsup> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
5. the method according to claim 1, wherein in step 2.3.3, the symbol decision is a soft decision, and the demodulation symbol soft decision device performs symbol decision on the demodulation symbol, and the obtained soft decision result is:
<math> <mrow> <msubsup> <mi>d</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>tanh</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>m</mi> <mo>&CenterDot;</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
where m represents the mean value of the received signal amplitude, σ2Representing the noise variance of the received signal and tanh representing the hyperbolic tangent function.
6. The method for eliminating co-channel cell signal interference based on successive interference cancellation according to claim 1, wherein said step 2.4 further comprises a step 2.4.4 of reconstructing a signal for the cellMultiplication by a particular weighting factor psAnd performing weighting operation:
<math> <mrow> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>=</mo> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>&times;</mo> <msup> <mi>&rho;</mi> <mi>s</mi> </msup> <mo>.</mo> </mrow> </math>
7. a device for eliminating signal interference of a common-frequency cell based on serial interference cancellation is characterized by comprising a cell received signal recovery unit (320), a channel estimation and interference reconstruction unit (440) based on a matched filter and a cell reconstruction signal removal unit (330) which are sequentially connected;
the cell received signal recovery unit (320) is used for sequentially eliminating the reconstructed signal of the cell in the s-1 level interference elimination process for the current cell and M co-frequency adjacent cellsAnd residual signals after removing interference signals of all previous cells in the s-th-stage interference elimination processSuperposing and sequentially recovering the received signals of all cells
Figure FSB00000571970700057
e ^ j s = r ^ j - 1 s + x ^ j s - 1
Wherein S is 1, 2, …, S, and S represents the number of successive interference cancellation stages set by the system; j ═ 1, 2, …, M + 1;
the matched filter based channel estimation and interference reconstruction unit (440) is used for inputting samples of the I/Q path according to the current received data
Figure FSB00000571970700059
And the sum of the signals subjected to the interference elimination of the s-1 level adopts a processing method for reconstructing cell signals based on demodulation symbols generated by a matched filter to sequentially and serially complete the reconstruction of the received signals of each cell to obtain the reconstructed signal of each cell of the s level:
x ^ j s = ( x ( j , 1 ) s , x ( j , 2 ) s , . . . , x ( j , Z ) s ) ;
wherein S is 1, 2, …, S, j is 1, 2, …, M +1, Z is the length of the sampling sequence;
the channel estimation and interference reconstruction unit (440) based on the matched filter comprises an effective path separation device, a channel impulse response device, a demodulation symbol generation device based on the matched filter and a cell signal reconstruction device which are connected through circuits;
the effective path separating device comprises a first matched filter (4101) and an effective path detector (490) which are connected in sequence;
the input of the first matched filter (410_1) receives the last 128 chips of the midamble sequence in the input signal (m ═ m)1,m2,…,m128) Basic midamble sequence with current cell
Figure FSB00000571970700062
Carrying out bit-by-bit cyclic XOR operation, and calculating the power DP of each bit-by-bit XOR result:
<math> <mrow> <msub> <mi>DP</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>128</mn> </munderover> <mo>|</mo> <mo>|</mo> <msubsup> <mi>r</mi> <mi>n</mi> <mi>BM</mi> </msubsup> <mo>*</mo> <msub> <mi>m</mi> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>mod</mi> <mn>128</mn> </mrow> </msub> <mo>|</mo> <mo>|</mo> <mo>;</mo> </mrow> </math>
the active path detector (490) compares the power DP value on each path output by the first matched filter (410_1) with a specific threshold Th; selecting a path corresponding to the power DP greater than or equal to the threshold Th as an effective path, otherwise, selecting the path as an ineffective path; the L valid paths detected by the final valid path detector (490) are: peff=(p1,p2,…,pL);
The channel impulse response device comprises a second matched filter (410_2), a channel estimator (480) and a channel impulse response device (470) which are connected in sequence;
the second matched filter (410_2) has an input receiving the last 128 chip data BM ═ m of the midamble sequence in the input signal1,m2,…,m128) Combining the basic midamble sequence of the current cell
Figure FSB00000571970700064
The channel estimator (480) calculates the channel estimation ChE on each path as:
<math> <mrow> <msub> <mi>ChE</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>128</mn> </munderover> <msubsup> <mi>r</mi> <mi>n</mi> <mi>BM</mi> </msubsup> <mo>*</mo> <msub> <mi>m</mi> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>mod</mi> <mn>128</mn> </mrow> </msub> <mo>;</mo> </mrow> </math>
the input end of the channel impulse responder (470) is also connected with the output end of the effective path detector (490); the channel impulse responder (470) generates a channel impulse response H ═ H (H) according to the effective path and the channel estimation1,h2,…,hT):
<math> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>ChE</mi> <mi>i</mi> </msub> </mtd> <mtd> <msub> <mi>DP</mi> <mi>i</mi> </msub> <mo>&GreaterEqual;</mo> <mi>Th</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>DP</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <mi>Th</mi> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
The length T of the channel impulse response represents the maximum time delay supported by the system;
the demodulation symbol generating device based on the matched filter comprises a third matched filter (410_3), a maximum ratio combiner (420) and a symbol decision device (430) which are connected in sequence;
the cell signal reconstruction device comprises a modulation spreader (440), a convolver (460) and an active code channel signal superimposer (450) which are connected in sequence;
the modulation frequency spreader (440) is based on the scrambling code ScC adopted by the current cell and the spreading code ChC ═ on the active code channel (C)1,C2,…,CN),
Figure FSB00000571970700072
And modulating and spreading the decision result output by the symbol decision device (430) to obtain a chip-level transmission signal estimation value on each active code channel:
V = ( v ^ 1 , . . . , v ^ 2 , . . . , v ^ N ) ;
<math> <mrow> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>v</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>v</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>v</mi> <mrow> <mi>K</mi> <mo>&times;</mo> <mi>SF</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
wherein,a transmitted signal estimate representing the chip level on the nth active code channel;
the number of the convolvers (460) is N, and the convolvers correspond to N active code channels; the input ends of the N convolvers (460) are respectively connected with a channel impulse responder (470);
the N convolvers (460) perform convolution operation on the chip sequence on each active code channel output by the modulation spreader (440) and the channel impulse response generated by the channel impulse response device (470) to obtain a reconstructed signal on each active code channel:
W = ( w ^ 1 , w ^ 2 , . . . , w ^ N ) ;
<math> <mrow> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>w</mi> <mn>1</mn> <mi>n</mi> </msubsup> <mo>,</mo> <msubsup> <mi>w</mi> <mn>2</mn> <mi>n</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>w</mi> <mrow> <mi>k</mi> <mo>&times;</mo> <mi>SF</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
<math> <mrow> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <mi>H</mi> <mo>&CircleTimes;</mo> <msup> <mover> <mi>v</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>;</mo> </mrow> </math>
wherein,representing the reconstructed signal on the nth code channel;
the activation code channel signal superimposer (450) superimposes the reconstruction signal on each activation code channel to complete the combination of the activation code channels and the reconstruction of the cell signal to obtain the reconstruction signal of the cell
<math> <mrow> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mover> <mi>w</mi> <mo>^</mo> </mover> <mi>n</mi> </msup> <mo>;</mo> </mrow> </math>
The cell reconstruction signal removing unit is used for sequentially removing the reconstruction signal of each cell in the s-th level interference elimination processFrom input signalsThe s-th residual signal after the interference of the cell is removed is obtained
Figure FSB00000571970700081
r ^ j s = e ^ j s - x ^ j s ;
Wherein S is 1, 2, …, S, j is 1, 2, …, M + 1.
8. The apparatus for canceling co-channel cell signal interference based on successive interference cancellation according to claim 7, wherein when the apparatus for canceling co-channel cell signal interference based on successive interference cancellation performs the first-stage interference cancellation, that is, s is 1, the reconstructed signal of the cell is set to 0.
9. The apparatus for canceling co-channel cell signal interference based on successive interference cancellation according to claim 7, wherein when the apparatus for canceling co-channel cell signal interference based on successive interference cancellation performs interference cancellation of a first cell, that is, when j is 1, the residual signal after removing all the cell interference signals before in the interference cancellation process is 0.
10. The apparatus for canceling co-channel cell signal interference based on successive interference cancellation according to claim 7, wherein the input terminal of the third matched filter (410_3) receives the data portion of the input signal and is connected to the effective path detector (490);
the third matched filter (410_3) is based on the position P of the active path, the scrambling code ScC of the current cell and the activated spreading code ChC ═ C1,C2,…,CN),
Figure FSB00000571970700083
Wherein N represents the number of active code channels and SF represents the spreading factor for the data portion of the input signal
Figure FSB00000571970700084
Descrambling and despreading operations are carried out, and symbols obtained after descrambling and despreading are as follows:
U = ( u ^ 1 , u ^ 2 , . . . , u ^ N ) ;
u ^ n = ( u ^ 1 n , u ^ 2 n , . . . , u ^ L n ) ;
u ^ l n = ( u ^ ( l , 1 ) n , u ^ ( l , 2 ) n , . . . , u ^ ( l , K ) n ) ;
<math> <mrow> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>SF</mi> </munderover> <msub> <mi>r</mi> <mrow> <msub> <mi>p</mi> <mi>k</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>SF</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> <mo>&times;</mo> <mi>conj</mi> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mi>i</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>conj</mi> <mrow> <mo>(</mo> <msub> <mi>ScC</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
wherein,
Figure FSB00000571970700089
indicating the symbol corresponding to the nth active code channel,
Figure FSB000005719707000810
the symbol on the l effective path of the nth active code channel is shown, K represents the number of the symbols,symbol representing the n activation code channel of the kth symbol of the 1 st active path, ScCiIndicating the scrambling code of the ith chip.
11. The apparatus for canceling co-channel cell signal interference based on serial interference cancellation according to claim 7, wherein the input end of the maximal ratio combiner (420) is further connected to a channel impulse responder (470), which performs maximal ratio combining operation on the descrambled and despread symbols on different paths output by the third matched filter (410_3) according to a channel impulse response, i.e. channel estimation on an effective path, to obtain the demodulated symbol on each active code channel:
Y = ( y ^ 1 , y ^ 2 , . . . , y ^ N ) ;
y ^ n = ( y 1 n , y 2 n , . . . , y K n ) ;
<math> <mrow> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>L</mi> </munderover> <mi>conj</mi> <mrow> <mo>(</mo> <msub> <mi>ChE</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>u</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>n</mi> </msubsup> <mo>;</mo> </mrow> </math>
wherein,
Figure FSB00000571970700094
indicating the demodulated symbol, ChE, corresponding to the nth active code channeliIndicating the channel estimate for the ith path.
12. The apparatus for canceling co-channel cell signal interference based on successive interference cancellation according to claim 7, wherein the symbol decision unit (430) performs symbol decision on the demodulated symbol outputted from the maximal ratio combiner (420) to obtain the estimated value of the transmitted symbol:
D = ( d ^ 1 , d ^ 2 , . . . , d ^ N ) ;
d ^ n = ( d 1 n , d 2 n , . . . , d K n ) ;
wherein
Figure FSB00000571970700097
And the judgment result of the demodulation symbol corresponding to the nth active code channel is shown.
13. The apparatus for canceling co-channel cell signal interference based on successive interference cancellation according to claim 12, wherein the symbol decision device (430) is a demodulation symbol hard decision device, and the hard decision result obtained by using the demodulation symbol hard decision device is:
<math> <mrow> <msubsup> <mi>d</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>sign</mi> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> <mtd> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
Figure FSB00000571970700099
a demodulated symbol representing the kth symbol of the nth active code channel.
14. The apparatus for canceling co-channel cell signal interference based on successive interference cancellation according to claim 12, wherein the symbol decision device (430) is a demodulated symbol soft decision device, and the soft decision result obtained by using the demodulated symbol soft decision device is:
<math> <mrow> <msubsup> <mi>d</mi> <mi>k</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mi>tanh</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>m</mi> <mo>&CenterDot;</mo> <msubsup> <mi>y</mi> <mi>k</mi> <mi>n</mi> </msubsup> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
where m represents the mean value of the received signal amplitude, σ2Representing the noise variance of the received signal, tanh representing a hyperbolic tangent function,
Figure FSB00000571970700102
a demodulated symbol representing the kth symbol of the nth active code channel.
15. The apparatus for canceling co-channel cell signal interference based on successive interference cancellation according to claim 7, wherein said cell signal reconstruction apparatus further comprises a weight multiplier, an input terminal of which is connected to an output terminal of said active code channel signal superimposer (450);
the weight multiplier is used for reconstructing a cell reconstruction signal output by an active code channel signal adder (450)Multiplication by a particular weighting factor ps
<math> <mrow> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>=</mo> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>s</mi> </msup> <mo>&times;</mo> <msup> <mi>&rho;</mi> <mi>s</mi> </msup> <mo>.</mo> </mrow> </math>
16. The apparatus according to claim 7, wherein the apparatus for canceling co-channel cell signal interference based on successive interference cancellation calculates the residual signal of each cell after interference cancellation according to the number of successive interference cancellation stages S set by the system and the number of successive interference cancellation stages S calculated by the previous successive interference cancellation stage
Figure FSB00000571970700105
And repeating the operation of eliminating the signal interference of the cells with the same frequency for each serial interference cancellation stage until the serial interference cancellation operation of all stages is completed.
CN2006101179141A 2006-11-03 2006-11-03 Method and apparatus for cancellation eliminating common-frequency cell signal interference based on serial interference Active CN1949683B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006101179141A CN1949683B (en) 2006-11-03 2006-11-03 Method and apparatus for cancellation eliminating common-frequency cell signal interference based on serial interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006101179141A CN1949683B (en) 2006-11-03 2006-11-03 Method and apparatus for cancellation eliminating common-frequency cell signal interference based on serial interference

Publications (2)

Publication Number Publication Date
CN1949683A CN1949683A (en) 2007-04-18
CN1949683B true CN1949683B (en) 2011-11-16

Family

ID=38019080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101179141A Active CN1949683B (en) 2006-11-03 2006-11-03 Method and apparatus for cancellation eliminating common-frequency cell signal interference based on serial interference

Country Status (1)

Country Link
CN (1) CN1949683B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025392A (en) * 2010-12-06 2011-04-20 意法·爱立信半导体(北京)有限公司 Interference elimination method and device
JP2014513505A (en) * 2011-09-25 2014-05-29 エルジー エレクトロニクス インコーポレイティド Uplink transmission power control method and apparatus
CN108632182B (en) * 2018-07-09 2020-10-23 西安电子科技大学 Bidirectional serial interference elimination method in super-Nyquist communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1499032A1 (en) * 2002-04-19 2005-01-19 Matsushita Electric Industrial Co., Ltd. Sir measurement device and method
CN1753322A (en) * 2004-09-24 2006-03-29 大唐移动通信设备有限公司 Multi region combined detection method of time gap code division multi address system
CN1852277A (en) * 2006-03-02 2006-10-25 凯明信息科技股份有限公司 Channel estimation normalizing method and device for common distribution mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1499032A1 (en) * 2002-04-19 2005-01-19 Matsushita Electric Industrial Co., Ltd. Sir measurement device and method
CN1753322A (en) * 2004-09-24 2006-03-29 大唐移动通信设备有限公司 Multi region combined detection method of time gap code division multi address system
CN1852277A (en) * 2006-03-02 2006-10-25 凯明信息科技股份有限公司 Channel estimation normalizing method and device for common distribution mode

Also Published As

Publication number Publication date
CN1949683A (en) 2007-04-18

Similar Documents

Publication Publication Date Title
CN1874189B (en) Method and device for concurrent eliminating same frequency interference in TDS-CDMA
CN1949682B (en) Method and apparatus for cancellation eliminating common-frequency cell signal interference based on serial interference
EP1686696B1 (en) Single user detection
CN100370718C (en) Joint detection receiving equipment and method without considering orthogonal code length
US6501788B1 (en) Apparatus and methods for intereference cancellation in spread spectrum communications systems
JP4359388B2 (en) Method and apparatus for joint detection of data in a direct sequence spread spectrum communication system
EP1523810B1 (en) Scaling using gain factors for use in data detection for wireless code division multiple access communication systems
EP1391048B1 (en) Fast joint detection
US6574270B1 (en) Baseband interference canceling spread spectrum communications methods and apparatus
US8085832B2 (en) Segment-wise channel equalization based data estimation
US9083417B2 (en) Method and device for interference cancellation
CN101888259A (en) Method, apparatus and system used for CDMA communication
US8463196B2 (en) Method and decoder for decoding a wireless transmission from a predefined user
CN1949684B (en) Method and apparatus for eliminating common-frequency cell signal interference based on parallel interference cancellation
US20090245219A1 (en) Active spread code detection
CN1949683B (en) Method and apparatus for cancellation eliminating common-frequency cell signal interference based on serial interference
CN1949685B (en) Method and apparatus for eliminating common-frequency cell signal interference based on parallel interference
US7443908B2 (en) Low complexity detection in digital receivers
CN1953343B (en) A method to check soft bit of output generated channel encoder by linear joint detection
CN103891335A (en) Method, apparatus, receiver, computer program and storage medium for joint detection
Potman Adaptive DSP Algorithms for UMTS: Blind Adaptive MMSE and PIC Multiuser Detection
EP1693971A2 (en) Low complexity data detection using fast fourier transform of channel correlation matrix

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SHANGHAI XUANPU INDUSTRY CO.,LTD.

Free format text: FORMER OWNER: KAIMING INFORMATION SCIENCE CO., LTD.

Effective date: 20090807

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20090807

Address after: D District, Xhenzhuang Industrial Zone, Shanghai, China: 201108

Applicant after: Shanghai Xuanpu Industrial Co., Ltd.

Address before: Shanghai city Xhenzhuang Industrial Zone No. 18 Shen road, post encoding: 201108

Applicant before: Kaiming Information Science & Technology Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant