CN1911214A - Method for preparing large quantity of micro-capsule - Google Patents

Method for preparing large quantity of micro-capsule Download PDF

Info

Publication number
CN1911214A
CN1911214A CN 200610099723 CN200610099723A CN1911214A CN 1911214 A CN1911214 A CN 1911214A CN 200610099723 CN200610099723 CN 200610099723 CN 200610099723 A CN200610099723 A CN 200610099723A CN 1911214 A CN1911214 A CN 1911214A
Authority
CN
China
Prior art keywords
acid
peptide
molecular weight
microcapsule
physiologically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610099723
Other languages
Chinese (zh)
Other versions
CN100463672C (en
Inventor
龟井茂
猪狩康孝
小川泰亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Pharmaceutical Co Ltd filed Critical Takeda Pharmaceutical Co Ltd
Publication of CN1911214A publication Critical patent/CN1911214A/en
Application granted granted Critical
Publication of CN100463672C publication Critical patent/CN100463672C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

A method for preparing large quantity of micro-capsule, the micro-capsule can form sustained-release preparation of leuprorelin. The method comprises: (a) dissolving or suspending leuprorelin in organic solvent as biodegradable polymer solution containing copolymer of lactic acid and glycolic acid; (b) adding the mixture into aqueous matrix and obtaining o/w emulsion; and (c) removing the organic solvent and transforming the mixture into micro-capsules.

Description

The method for preparing large quantity of micro-capsule
The application is to be December in 1993 7 days the applying date, and application number is 02108206.5, and denomination of invention is divided an application for the application for a patent for invention of " method for preparing large quantity of micro-capsule ".
The present invention relates to a kind of extended release preparation and production method thereof that contains physiologically active peptide.
Prior art comprises (disclosed as EP-A-481.732) a kind of medicine, polylactic acid and glycolic (glycolic acid)-hydroxy carboxylic acid [HOCH (C that comprises 2-8Alkyl) COOH] extended release preparation of copolymer.Disclosed method comprises preparation W/O emulsion, this emulsion is made up of interior water that contains the physiologically active peptide aqueous solution and the outer oil phase that is contained in the biodegradable polymer solution in the organic solvent, described W/O emulsion is added in water or the water-bearing media, make resulting W/O/W emulsion be treated as the lasting microcapsule that discharges (water (drying-in-water) method in dry).
EP-A-52510 describes a kind of microcapsule that contains quasi-hormone activity polypeptide, biodegradable polymer and polymer hydrolysis controlling agent.Disclosed its production method is a coacervation, and this method comprises to W/O emulsion and add flocculating agent that described emulsion is by forming as the polypeptid solution of interior water with as the halogenated organic solvent of oil phase, with the preparation microcapsule.
GB-A-2209937 describes a kind of pharmaceutical composition, and it contains polylactide, poly-Acetic acid, hydroxy-, bimol. cyclic ester, lactic acid-ethanol copolymer or these mixture of polymers and water-insoluble peptide.A kind of production method is also disclosed, this method comprises that the salt with a kind of water-insoluble peptide is scattered in the solution of described polylactide, poly-Acetic acid, hydroxy-, bimol. cyclic ester, lactic acid-ethanol copolymer or these mixture of polymers, removes by evaporation and desolvates and with the molded solid particle that becomes of resulting mixture.
EP-A-58481 describes a kind of method of producing pharmaceutical composition, said composition comprise polylactide and acid stablize polypeptide, for example dissolve tetra gastrin hydrochlorate and polylactide in moisture two  alkane, then this solution is cast thin film, revaporization falls solvent.
EP-A-0467389 reports that a kind of method is suitable for providing the medicine delivery system that supplies albumen and polypeptide to use by polymer precipitation or microsphere technology.Yet the document does not comprise specifying of relevant LH-RH derivant system.
Discharging the hormone of metakentrin, be called LH-RH (or GnRH), is excretory by hypothalamus, and with infracerebral gland on receptors bind.LH of Shi Fanging (metakentrin) and FSH (stimulating the folliculus of hormone) play the desogestrel functions of hormones on gonad then.As the derivant of LH-RH, the existence of excited peptide and antagonism peptide is known.When repeating to take heavy dose of excited peptide, effective receptor number is reduced, thereby the gonad of the steroid hormone that suppresses to derive form.Therefore, wish that the LH-RH derivant can become the useful component of the Remedies for diseases that relies on hormone, described disease such as carcinoma of prostate, benign prostatauxe, endometriosis, hysteromyoma, fibroma uteri, pubertas praecox, mastocarcinoma etc., or as the useful component of contraceptive.Especially, should be understood that the relevant so-called first and second generation LH-RH antagonists discharge activity problems (the The Pharmaceuticals Monthly 32 of histamine, 1599-1605,1990), yet because chemical compound lot is synthesized, and (for example develop the active LH-RH-antagonism of not obvious release histamine peptide recently, consult US 5110904), in order to make any such LH-RH antagonism Toplink show its pharmacodynamics effect, be necessary Controlled Release System so that the competition of giving birth to LH-RH in lasting the inhibition.Yet because in this class peptide, the activity that discharges histamine may be low but can exists, so require to suppress immediately initial rapid enhanced extended release preparation after administration.
Especially, continuing to discharge under the situation of (as 1-3 month) preparation,, guarantee that the reliable and constant release of peptide is important in order to reach ideal effect more really and safely.
Simultaneously, long-term (long-felt) needs to produce a kind of method of extended release preparation, and said preparation is for physiologically active peptide, and particularly LH-RH-antagonism peptide has higher peptide capture speed.
According to the present invention, can provide:
1) a kind of extended release preparation, it contains the physiologically active peptide of following general formula:
Wherein X represents acyl group; R 1, R 2And R 4Each represents aromatic ring yl; R 3The group of expression D-amino acid residue or following formula
R ' wherein 3It is heterocyclic group; R 5Expression general formula-(CH 2) n-R ' 5Group, wherein n is 2 or 3, and R ' 5For replacing or unsubstituted hydrogen base group aromatic ring yl or O-glycosyl group; R 6Expression general formula-(CH 2) n-R ' 5Group, wherein n is 2 or 3, and R ' 6Be that replace or unsubstituted amino group;
R 7Expression D-amino acid residue or azepine glycyl residue; With
Q represents hydrogen or low alkyl group or its salt and has the biodegradable polymer of terminal carboxyl group,
2) by above-mentioned 1) described extended release preparation, wherein X is C 2-7Alkanoyl, it can be replaced or not replace by 5-or 6-joint heterocycle carboxy and amide groups,
3) by above-mentioned 2) described extended release preparation, wherein X is C 2-4Alkanoyl, it can be replaced or not replace by the tetrahydrofuran base carboxy and amide groups,
4) by above-mentioned 1) described extended release preparation, wherein X is an acetyl group,
5) by above-mentioned 1) described extended release preparation, wherein biodegradable polymer is (A) glycolic and following general formula hydroxy carboxylic acid copolymer and (B) mixture of polylactic acid, described general formula is
Figure A20061009972300061
Wherein R represents the alkyl of 2-8 carbon atom,
6) by above-mentioned 1) described extended release preparation, wherein X is an acetyl group, biodegradable polymer is the copolymer of (A) glycolic and general formula [II] hydroxy carboxylic acid and (B) mixture of polylactic acid,
7) by above-mentioned 5) described extended release preparation, wherein copolymer is pressed the GPC method and is measured the about 2000-50000 of weight average molecular weight,
8) by above-mentioned 5) described extended release preparation, the about 1.2-4.0 of wherein said copolymer dispersion value,
9) by above-mentioned 5) described extended release preparation, wherein said polylactic acid is pressed the GPC method and is measured the about 1500-30 of weight average molecular weight, and 000,
10) by above-mentioned 5) described extended release preparation, the about 1.2-4.0 of polylactic acid dispersion value wherein,
11) by above-mentioned 1) described extended release preparation, wherein said biodegradable polymer is the copolymer of lactic acid and glycolic,
12) by above-mentioned 11) described extended release preparation, the weight average molecular weight that wherein said copolymer is measured by the GPC method is about 5,000-25,000,
13) by above-mentioned 11) described extended release preparation, the about 1.2-4.0 of wherein said copolymer dispersion value,
14) by above-mentioned 1) described extended release preparation, the about 0.01-50% of the ratio of wherein said physiologically active peptide (W/W is in biodegradable polymer),
15) by above-mentioned 1) described extended release preparation, wherein said physiologically active peptide is the LH-RH antagonist,
16) by above-mentioned 1) described extended release preparation, wherein physiologically active peptide is
Figure A20061009972300071
Figure A20061009972300072
Or its acetate,
17) by above-mentioned 1) described extended release preparation, wherein physiologically active peptide is NAcD2Nal-D4Clphe-D3Pal-Ser-NMeTyr-DLys (Nic)-Leu-Lys (Nisp)-Pro-DAlaNH 2Or its acetate,
18) by above-mentioned 1) described extended release preparation, wherein said physiologically active peptide is NAcD2Nal-D4Clphe-D3Pal-Ser-Tyr-DhArg (Et 2)-Leu-hArg (Et 2)-Pro-DAlaNH 2Or its acetate,
19) biodegradable polymer that a kind of method of producing extended release preparation, this method comprise dissolving general formula [I] physiologically active peptide or its salt and have terminal carboxyl group is in a kind of solvent, and this solvent and water are non-miscible basically, remove described solvent then,
20) by above-mentioned 19) described method, wherein said biodegradable polymer is the copolymer of (A) glycolic and general formula [II] hydroxy carboxylic acid and (B) mixture of polylactic acid,
21) by above-mentioned 19) described method, wherein X is that acetyl group and biodegradable polymer are the copolymer of (A) glycolic and general formula [II] hydroxy carboxylic acid and (B) mixture of polylactic acid,
22) by above-mentioned 19) described method, wherein biodegradable polymer is the copolymer of lactic acid and glycolic,
23) by above-mentioned 19) described method, comprise described biodegradable polymer of dissolving and physiologically active peptide in a kind of solvent, this solvent and water are non-miscible basically, more resulting solution is added in the water-bearing media preparing O/W emulsion,
24) a kind of method of producing extended release preparation, comprise that the dissolving Biodegradable polymeric is in solvent, this polymer contains the copolymer of (A) glycolic and hydroxy carboxylic acid and (B) polylactic acid and water-insoluble physiologically active peptide or its salt basically, and described hydroxy carboxylic acid general formula is
Figure A20061009972300081
Wherein R represents the alkyl of 2-8 carbon atom, described solvent basically with water immiscibility, remove then described solvent and
25) by above-mentioned 24) described method, this method also be included in the described biodegradable polymer of dissolving and basically water-insoluble peptide or its salt in described solvent after, resulting solution is added in the water-bearing media to prepare O/W emulsion.
The abbreviation that is used for this description has following meanings:
NAcD2Nal:N-acetyl group-D-3-(2-naphthyl) alanyl
D4ClPhe:D-3-(4-chlorophenyl) alanyl
D3Pal:D-3-(3-pyridine radicals) alanyl
NMeTyr:N-Methylthyrosyl
DLys (Nic): D-(Ipsilon-N-nicotinoyl) lysyl
Lys (Nisp): (Ipsilon-N-isopropyl) lysyl
DLys (AzaglyNic): D-[1-azepine-(N-nicotinoyl) glycyl] lysyl
DLys (AzaglyFur): D-[1-azepine-(N-2-furoyl) glycyl] lysyl
Represent any other amino acid whose place with abbreviation, all can use general abbreviation in the abbreviation (European Journal of Biochemistry138,9-37,1984) of recommending or the prior art by Biochemical Nomenclature IUPAC-IUB committee.
For any chemical compound, as when having optical isomer, then represent, except as otherwise noted with the L-isomer.
In the present invention, peptide [I] has the LH-RH antagonistic activity, thereby treatment is relied on the disease of hormone such as carcinoma of prostate, prostate hyperplasia, endometriosis, hysteromyoma, fibroma uteri, pubertas praecox, mastocarcinoma etc. or makes contraceptive all is effective.
With respect to general formula [I], acyl group X is preferably by the acyl group of carboxylic acid derivatives.The example of acyl group comprises C 2-7Alkanoyl, C 7-15Cyclenes acyl group (Cycloalkenoyl) (for example cyclohexene acyl), C 1-6Alkyl carbamoyl (for example ethylamino formyl), 5-or 6-joint heterocycle carbonyl (as the piperidino carbonyl) and replacement or unsubstituted carbamoyl.Acyl group preferably replaces or unsubstituted C 2-7Alkanoyl (as acetyl, propionyl, butyryl, isobutyryl, valeryl, hexanoyl or oenanthyl), reasonable is to replace or unsubstituted C 2-4Alkanoyl (as acetyl, propionyl, butyryl, isobutyryl).Substituent group for example is C 1-6Alkylamino (as methylamino, ethylamino, lignocaine, third amino), C 1-3Alkanoyl amino (as formamido group, acetylamino, propionamido), C 7-15Cyclenes acylamino-(as the hexamethylene acylamino-), C 7-15Aromatic carbonyl-amino (as benzamido); 5-or 6-joint heterocycle carboxyl acylamino-(as tetrahydrofuran base carboxyl acylamino-, pyridine radicals carboxyl acylamino-, furyl carboxyl acylamino-), hydroxyl, carbamoyl, formoxyl, carboxyl, 5-or 6-joint heterocyclic radical (as pyridine radicals, morpholino).This substituent group is 5-or 6-joint heterocycle carboxyl acylamino-(as tetrahydrofuran base carboxyl acylamino-, pyridine radicals carboxyl acylamino-, furyl carboxyl acylamino-) preferably.
X is preferably replaced or unsubstituted C by 5-or 6-joint heterocycle carboxyl acylamino- 2-7Alkanoyl.
Reasonable X is C 2-4Alkanoyl, it can be replaced or not replace by tetrahydrofuran base carboxyl acylamino-.
The specific examples of X is an acetyl,
Figure A20061009972300101
Or the like.
Aromatic ring yl R 1, R 2, or R 4It for example is the aromatic ring yl of 6-12 carbon atom.The example of aromatic ring yl is phenyl, naphthyl, anthryl etc.The aromatic ring yl of 6-10 carbon atom preferably is as phenyl and naphthyl.Correct position on these aromatic ring basic rings respectively has 1-5, preferred 1-3 suitable substituents.These substituent groups comprise amino that carboxyl, halogen, aminotriazole(ATA) base replace, alkoxyl or the like.The amino that replaces of hydroxyl, halogen and aminotriazole(ATA) base preferably.
Above-mentioned halogen comprises fluorine, chlorine, bromine and iodine.
The aminotriazole(ATA) base section of the amino that described aminotriazole(ATA) base replaces comprises, wherein, and 3-amino-1H-1,2,4-triazole-5-base, 5-amino-1H-1,3,4-triazole-2-base, 5-amino-1H-1,2,4-triazole-3-base, 3-amino-2H-1,2,4-triazole-5-base, 4-amino-1H-1,2,3-triazole-5-base, 4-amino-2H-1,2,3-triazole-5-base etc.
Alkoxyl is the alkoxyl of 1-6 carbon atom (as methoxyl group, ethyoxyl, propoxyl group, isopropoxy, butoxy, isobutoxy etc.) preferably.
Preferred R 1Be naphthyl or halogenophenyl.Preferred R 2It is halogenophenyl.Preferred R 4It is the amino phenyl that replaces of hydroxyphenyl 12 or aminotriazole(ATA) base.
D-amino acid residue R 3The α of 3-12 carbon atom-D-amino acid residue preferably.Amino acid whose example is leucine, isoleucine, nor-leucine, valine, norvaline, butyrine, phenylalanine, serine, threonine, methionine, alanine, tryptophan and aminoisobutyric acid.These aminoacid all have suitable protecting group (protecting group that common prior art is used such as tert-butyl, uncle-butoxy, uncle-butoxy carbonyl etc.).
Heterocyclic radical R ' 3Comprise that 5-or 6-joint respectively contains 1-2 nitrogen or sulphur atom as heteroatomic heterocyclic radical, condenses or uncondensed with phenyl ring.Especially should mention thienyl, pyrrole radicals, thiazolyl, isothiazolyl, imidazole radicals, pyrazolyl, pyridine radicals, 3-pyridine radicals, pyridazinyl, pyrimidine radicals, pyrazinyl, 3-benzo [b] thienyl, 3-benzo [b]-3-thienyl, indyl, 2-indyl, isoindolyl, 1H-indazolyl, benzimidazolyl, benzothiazolyl, quinolyl, isoquinolyl etc.Particularly preferred R ' 3Be pyridine radicals or 3-benzo [b] thienyl.
Aromatic ring yl R 5With aromatic ring yl R 1, R 2Or R 4Identical.This aromatic ring yl can have 1-5, preferred 1-3 suitable substituents on the suitable position of this cyclization.Substituent group also can with the above-mentioned R that is used for 1, R 2Or R 4Substituent group identical.Particularly preferred substituent group is the amino that the aminotriazole(ATA) base replaces.
For 0-glycosyl R 5Glycosyl hexose or derivatives thereof preferably.Hexose comprises D-glucose, D-fructose, D-mannose, D-galactose, L-galactose or the like.As described derivant, be worth pointing out deoxysaccharide (L-and D-fucose, D-chinovose, L-rhamnose etc.) and amino sugar (D-glycosamine, D-galactosamine etc.).Reasonable is deoxysaccharide (L-and D-fucose, D-chinovose, L-rhamnose etc.).Be more preferably the L-rhamnose.
Replace or not the substituent R on the substituted-amino ' 5, comprise that wherein, acyl group, carbamoyl are the carbazyl (Carbazoyl) of acyl substituted or are alkyl list or disubstituted amidino groups.
Above-mentioned acyl group and above-mentioned acyl group by the carbazyl of acyl substituted comprise nicotinoyl, furoyl base, Thenoyl or the like.
Above-mentioned moieties single or two alkyl amidines comprises the straight or branched alkyl of 1-4 carbon atom, therefore comprises methyl, ethyl, propyl group, isopropyl, butyl, isobutyl group, the second month in a season-butyl and tert-butyl etc.Preferred moieties is methyl or ethyl.
Replace or not the substituent R of substituted-amino ' 5Comprise alkyl and replaced or disubstituted amidino groups by the alkyl list.
Abovementioned alkyl and above-mentioned alkyl single or two alkyl amidines comprise and are applicable to R ' 5Abovementioned alkyl.
Preferred D-amino acid residue R 7Be the D-amino acid residue of 3-9 carbon atom,, D-isoleucyl base valyl, D-phenylalanyl etc. as D-alanyl, D-leucyl, D-.Reasonable is the D-amino acid residue of 3-6 carbon atom, valyl or the like as D-alanyl, D-.Best R 7It is the D-alanyl.
Low alkyl group Q is R ' 5The alkyl that limits.Best Q is a methyl.
R 1Object lesson be
Figure A20061009972300131
Deng
R 2Object lesson be
Deng
R 3Object lesson be
Figure A20061009972300133
Deng
R 4Object lesson be
Deng
R 5Object lesson be
Figure A20061009972300142
-(CH 2) 3-NH 2
-(CH 2) 2-NH-CO-NH 2, -(CH 2)3-NH-CO-NH 2
Figure A20061009972300143
Figure A20061009972300144
Deng
R 6Object lesson be
Figure A20061009972300145
Deng
R 7Object lesson be
Deng
When peptide [I] when having one or more asymmetric carbon atom, then there are two or more stereoisomers.Any this stereoisomer and composition thereof all within the scope of the present invention.
General formula [I] peptide is produced by original known method.Representational ad hoc approach is described among the US 5110904.
Peptide [I] can salt form use pharmaceutical salts preferably.When peptide had basic group such as amino, described salt comprised the salt that generates with mineral acid (for example hydrochloric acid, sulphuric acid, nitric acid etc.) and organic acid (for example carbonic acid, acid carbonic acid, succinic acid, acetic acid, propanoic acid, trifluoroacetic acid or the like).When peptide has acidic-group such as carboxyl, can generate salt with inorganic base (for example alkali metal such as sodium, potassium etc. and alkaline-earth metal such as calcium, magnesium etc.) or organic base (for example organic amine such as triethylamine and basic amino acid such as arginine).The form (for example copper complex, zinc complex etc.) that peptide [I] can be metal complex compounds exists.The salt of preferred peptide [I] is to generate salt with organic acid (for example carbonic acid, acid carbonic acid, succinic acid, acetic acid, propanoic acid, trifluoroacetic acid etc.).Best is acetate.
Particularly preferred peptide [I] or salt are as follows:
(1) NAcD2Nal-D4Clphe-D3Pal-Ser-NMeTyr-DLys (Nic)-Leu-Lys (Nisp)-Pro-DAlaNH 2Or its ethyl ester salt
(2) NAcD2Nal-D4Clphe-D3Pal-Ser-NMeTyr-DLys (AzaglyNic)-Leu-Lys (Nisp)-Pro-DAlaNH 2Or its acetate
(3) NAcD2Nal-D4Clphe-D3Pal-Ser-NMeTyr-DLys (AzaglyFur)-Leu-Lys (Nisp)-Pro-DAlaNH 2Or its acetate
Or its acetate
(5) NAcD2Nal-D4Clphe-D3Pal-Ser-Tyr-DhArg (Et 2)-Leu-hArg (Et 2)-Pro-DAlaNH 2Or its acetate,
In extended release preparation, the ratio of peptide [I] can change according to the physiological effect of the type of peptide, expectation and duration of effect and other factor, can fade to about 50% (W/W) from about 0.01 by biodegradable polymer.About 40% (W/W) of the about 0.1-of preferable range, about 30% (W/W) of the about 1-of reasonable scope.
Now describe and have the biodegradable polymer of terminal carboxyl group.
The biodegradable polymer of about 1-3g is dissolved in the mixture of acetone (25ml) and methanol (5ml), and makes indicator, under room temperature (20 ℃) stirring condition, use the carboxyl in this solution of potassium hydroxide solution titration of 0.05N alcohol rapidly with the phenol peptide.Press following equation by end group measurement and calculate number-average molecular weight.
Press the number-average molecular weight=20000 * A/B of end group measurement, wherein A is the quality (g) of biodegradable polymer;
B is potassium hydroxide solution (ml) amount that adds to the 0.05N alcohol of reaction titration end-point.
Aforementioned calculation result is called the end group measurement number-average molecular weight.
For ease of explanation, the polymer with terminal carboxyl group is regarded as synthetic by on-catalytic dehydration polycondensation method as an example by one or more 'alpha '-hydroxy acids, the number-average molecular weight of end group measurement number-average molecular weight and GPC method is roughly the same.On the contrary, be substantially free of under the polymer situation of free-end carboxyl, can regarding as by ring-opening polymerisation method and synthetic by cyclic dimer with catalyst, the number-average molecular weight of end group measurement is far longer than the number-average molecular weight of GPC algoscopy.According to this difference, can clearly differentiate polymer and not have the polymer of terminal carboxyl group with terminal carboxyl group.Therefore, term used herein " biodegradable polymer with terminal carboxyl group " meaning is meant the biodegradable polymer of the number-average molecular weight basically identical of the number-average molecular weight of GPC algoscopy and end group measurement.
In view of the number-average molecular weight of end group measurement is an absolute value, and the number-average molecular weight of GPC algoscopy is relative value, and these values are according to analyzing and procedure condition (type, reference substance, the selection sheet as mobile phase and post is wide, selection baseline etc.) and changing.Therefore, two kinds of values numerically can not be unified related.Yet, ' basically identical ' between the number-average molecular weight of GPC algoscopy and the number-average molecular weight of end group measurement this term implication is 0.4-2 a times that the end group measurement number-average molecular weight is about GPC algoscopy number-average molecular weight, about preferably 0.5-2 times, preferably about 0.8-1.5 doubly.The implication that the term of above-mentioned use " is far longer than " is that the number-average molecular weight of end group measurement is about the twice of GPC algoscopy number-average molecular weight or more.
The preferred polymers that is used for the object of the invention is the polymer of the number-average molecular weight basically identical of the number-average molecular weight of GPC algoscopy and end group measurement.
Object lesson as the biodegradable polymer with terminal carboxyl group can be polymer and copolymer and composition thereof, they are synthetic by on-catalytic dehydration polycondensation reaction by one or more 'alpha '-hydroxy acids (as glycolic, lactic acid, hydroxybutyric acid etc.), hydroxydicarboxylic acid (as malic acid etc.), hydroxyl tricarboxylic acids (as citric acid etc.), also can be poly--a-cyanoacrylate, polyamino acid (as poly--γ-benzyl-L-glutamic acid etc.), copolymer-maleic anhydride (as styrene-maleic acid copolymer etc.) or the like.
Aggregation scheme can be random, block or grafting.Above-mentioned any 'alpha '-hydroxy acids, hydroxydicarboxylic acid and hydroxyl tricarboxylic acids (in the equal tool optical activity of its intramolecularly center, any D-, L-and DL-type) all can use.
Biodegradable polymer with terminal carboxyl group preferably comprises (A) glycolic and following general formula hydroxy carboxylic acid
Wherein R represents the copolymer of 2-8 carbon atom alkyl and (B) mixture of polylactic acid or lactic acid-ethanol copolymer.
Relevant general formula (II), the straight or branched alkyl of 2-8 carbon atom, represent with R, comprise, especially ethyl, propyl group, isopropyl, butyl, isobutyl group, the second month in a season-butyl, tert-butyl, amyl group, isopentyl, neopentyl, uncle-amyl group, 1-second propyl group, hexyl, isohesyl, 1,1-diformazan butyl, 2,2-diformazan butyl, 3,3-diformazan butyl and 2-second butyl.The straight or branched alkyl of 2-5 carbon atom preferably wherein.Particularly preferably be ethyl, propyl group, isopropyl, butyl and isobutyl group.Best R is an ethyl.
The hydroxy carboxylic acid of general formula [II] comprising: especially Alpha-hydroxy butanoic acid, Alpha-hydroxy valeric acid, Alpha-hydroxy-3 Methylbutanoic acid, Alpha-hydroxy caproic acid, Alpha-hydroxy isocaproic acid and Alpha-hydroxy capric acid.Preferably Alpha-hydroxy butanoic acid, Alpha-hydroxy valeric acid, Alpha-hydroxy-3 Methylbutanoic acid and Alpha-hydroxy caproic acid.What the hydroxy carboxylic acid of general formula [II] was best is the Alpha-hydroxy butanoic acid.Although these hydroxy carboxylic acid can be any D-, L-and DL-chemical compound, D-/L-ratio (mol%) preferably is about 75/25-25/75.Optimum implementation is the hydroxy carboxylic acid of D-/L-ratio in about 40/60 scope of about 60/40-.Best is the hydroxy carboxylic acid of D-/L-ratio (mol%) in about 45/55 scope of about 55/45-.
For the described hydroxy carboxylic acid copolymer (hereinafter being called ethanol copolymer) of glycolic and general formula [II], copolymerization model can be random, block or grafted.Random copolymer preferably.
The hydroxy carboxylic acid of general formula [II] can use or mix use separately.
Glycolic and hydroxy carboxylic acid [II] preferred proportion in described ethanol copolymer (A) is the about 75mole% of the about 10-of glycolic, and all the other are hydroxy carboxylic acid.Comparatively ideal is that this copolymer is made up of the glycolic of the about 75mole% of about 20-and the hydroxy carboxylic acid of surplus.It would be desirable that this copolymer is that hydroxy carboxylic acid is formed by glycolic and the surplus of the about 70mole% of about 40-.The weight average molecular weight range of described ethanol copolymer is about 2, and 000-about 50,000.Preferable range is about 3, and 000-about 40,000.Best scope is about 8, and 000-about 30000.The about 1.2-of dispersion value (weight-average molecular weight/number-average molecular weight) preferable range about 4.0.Good especially is the copolymer of dispersion value in about 3.5 scopes of about 1.5-.
The available known method of ethanol copolymer (A) is synthetic, the method described in for example Japanese special publication application 28521/1986 description.
But be used for polylactic acid L-of the present invention and D-chemical compound and composition thereof.A kind of in about 20/80 scope of about 75/25-of D-/L-ratio (mole%) preferably.Polylactic acid D-/L-ratio (mole%) is at about 60/40-about 25/75 preferably.The most favourable polylactic acid D-/L-ratio (mole%) is at about 55/45-about 25/75.The about 1500-of polylactic acid weight average molecular weight preferable range is about 30000, and about preferably 2000-is about 20000, better about 3000-about 15000.The preferred about 1.2-of polylactic acid dispersion value is about 4.0, comparatively ideal about 1.5-about 3.5.
Polylactic acid can be synthetic with two kinds of known replaceable methods, promptly relates to the lactide ring-opening polymerization method and the method that relates to the acid by dehydrating lactic polycondensation of lactic acid dimer.For production is used for the lower polylactic acid of molecular weight of the present invention, preferably relate to directly the dewater method of polycondensation of lactic acid.This method is treated as described in the publication application 28521/1986 as Japan.
Be used for medicine alkali of the present invention, using ethanol copolymer (A) and the polylactic acid (B) of the about 10/90-of (A)/(B) ratio (by weight) about 90/10.The preferred about 20/80-of mixing ratio about 80/20.The about 30/70-of ideal ratio about 70/30.If (A) or ratio (B) when excessive, the medicine release mode that final preparation shows with only use (A) or (B) time resulting pattern very nearly the same, that is to say in the release late period that obtains with mixed base to obtain linear release mode.The degraded of ethanol copolymer and polylactic acid and elimination speed are along with their molecular weight and composition significant change, but in general, because the decomposition of ethanol copolymer is with to eliminate speed relative higher, so can prolong because of the increase of polylactic acid molecule amount or the minimizing of mixing ratio (A)/(B) release time.On the contrary, discharge the time limit can because of the polylactic acid molecule amount reduce or (A)/(B) raising of mixing ratio shorten.In addition, discharging the time limit can be adjusted by the kind or the relative quantity that change general formula [II] hydroxy carboxylic acid.
When making biodegradable polymer with the copolymer of lactic acid and glycolic, its polymerization is than (lactic acid/glycolic) (moie%) preferred about 100/0 about 40/60.The about 90/10-of ratio about 50/50 preferably.
The preferred 5000-of described copolymer weight average molecular weight about 25000.Scope is about 7 preferably, and 000-about 20,000.
The preferably about 1.2-about 4.0 of the degree of scatter of described copolymer (weight-average molecular weight/number-average molecular weight).The about 1.5-of scope about 3.5 preferably.
The copolymer of above-mentioned lactic acid and glycolic can be synthetic by known method, for example treats method in the publication application 28521/1986 by being described in Japan.
The decomposition of lactic acid and ethanol copolymer and rate of disappearance can change greatly with composition and molecular weight, yet in general, glycolic is few more, decompose and rate of disappearance low more.In addition, the medicine release time limit can prolong by reducing glycolic or improving molecular weight.On the contrary, discharging the time limit can be by improving the glycolic mark or reducing molecular weight and shorten.Long-term in order to prepare (for example 1-4 month) extended release preparation preferably uses polymerization than in above-mentioned scope and the also copolymer of the lactic acid in above-mentioned scope and glycolic of weight average molecular weight.When lactic acid be higher than above-mentioned polymerization ratio and weight average molecular weight range with decomposition rate in and ethanol copolymer, it is difficult controlling initial rapid increase.On the contrary, use be lower than above-mentioned polymerization than and weight average molecular weight range in when the lactic acid of decomposition rate and ethanol copolymer, can not discharge the effective dose medicine in this period.
In this manual, weight average molecular weight and dispersion mean uses weight average molecular weight 120 respectively, 000,52,000,22,000,9200,5050,2950,1050,580 and 162 9 kinds of polystyrene are made polystyrene molecular weight that reference substance records by gel permeation chromatography (GPC) and are calculated this dispersion value with this molecular weight.Said determination is that RI detector L-3300 (Hitachi) and chloroform give mobile phase are carried out with GPC post KF804L * 2 (Showa Denko).
Extended release preparation of the present invention is to produce in a kind of solvent by dissolving peptide [I] and biodegradable polymer with terminal carboxyl group, and this solvent and water are non-miscible basically, remove described solvent then.
Be a kind of not only basic and water immiscibility but also can dissolve the solvent of biodegradable polymer that with water base immiscible solvent this solvent can also make the polymer solution of generation can dissolve peptide [I].Preferably solvent in water at room temperature (20 ℃) dissolubility be no more than 3% (W/W).The boiling point of this solvent is not higher than 120 ℃.Described like this solvent comprises alkyl ether (as diisopropyl ether etc.), fatty acid alkyl (4 or more a plurality of carbon atom) ester (as butyl acetate etc.), aromatic hydrocarbon (as benzene,toluene,xylene etc.) of halogenated hydrocarbons (as dichloromethane, chloroform, ethyl chloride, trichloroethane, carbon tetrachloride etc.), 3 or more a plurality of carbon atoms or the like.These solvents can two or more suitably mix use.Reasonable solvent is halogenated hydrocarbons (as dichloromethane, chloroform, ethyl chloride, trichloroethane, a carbon tetrachloride etc.).Best is dichloromethane.
The removal of solvent can be undertaken by program known per se.For example, described method comprises under the atmospheric pressure evaporating solvent or divides gradually with propeller mixer constant agitation or electromagnetic agitation to be taken off evaporating solvent or use the rotary evaporator evaporating solvent under controlled vacuum, and these methods all can be used.
Relevant the present invention produces the method for extended release preparation, and the biodegradable polymer of dissolving peptide [I] and tool terminal carboxyl group means and reaches a kind of condition so that the solution that obtains can be observed undissolved peptide residue at general temperature (20 ℃) time naked eyes of no use.In this ternary system by peptide [I], biodegradable polymer and solvent composition, the dissolved peptide amount of energy depends on the terminal carboxyl group number of per unit weight biodegradable polymer.Under the situation that peptide and terminal carboxyl group react to each other with 1: 1 ratio, dissolved in theory peptide mole equates with terminal carboxyl group.Therefore, the combination of solvent and peptide and biodegradable polymer molecular weight are difficult to unified.Yet, in producing extended release preparation, with regard to the biodegradable polymer in being dissolved in solvent, about 100% (W/W) of the about 0.1-of peptide solubilized scope, about 70% (W/W) of preferably about 1-, about 50% (W/W) of preferably about 2-.
The invention still further relates to the method for producing extended release preparation, this method comprise the dissolving biodegradable polymer and basically water-insoluble physiologically active peptide or its salt in a kind of solvent, described polymer comprises the copolymer of (A) glycolic and following general formula hydroxy acid, and described general formula is
Figure A20061009972300221
Wherein R represents the alkyl of 2-8 carbon atom and (B) mixture of polylactic acid, and described solvent and water are non-miscible basically, remove described solvent then.
Basically water-insoluble physiologically active peptide is hard-core, and comprises naturally occurring, synthetic and semi-synthetic peptide.Preferably its side chain contain one or more aryl (as by benzene, naphthalene, phenanthrene, fear, group that pyridine, pyrroles, indole etc. derive out) physiologically active peptide.Physiologically active peptide is the peptide that its side chain has 2 or more a plurality of aryl preferably.Good especially physiologically active peptide is that its side chain has 3 or the described peptide of polyaryl more.These aryl can further be replaced.
With what water-insoluble basically of the present invention physiologically active peptide preferably in water dissolubility be not more than 1%, form and have an about 200-30, the peptide of 000 molecular weight by two or more seed amino acids.The about preferably 300-20 of molecular weight ranges, 000, the better about 500-10 of scope, 000.
The metakentrin (LH-RH) that described physiologically active peptide example is the releasing hormone antagonist (is seen US 4,086,219,4,124,577,4,253,997 and 4,317,815 etc.), insulin, growth hormone release inhibitory factor, the growth hormone release inhibitory factor derivant (is seen US4,087,390,4,093,574,4,100,117,4,253,998 etc.), growth hormone, prolactin antagonist, thyroliberin (ACTH), melanotropin (MSH), the thyroxin salt of releasing hormone and derivant (seeing open S-50-121273 of JP and S-52-116465), thyrotrophic hormone(TH) (stimulation) hormone (TSH), metakentrin (LH), follicle stimulating hormone (FSH), vassopressin, the vassopressin derivant, oxytocin, calcitonin, gastrin, secretin, Pancreozymin, cholecystokinin, angiotensin, human placental lactogen, physex (HCG), enkephalin, the enkephalin derivant (is seen US 4,277,394, EP-A 31567), endorphins, kyotrphin, tuftsi n, thymopoietins (thymopoietin), thymosin, thymostimulin (thymostimulin), thymosin humoral factor (THF), facteurthymique s é rique (FTS) and derivant thereof (are seen US4,229,438), other thymosin factor, tumor necrosis factor (TNF), the short bacterium colony factor (Colony stimulatingfactor (CSF), motilin (motilin), dynorphin, bombesin, neurotensin, cerulein, Kallidin I, atrial natruretic factor, nerve growth factor, cell growth factor, neurotrophic factor, peptide with endothelin antagonistic activity (is seen EP-A 436189,457195 and 496452, open H-3-94692 of JP and 03-130299) and the fragment or the derivant of these physiologically active peptides.
The instantiation of physiologically active peptide is the physiologically active peptide and the salt of the metakentrin antagonist of energy releasing hormone (LH-RH), and can be used for treating the disease that relies on hormone, as carcinoma of prostate, prostate hyperplasia, endometriosis, hysteromyoma, pubertas praecox, mastocarcinoma etc. be used for contraception.
Be used for the form that physiologically active peptide of the present invention can salt and exist, be preferably pharmaceutical salts.When described peptide has basic group such as amino, for example available mineral acid of above-mentioned salt (example hydrochloric acid, sulphuric acid, nitric acid etc.) or organic acid (as carbonic acid, acid carbonic acid, succinic acid, acetic acid, propanoic acid, trifluoroacetic acid etc.) salify.When peptide has acidic-group as carboxyl, for example available inorganic base of described salt (for example alkali metal such as sodium, potassium etc. and alkaline-earth metal such as calcium, magnesium etc.) or organic base (for example organic amine such as triethylamine etc. and basic amino acid such as arginine) salify.
The visible United States Patent (USP) 5110904 of the instantiation of physiologically active peptide or its salt, Journalof Medicinal Chemistry 34,2395-2402,1991, Recent Rusultsin Cancer Research 124,113-136,1992 and other document in.
In addition, also can be the physiologically active peptide and the salt thereof of general formula [I].
Yet,, also can transform into insoluble derivative compound or change into insoluble salt and with in what the inventive method with water-insoluble acid (for example pamoic acid, tannic acid, stearic acid, brown eleostearic acid etc.) even when physiologically active peptide is water solublity.
The physiological effect of the kind that measuring certainly what peptide of described physiologically active peptide in preparation of the present invention, expectation and effect want persistent period or the like.Yet, the about 0.001-50% of the relative what biodegradable polymer of the ratio of Shi Yonging alkali (w/w) in general, preferably about 0.01-40% (w/w), about preferably 0.1-30% (w/w).
The solvent that is used for described method is same as described above.
The removal of solvent is available and above-mentioned to be finished with quadrat method.
The microencapsulation method (as described below) of water dry technology or phase detachment technique or any similarly method in the method for optimizing of production extended release preparation of the present invention is to use.
Method described below can or comprise that the physiologically active peptide of water-insoluble basically of peptide [I] finishes with peptide [I].
So, with peptide [I] by above-mentioned final weight than the organic solvent solution that contains peptide [I] and biodegradable polymer in the organic solvent solution that is added to biodegradable polymer with preparation.In this connection, the concentration of biodegradable polymer in organic solvent changes with the molecular weight of biodegradable polymer and the type of organic solvent, but about 80% (w/w) of the about 0.01-of scope that selects usually.About 70% (w/w) of the about 0.1-of preferable range.Better about 60% (w/w) of the about 1-of scope.
Then, this organic solvent solution that contains peptide [I] and biodegradable polymer (oil phase) is added to aqueous phase with preparation o (oil phase)/w (water) emulsion.Then the oil phase solvent evaporation is fallen to make microcapsule.The common scope of selecting of volume that is used for this step water is about 10000 times of the about 1-of oil phase volume.About 5000 times of the about 2-of preferable range, better the about 5-of scope is about 2000 times.
Emulsifying agent is added to above-mentioned aqueous phase.Usually emulsifying agent can be anyly to stablize the contributive material of o/w emulsion to forming.Mentioned in this article is anion surfactant (enuatrol, sodium stearate, sodium lauryl sulphate etc.), non-ionic surface active agent (polyoxyethylene-sorbitan fatty acid ester [Tween 80 and polysorbate60, Atlas powder], polyoxyethylene-castor oil derivative [HCO-60 and HCO-50, Nikko Chemicals] etc.), polyvinylpyrrolidone, polyvinyl alcohol, carboxymethyl cellulose, lecithin, gelatin, hyaluronic acid or the like.These emulsifying agents can use separately also can mix use.About 20% (w/w) of the about 0.001-of concentration range that selects.The about 10%w/w of the about 0.01-of preferable range).Better about 5% (w/w) of the about 0.05-of scope.
Resulting microcapsule is by centrifugal or filtered and recycled, and the some distilled water washs of reuse to be removing lip-deep free peptide, carrier and emulsifying agent, and then disperses in what distilled water or the analog and lyophilizing.If required, microcapsule is heated further to remove remaining moisture content and the organic solvent in the microcapsule under reduced pressure.Best, this method by microcapsule under essence is higher than 5 ℃ or higher temperature, finish with heating under the medium glass transition temperature of biodegradable polymer of 10-20 ℃/minute temperature increment measurement with differential scanning calorimetry (DSC), usually after microcapsule has achieved the goal temperature, continue heating and be no more than 1 week or 2-3 days, preferably be no more than 24 hours.
When producing microcapsule, flocculating agent is added to gradually in the organic solvent solution of the described peptide [I] of constant agitation and biodegradable polymer, so that biodegradable polymer separation after fixing with phase detachment technique.Add flocculating agent volume be about 1000 times of peptide [I] and the about 0.01-of biodegradable polymer organic solvent solution volume.About 500 times of the about 0.05-of preferable range, better the about 0.1-of scope is about 200 times.
Flocculating agent is the chemical compound of a kind of polymer, mineral oil or vegetable oil type, and it mixes but do not dissolve this polymer with the solvent of using for biodegradable polymer is molten.Particularly, be worth to propose silicone oil, Oleum sesami, Oleum Glycines, Semen Maydis oil, Oleum Gossypii semen, Oleum Cocois, Semen Lini oil, mineral oil, just-hexane, just-heptane etc.These materials can mix use.
Resulting microcapsule is by filtered and recycled, and with heptane or analog cyclic washing to remove flocculating agent.And then remove free peptide and solvent by the described same program of interior water dry technology.
With interior water dry technology or condensation technique the time, can add and assemble inhibitor in case particle aggregation.Agglutination inhibitor comprises water-soluble polysaccharides such as mannitol, lactose, glucose, starch (as corn starch) etc., glycine, protein such as fibrin, collagen etc. and inorganic salt such as sodium chloride, dibastic sodium phosphate or the like.
When producing microcapsule with spray drying technology, the organic solvent solution that makes described peptide [I] and biodegradable polymer by nozzle with the vaporific hothouse that sprays into spray dryer in case in very short time from evaporating organic solvent the small droplet very much, form trickle capsule.Nozzle can be a kind of two-fluid spray nozzle, drive nozzle, rotating disc type nozzle or the like.In order to prevent the gathering between capsule, in the organic solvent solution of spraying peptide [I] and biodegradable polymer, be preferably in this operation sprays into described agglutination inhibitor from another nozzle aqueous solution.
If necessary, can under the reduced pressure of above-mentioned same procedure, heat resulting microcapsule, thereby remove remaining moisture content and organic solvent.
The directly administration or be processed into the non-oral or oral pharmaceutical formulation of various suitable whats and administration of this microcapsule, non-oral administration is injection or implantation, nose, rectum or uterus transmucosal delivery systme etc. in muscle, the subcutaneous and organ for example, and oral administration is solid preparation such as capsule (for example hard capsule, soft capsule etc.), granule, powder etc. and liquid preparation such as syrup, emulsion, suspension etc. for example.
Microcapsule method for injection, for example in order to make the oil suspension for the controllable release injection, available dispersant (for example surfactant such as Tween 80, HCO-60 etc., carboxymethyl cellulose, polysaccharide such as sodium alginate etc.), antiseptic (for example methyl butex, propyl parabene etc.) or isotonic agent (for example sodium chloride, mannitol, Sorbitol, glucose etc.) preparation microcapsule disperse in what vegetable oil such as Oleum sesami, Semen Maydis oil or other congener with the preparation water slurry or with it.
The microcapsule particle diameter that is used for injectable suspensions not only its dispersibility and aciculiform passage requires in containing the satisfied scope of people, and can be from for example about 0.1 changing to about 500 μ m.The about 300 μ m of the about 1-of preferable particle size scope, the better about 200 μ m of the about 2-of scope.
For the microcapsule of using as sterile products is provided, whole process of production needs through the sterilization management, and microcapsule can be sterilized by gamma-radiation radiosterilization or adding preservative agent, but these are not unique operation.
Except above-mentioned microcapsule, make the biodegradable polymer compositions fusion that contains homodisperse active component peptide and be molded as sphere, clavate, aciculiform, ball shape or membranaceous with appropriate method, to make sustained release formulation of the present invention.Above-mentioned biodegradable polymer compositions can be by the open described method production of S-50-17525 of JP.Specifically, make earlier in the molten what solvent of peptide pharmaceutical products and polymer, then, remove by suitable method (for example spray drying, flash distillation etc.) and to desolvate to make desired biodegradable polymer compositions.
Nasal cavity, rectum or uterus transmucosal delivery system be implanted, be used for to extended release preparation of the present invention can or by injection in following form such as muscle, the subcutaneous or organ, or oral formulations (for example solid preparation is as capsule (for example hard or soft), granule, powder etc., or liquid preparation such as syrup, emulsion, suspending agent etc.) administration.
Extended release preparation of the present invention has very low toxicity, thereby can be used for mammal (for example people, cattle, pig, dog, cat, white mice (murine), mouse (rat) and rabbit) safely.
The dosage of extended release preparation depends on that the type of active pharmaceutical peptide and content, final dosage form, peptide release duration, treatment target are (as relying on the disease of hormone, for example carcinoma of prostate, prostate hyperplasia, endometriosis, fibroma uteri, pubertas praecox, mastocarcinoma etc. or be used for contraception) and the classification of process object animal, yet under any circumstance, all must successfully discharge the peptide of effective dose.The unit dose of active pharmaceutical peptide, the delivery systme of getting month is made example, and the about 100mg/kg of the preferably about 0.01-of the scope of selection becomes body weight for humans.The about 50mg/kg body weight of the about 0.05-of preferable range.The about 10mg/kg body weight of the about 0.1-of best scope.
Therefore, the about 500mg/kg body weight of the about 0.1-of the optional scope of unit dose of extended release preparation concerning each adult.The about 300mg/kg body weight of the about 0.2-of preferable range.For example several weeks of administration number of times, January once or several months once, and the disease and the object of study animal that can discharge time limit, desire control by the peptide of the type of active pharmaceutical peptide and content, final dosage form, design be selected.
Following reference and working example are to want to describe in further detail the present invention, but never constitute limiting the scope of the invention.(unless otherwise prescribed, % means % by weight).
The abbreviation that is used for hereinafter has following definition:
BOC: uncle's one butoxy carbonyl
FMOC:9-fluorenyl methoxy carbonyl
Cbz: benzyloxycarbonyl
Reference example 1
In the 1000ml four-necked bottle of nitrogen inlet tube and condenser is housed, inject the D of 300g 90%, the L-lactic acid aqueous solution of L-lactic acid aqueous solution and 100g 90%, charging under the nitrogen current of decompression from 100 ℃/500mmHg to 150 ℃/30mmHg heating more than 4 hour, constantly shift out distilled water simultaneously, under 3-5mmHg/150-180 ℃ reduced pressure, make reactant mixture heating 7 hours again, make it cooling then and make amber polylactic acid.
In the dichloromethane with this polymer dissolution what 1000ml, under constant agitation, this solution poured in 60 ℃ the warm water.The viscosity polymerization precipitate that collection obtains, dry in the vacuum under 30 ℃ again.
Above-mentioned polylactic acid is measured weight average molecular weight and number-average molecular weight and is measured number-average molecular weight by end group measurement by GPC and is respectively 3,000; 1,790 and 1,297.
These data show that this polymer has terminal carboxyl group.
Reference example 2
In the 1000ml four-necked bottle of nitrogen inlet tube and condenser is housed, inject the D of 500g 90%, the L-lactic acid aqueous solution, charging under the nitrogen current of decompression (from the heating of 100 ℃/500mmHg-150 ℃/30mmHg) 4 hours, continue to shift out distilled water simultaneously, under 3-5mmHg/150-180 ℃ reduced pressure, make reactant mixture heating 12 hours again, make it cooling then and make amber polylactic acid.
In the dichloromethane with this polymer dissolution what 1000ml, under constant agitation, this solution poured into again in 60 ℃ the warm water.Dry in viscosity polymerization precipitate that collection obtains and the vacuum under 30 ℃.
Above-mentioned polylactic acid is pressed GPC and is measured weight average molecular weight and number-average molecular weight, and presses end group measurement and measure number-average molecular weight, is respectively 5,000; 2,561; With 1,830.
These data show that this polymer has terminal carboxyl group.
Reference example 3
In the 1000ml four-necked bottle of nitrogen inlet tube and condenser is housed, inject the D of 300g 90%, the L-lactic acid aqueous solution of L-lactic acid aqueous solution and 100g 90%, charging under the decompression nitrogen current (from the heating of 100 ℃/500mmHg-150 ℃/30mmHg) 5 hours, constantly shift out simultaneously distilled water, under 5-7mmHg/150-180 ℃ reduced pressure, made the reactant mixture reheat 18 hours, and made it cooling then and make amber polylactic acid.
In the dichloromethane with the molten what 1000ml of this polymer, gained solution is poured under constant agitation in 60 ℃ the warm water.Collect the viscosity polymerization precipitate of generation and drying in 30 ℃ vacuum.
Above-mentioned polylactic acid is pressed GPC and is measured weight average molecular weight and number-average molecular weight, and the reuse end group measurement is measured number-average molecular weight, is respectively 7,500; 3,563; With 2,301.
These data show that this polymer has terminal carboxyl group.
Reference example 4
In the 1000ml four-necked bottle of nitrogen inlet tube and condenser is housed, inject the D of 300g 90%, the L-breast aqueous solution of ester of L-lactic acid aqueous solution and 100g 90%, charging in the nitrogen current of decompression (from the heating of 100 ℃/500mmHg-150 ℃/30mmHg) 5 hours, constantly shift out simultaneously distilled water, under 5-7mmHg/150-180 ℃ reduced pressure, made the reactant mixture reheat 26 hours, and made it cooling then and make amber polylactic acid.
In the dichloromethane with the molten what 1000ml of this polymer, and under the constant agitation condition, solution poured in 60 ℃ the warm water.The viscosity polymerization precipitate that collection obtains, and dry in 30 ℃ vacuum.
Above-mentioned polylactic acid is pressed GPC and is measured weight average molecular weight and number-average molecular weight, and presses end group measurement and measure number-average molecular weight, is respectively 9,000; 3,803; With 2,800.
These data show that this polymer has terminal carboxyl group.
Reference example 5
In the 1000ml four-necked bottle of nitrogen inlet tube and condenser is housed, inject the D of 182.5g glycolic and 166.6g, the L-2-hydroxybutyric acid, charging under the nitrogen current of decompression (from the heating of 100 ℃/500mmHg-150 ℃/30mmHg) 3.5 hours, constantly shift out simultaneously distilled water, under 5-7mmHg/150-180 ℃ reduced pressure, make reactant mixture heating 26 hours again, make it cooling then and make amber glycolic-2-hydroxybutyric acid copolymer.
In the dichloromethane with the molten what 1000ml of this polymer, and under the constant agitation condition, solution poured in 60 ℃ the warm water.The viscosity polymerization precipitate that collection obtains, and dry in 25 ℃ vacuum.
Gained glycolic-2-hydroxybutyric acid copolymer, the weight average molecular weight of measuring by the GPC method is 13,000.
Reference example 6
In the 1000ml four-necked bottle of nitrogen inlet tube and condenser is housed, inject the D of 197.7g glycolic and 145.8g, the L-2-hydroxybutyric acid, charging in the nitrogen current of decompression (from the heating of 100 ℃/500mmHg-155 ℃/30mmHg) 4 hours, constantly shift out simultaneously distilled water, under 3-6mmHg/150-185 ℃ reduced pressure, made the reactant mixture reheat 27 hours, make it cooling then and form amber glycolic-2-hydroxybutyric acid copolymer.
Make in the dichloromethane of the molten what 1000ml of this polymer, under the constant agitation condition, solution poured in 60 ℃ the warm water.The viscosity polymerization precipitate that collection obtains, and dry in 25 ℃ vacuum.
The weight average molecular weight of measuring above-mentioned gained glycolic-2-hydroxybutyric acid copolymer with the GPC method is 13,000.
Reference example 7
In the 1000ml four-necked bottle of nitrogen inlet tube and condenser is housed, inject the D of 212.9g glycolic and 124.9g, the L-2-hydroxybutyric acid, charging in the nitrogen current of decompression (from the heating of 100 ℃/500mmHg-160 ℃/30mmHg) 3.5 hours, constantly shift out simultaneously distilled water, under 3-6mmHg/160-180 ℃ reduced pressure, make reactant mixture heating 27 hours, after this make it cooling and form amber glycolic-2-hydroxybutyric acid copolymer.
Make in the dichloromethane of the molten what 1000ml of this polymer, mix with constant agitation and solution is poured in 60 ℃ the warm water.The viscosity polymerization precipitate that collection obtains, and dry in 25 ℃ vacuum.
The weight average molecular weight of measuring gained glycolic-2-hydroxybutyric acid copolymer with the GPC method is 11,000.
Reference example 8
In the 1000ml four-necked bottle of nitrogen inlet tube and condenser is housed, inject the D of 300g 90%, the L-lactic acid aqueous solution of L-lactic acid aqueous solution and 100g 90% makes charging (from the heating of 100 ℃/500mmHg-150 ℃/30mmHg) 4 hours, constantly shift out distilled water simultaneously in the nitrogen current of decompression.Make reactant mixture reheat 10 hours under 3-5mmHg/150-180 ℃ reduced pressure, cooling forms amber polylactic acid then.
In the dichloromethane with the molten what 1000ml of this polymer, mix with constant agitation and solution is poured in 60 ℃ the warm water.The viscosity polymerization precipitate that collection obtains, and dry in 30 ℃ vacuum.
Above-mentioned polylactic acid is measured weight average molecular weight and number-average molecular weight and is measured number-average molecular weight with end group measurement by the GPC method, is respectively 4,200; 2,192; With 1,572.
These data show that this polymer has terminal carboxyl group.
Reference example 9
In the 1000ml four-necked bottle of nitrogen inlet tube and condenser is housed, inject 182.5g glycolic and 166.6g D, the L-2-hydroxybutyric acid, make charging in the nitrogen current of decompression (from the heating of 100 ℃/500mmHg-150 ℃/30mmHg) 3.5 hours, constantly shift out simultaneously distilled water, under 5-7mmHg/150-180 ℃ reduced pressure, make the reactant mixture reheat 32 hours, and made it cooling then, form amber glycolic-2-hydroxybutyric acid copolymer.
In the dichloromethane with the molten what 1000ml of this polymer, mix with constant agitation and solution is poured in 60 ℃ the warm water.Collect resulting viscosity polymerization precipitate, and dry in 25 ℃ vacuum.
Gained glycolic-2-hydroxybutyric acid copolymer is pressed the GPC method and is measured weight average molecular weight and number-average molecular weight, measures number-average molecular weight with end group measurement, is respectively 16,300; 5,620; With 2,904.
These data show that this polymer has terminal carboxyl group.
Reference example 10
Synthetic NAcD2NaL-D4Clphe-D3Pal-Ser-NMeTyr-DLys (AzaglyFur)-Leu-Lys (Nisp)-Pro-DAlaNH 2
Reference example 10 and 11 is by US 5,110,904 and the described method of US patent application (number 07/987,921) carry out.
The reactor of past peptide synthesizer adds the D-Ala-NH-resin (4-methyl-benzohydrylamine resin) of 1g, adds aminoacid in succession by following synthesis procedure subsequently, with synthetic title peptide.
1. go protection (deprotecting) reaction
Protection BOC group for the a-amino acid of removing peptide uses a kind of solution of being made up of 45% trifluoroacetic acid (hereinafter claiming TFA), 2.5% methoxybenzene, 2.0% dimethylphosphite and 50.5% dichloromethane.After 1 minute, carried out protective reaction 20 minutes with this solution pre-wash resin.
2. wash with alkaline solution
In order to remove and to neutralize, use to contain 10%N, the dichloromethane solution of N '-diisopropylethylamine with the de-protected trifluoroacetic acid of what.Each protective reaction, this resin all will wash 1 minute, triplicate.
3. coupling reaction
Make as the 0.3M diisopropyl carbodiimides/dichloromethane solution that 3 times of moles are arranged of activator and 0.3M BOC amino acid derivativges/DMF (N of 3 times of moles, N '-dimethyl formamide) solution carries out coupling reaction, the aminoacid that activated on resin with the free alpha-amido coupling of peptide.Response time is described as follows.
4. washing
After each course of reaction is finished, wash resin with dichloromethane, dichloromethane/DMF and DMF, each is 1 minute.
Synthetic schemes
Make amino protected aminoacid and resin coupling, order, number of times and time are as follows.
Order amino ester number of times-time
1 BOC-Pro 2 times-1 hour
2 BOC-Lys (N-epsilon-Cdz, isopropyl) 2 times-1 hour
3 BOC-Leu 2 times-1 hour
4 BOC-D-Lys (N-epsilon-FMOC) 2 times-1 hour
5 BOC-NMeTyr (0-2,6-diCl-Bzl) 2 times-1 hour
6 BOC-Ser (OBzl) 2 times-1 hour
7 BOC-D-3Pal 2 times-6 hours
8 BOC-D-4Clphe 2 times-2 hours
9 BOC-D2Nal 2 times-2 hours
10 acetic acid 2 times-2 hours
After synthetic reaction is finished, with the DMF solution-treated resin of 30% piperidines 4-24 hour to remove protection FMOC group.This resin is washed several times with dichloromethane, then with molten what DMF (18ml) in carbonyl dimidazoles (0.9g) reaction 15 minutes, the reuse dichloromethane is given a baby a bath on the third day after its birth time, makes itself and 2-furoyl hydrazine (2-furoic hydrazide) among the dissolving what DMF (18ml) (0.53g) react and spend the night later on.Resulting peptide-resin is given a baby a bath on the third day after its birth time with dichloromethane, dried overnight in the presence of phosphorus pentoxide then, make after this its in the presence of methoxybenzene in 0 ℃, with exsiccant hydrogen fluoride trealment 1 hour, so that downcut peptide from resin.Under vacuum condition, remove excessive reaction reagent.So the resin that obtains is at first washed with ether, at room temperature stirs 15 minutes in water/acetonitrile of what 50ml/acetate mixture (1: 1: 0.1) then, and filters.Filtrate generates the pulverous impure peptide of fine hair through lyophilizing.This peptide can be through high-efficient liquid phase chromatogram purification under following condition:
(1) post: Dynamax C-18 (25 * 2.5cm, 8 microns)
(2) solvent: the acetonitrile rising gradient that derives from 89% water/11% acetonitrile/0.1%TFA was above 20 minutes
(3) detect wavelength: 260nm (UV method)
Collect by the peptide of 25.7 minutes unimodal detection of retention time and NAcD2NaL-D4ClPhe-D3Pal-Ser-NMeTyr-DLys (AzaglyFur)-Leu-Lys (the Nisp)-Pro-DAlaNH of lyophilizing generation trifluoroacetate 2Purified product.The physical property data of relevant purified product is as follows:
FAB (fast atom bombardment, and with what hereinafter) mass spectral analysis: m/e 1591 (M+H) +
Amino acid analysis: 0.98Ala, 1.02Pro, 1.58Lys, 1.00Leu, 1.12NMeTyr, 0.52Ser
The trifluoroacetate of above-mentioned peptide is changed into acetate, use the solvent resistant column of crossing with 1N acetic acid balance in advance.The gel filtration condition is as follows:
(1) fills: Sephadex G-25 (post interior diameter 16mm, packed bed height 40mm)
(2) solvent: 1N acetic acid
(3) detect wavelength: 254nm (UV method)
Collect at first by the peak fraction and the lyophilizing of drip washing, obtain NAcD2NaL-D4ClPhe-D3Pal-Ser-NMeTyr-DLys (AzaglyFur)-Leu-Lys (the Nisp)-Pro-DAlaNH of acetate form 2Purified product.
Reference example 11
Synthetic NAcD2NaL-D4ClPhe-D3Pal-Ser-NMeTyr-DLys (AzaglyNic)-Leu-Lys (Nisp)-Pro-DAlaNH 2
Press reference example 10 identical methods and synthesize the title peptide, except replacing the 2-furoyl hydrazine with 2-nicotinic acid hydrazide (0.575g).So the HPLC retention time of the purified product that obtains is 16.0 minutes.The physical property of relevant purified product is as follows:
FAB mass spectral analysis: m/e 1592 (M+H) +
Amino acid analysis: 1.02Ala, 1.01Pro, 1.61Lys, 0.99Leu, 1.12NMeTyr, 0.48Ser
Make the trifluoroacetate of above-mentioned peptide change into acetate by the method identical with reference example 10.
Reference example 12
In the 1000ml four-necked bottle of nitrogen inlet tube and condenser is housed, inject the D of 322g 90%, L-lactic acid aqueous solution and 133g glycolic also use heating jacket (mantle heater) (so-go Rikagaku Glass Co.), make charging in the nitrogen current of decompression (from the heating of 100 ℃/500mmHg-150 ℃/30mmHg) 4 hours, constantly shift out simultaneously distilled water, under 3-30mmHg/150-185 ℃ reduced pressure, made the reactant mixture reheat 23 hours, make it cooling later on, form lactic acid-ethanol copolymer.
Make in the dichloromethane of the molten what 1000ml of this polymer, mix with constant agitation and solution is poured in 60 ℃ the warm water.The viscosity polymerization precipitate that collection obtains, and dry in 30 ℃ vacuum.
Measure the weight average molecular weight and the number-average molecular weight of resulting lactic acid-ethanol copolymer and press end group measurement mensuration number-average molecular weight by the GPC method, be respectively 10,000; 4,000; With 4,000.These data show that this copolymer is a kind of polymer with terminal carboxyl group.
Reference example 13
In the 1000ml four-necked bottle of nitrogen inlet tube and condenser is housed, inject the D of 347g 90%, L-lactic acid aqueous solution and 266g ethanol ester, and use heating jacket (so-goRikagaku Glass Co.), make charging in the nitrogen current of decompression from the heating of 100 ℃/500mmHg-150 ℃/30mmHg) 5 hours, constantly shift out distilled water simultaneously, under 3-30mmHg/150-185 ℃ reduced pressure, made the reactant mixture reheat 23 hours, make it cooling then, form lactic acid-ethanol copolymer.
Make in the dichloromethane of the molten what 1000ml of this polymer, and mix with stirring solution is poured in 60 ℃ the warm water.Collect resulting viscosity polymerization precipitate, and dry in 30 ℃ vacuum.
Measure the weight average molecular weight and the number-average molecular weight of resulting lactic acid-ethanol copolymer by the GPC method, and press end group measurement and measure number-average molecular weight, be respectively 10,000; 3,700; With 3,900.These data show that this copolymer is a kind of polymer with terminal carboxyl group.
Example 1
With NAcD2Na 1-D4ClPhe-D3Pal-Ser-NMeTyr-DLys (Nic)-Leu-Lys (Nisp)-Pro-DAlaNH 2(make by TAP, hereinafter referred physiologically active peptide A) acetate, 200mg is in the solution of polylactic acid 50:50 mixture (3.8g) in 5.3g (4.0ml) dichloromethane that glycolic-2-hydroxybutyric acid copolymer that molten what reference example 5 obtains and reference example 1 obtain.Make resulting solution be cooled to 17 ℃ and pour modulated in advance 1000ml 0.1% (W/W) polyvinyl alcohol (EG-40 to 10 ℃ into, NipponSynthetic Chemical Industry Co., Ltd.) in the aqueous solution, this mixture carries out emulsifying with preparation O/W emulsion with a turbine homixerizer with 7000rpm.This O/W emulsion is stirred 3 hours with the evaporation dichloromethane under room temperature.Oil phase is solidified, and with centrifuge (05PR-32Hitachi, Ltd.) collection of 2000rpm.This solid is scattered in the distilled water again, and further centrifugal to wash free medicine etc. off.The microcapsule of collecting is dispersed in a spot of distilled water once more, adds 0.3g D-mannitol and lyophilizing subsequently and forms powder.The content of the particle size distribution of microcapsule and physiologically active peptide A respectively is 5-60 μ m and 4.7% (W/W).
Make the preparation of following physiologically active peptide (1) and (2) by method same as described above.
(1)NAcD2NaL-D4ClPhe-D3Pal-Ser-NMeTyr-DLys(AzaglyNic)-Leu-Lys(Nisp)-Pro-DAlaNH 2
(2)NAcD2NaL-D4ClPhe-D3Pal-Ser-NMeTyr-DLys(AzaglyFur)-Leu-Lys(Nisp)-Pro-DAlaNH 2
Example 2
The acetate of dissolving 200mg physiologically active peptide A in the solution of 50: 50 mixture (3.8g) of polylactic acid in dichloromethane 6.7g (5.0ml) that glycolic-2-hydroxybutyric acid copolymer that obtains in reference example 5 and reference example 2 obtain.Make this solution be cooled to 17 ℃ and pour into modulatedly in advance to 17 ℃ 1000ml 0.1.% polyvinyl alcohol water solution again, handle the gained mixture to make microcapsule by example 1 again.The content of the particle size distribution of this microcapsule and physiologically active peptide A respectively is 5-65 μ m and 5.0% (W/W).
Example 3
Dissolve the acetate of 200mg physiologically active peptide A in the solution in polylactic acid 50: 50 mixture (3.8g) what 6.7g (5.0ml) dichloromethane that glycolic-2-hydroxybutyric acid copolymer that reference example 5 obtains and reference example 3 obtain.Make this solution be cooled to 17 ℃ and pour into modulatedly in advance to 17 ℃ 1000ml 0.1% polyvinyl alcohol water solution again, handle this mixture to form microcapsule by example 1.The content of the particle size distribution of this microcapsule and physiologically active peptide A is respectively 10-60 μ m and 4.8% (W/W).
Example 4
Dissolving 200mg physiologically active peptide A acetate in the solution of 50: 50 mixture (3.8g) of polylactic acid in 6.7g (5.0ml) dichloromethane of glycolic-2-hydroxybutyric acid copolymer that obtains by reference example 5 and reference example 4 acquisitions.This solution is cooled to pour into after 17 ℃ modulated in advance to 17 ℃ 1000ml 0.1% polyvinyl alcohol water solution, handles this mixture to generate microcapsule by example 1.The content of the particle size distribution of this microcapsule and physiologically active peptide A is respectively 10-75 μ m and 4.6% (W/W).
Example 5
Dissolving 200mg physiologically active peptide A acetate in the solution of 50: 50 mixture (3.8g) of polylactic acid in 6.0g (4.5ml) dichloromethane of glycolic-2-hydroxybutyric acid copolymer that obtains by reference example 6 and reference example 2 acquisitions.This solution is cooled to pour into again after 17 ℃ modulated in advance to 10 ℃ 1000ml 0.1% polyvinyl alcohol water solution, handles the gained mixture to form microcapsule by example 1.The content of the particle size distribution of this microcapsule and physiologically active peptide A is respectively 5-60 μ m and 4.9% (W/W).
Example 6
Dissolving 200mg physiologically active peptide A acetate in the solution of 50: 50 mixture (3.8g) of polylactic acid in 6.0g (4.5ml) dichloromethane of glycolic-2-hydroxybutyric acid copolymer that obtains by reference example 7 and reference example 2 acquisitions.This solution is cooled to pour modulated in advance 1000ml 0.1% after 17 ℃ again into and gets in the vinyl alcohol aqueous solution, and handle the gained mixture to make microcapsule by example 1 to 17 ℃.The content of the particle size distribution of this microcapsule and physiologically active peptide A is respectively 10-65 μ m and 4.9% (W/W).
Example 7
Dissolving 400mg physiologically active peptide A acetate in the solution of 50: 50 mixture (3.6g) of polylactic acid in 7.0g (5.3ml) dichloromethane of getting thing and reference example 8 acquisitions by the glycolic-2-hydroxybutyric acid of reference example 9 acquisitions altogether.This solution is cooled to pour into after 17 ℃ modulated in advance to 17 ℃ 1000ml 0.1% polyvinyl alcohol water solution, the gained mixture is handled by example 1 method, to make microcapsule again.The content of the particle size distribution of this microcapsule and physiologically active peptide A is respectively 5-65 μ m and 7.2% (W/W).
Example 8
240mg NAcD2NaL-D4ClPhe-D3Pal-Ser-NMeTyr-DLys (AzaglyNic)-Leu-Lys (Nisp)-Pro-DAlaNH that reference example 11 is obtained 2The acetate of (hereinafter referred physiologically active peptide B) is dissolved in a kind of solution, and this solution is the glycolic-2-hydroxybutyric acid copolymer of reference example 9 acquisitions and the solution of 50: 50 mixture (1.76g) of polylactic acid in 3.2g (2.4ml) dichloromethane that reference example 8 obtains.Make resulting solution be cooled to 18 ℃, pour into modulatedly in advance to 16 ℃ 400ml 0.1% polyvinyl alcohol water solution again, handle this mixture by example 1 method, to make microcapsule.The content of the particle size distribution of this microcapsule and physiologically active peptide B is respectively 5-70 μ m and 10.3% (W/W).
Example 9
240mg NAcD2NaL-D4ClPhe-D3Pal-Ser-NMeTyr-DLys (AzaglyFur)-Leu-Lys (Misp)-Pro-DAlaNH with reference example 10 acquisitions 2The acetate of (hereinafter referred physiologically active peptide C) is dissolved in a kind of solution, and this solution is the glycolic-2-hydroxybutyric acid copolymer of reference example 9 acquisitions and the solution of 50: 50 mixture (1.76g) of polylactic acid in 3.2g (2.4ml) dichloromethane that reference example 8 obtains.Resulting solution is cooled to pour into after 18 ℃ modulated in advance to 16 ℃ 400ml 0.1% polyvinyl alcohol water solution, the gained mixture is handled by example 1 method, to make microcapsule again.The content of the particle size distribution of this microcapsule and physiologically active peptide C is respectively 5-65 μ m and 10.9% (W/W).
Example 10
With N-TeTrahydrofur-2-oyl-Gly-D2NaL-D4ClPhe-D3Pal-Ser-NMeTyr-DLys (Nic)-Leu-Lys (Nisp)-Pro-DAlaNH 2Make the acetate of hereinafter referred physiologically active peptide D [FAB mass spectral analysis: m/e 1647 (M+H) by TAP +], 240mg is dissolved in a kind of solution, and this solution is the glycolic-2-hydroxybutyric acid copolymer of reference example 9 acquisitions and the solution of 50: 50 mixture (1.76g) of polylactic acid in 3.2g (2.4ml) dichloromethane that reference example 8 obtains.Make gained solution be cooled to 18 ℃, pour into modulatedly in advance to 16 ℃ 400ml 0.1% polyvinyl alcohol water solution again, handle the gained mixture to make microcapsule by example 1 method.The content of the particle size distribution of this microcapsule and physiologically active peptide D is respectively 5-70 μ m and 10.5% (W/W).
Example 11
Add 200mg physiologically active peptide A acetate, and molten what lactic acid-ethanol copolymer (lactic acid/glycolic=75/25 (mole%), GPC weight average molecular weight=5,000, GPC number-average molecular weight=2,000, number-average molecular weight=2,200 of pressing end group measurement; Manufacturer: Wako pure Chemical (Lot.920729)) in the solution in 5.3g (4.0ml) dichloromethane.Make resulting solution be cooled to 17 ℃, pour the modulated in advance 1000ml 0.1% polyvinyl alcohol (EG-40 to 16 ℃ again into, Nippon Synthetic ChemicalIndustry Co., Ltd.) in the aqueous solution, the gained mixture carries out emulsifying with preparation o/w emulsion with turbine-type mixer with 7000rpm.Make this o/w emulsion at room temperature stir 3 hours with the evaporation dichloromethane.Oil phase solidifies centrifuge (05PR-22, Hitachi) collection of back with 2000rpm.This solid is disperseed in the what distilled water once more, and further centrifugal to wash free medicine etc. off.Make collected microcapsule disperse once more to add the D-mannitol of 0.3g subsequently in a spot of distilled water of what, lyophilizing is to form powder again.The content of the particle size distribution of this microcapsule and physiologically active peptide A is respectively 5-60 μ m and 4.7% (W/W).
Produce the extended release preparation of following peptide (1) and (2) by method same as described above.
(1) physiologically active peptide B acetate
(2) physiologically active peptide C acetate
Example 12
Add 200mg physiologically active peptide A acetate and make its dissolving what 3.8g lactic acid-ethanol copolymer (lactic acid/glycolic=75/25 (mole%), GPC weight average molecular weight=10,000, GPC number-average molecular weight=4,400, number-average molecular weight=4,300 of pressing end group measurement; Manufacturer: Wako pure Chemical (Lot.880530)) in the solution in 6.7g (5.0ml) dichloromethane.Make resulting solution be cooled to 17 ℃, pour into again in the aqueous solution of modulated in advance 1000ml 0.1% polyvinyl alcohol to 11 ℃.After this, repeat the step of example 11 to form microcapsule.The content of the particle size distribution of this microcapsule and physiologically active peptide A is respectively 5-65 μ m and 4.5% (W/W).
Example 13
In the solution of lactic acid-ethanol copolymer 3.6g in 8.0g (6.0ml) dichloromethane that the molten what reference example 12 of adding 400mg physiologically active peptide A acetate is obtained.Make resulting solution be cooled to 15 ℃, pour into again in the aqueous solution of modulated in advance 1000ml 0.1% polyvinyl alcohol to 14 ℃.After this, repeat the program of example 11 to form microcapsule.The content of the particle size distribution of this microcapsule and physiologically active peptide A is respectively 5-65 μ m and 8.2% (W/W).
Example 14
In the solution of lactic acid-ethanol copolymer 3.6g in 8.0g (6.0ml) dichloromethane that the molten what reference example 13 of adding 400mg physiologically active peptide A acetate is obtained.Make resulting solution be cooled to 15 ℃, pour into modulated in advance to 15 ℃ 1000ml 0.1% polyvinyl alcohol water solution again.After this, repeat the step of example 11 to form microcapsule.The content of the particle size distribution of this microcapsule and physiologically active peptide A is respectively 5-65 μ m and 8.4% (W/W).
Example 15
(manufacturer: Takeda Chemical Industries), 400mg is added in the solution of same lactic acid-ethanol copolymer 3.6g in 8.0g (60ml) dichloromethane that is used for example 12 with the leuprolerin acetate.To prepare limpid homogeneous solution.Make resulting solution be cooled to 15 ℃, pour into again in the aqueous solution of modulated in advance 1000ml 0.1% polyvinyl alcohol to 15 ℃.After this, repeat the step of example 11 to form microcapsule.
Experimental example 1
Resulting microcapsule in about 30mg example 1 is disperseed in the what disperse medium (solution in 2.5mg carboxymethyl cellulose, 0.5mg PS and the 25mg mannitol what distilled water), with 22G pin this dispersion liquid of back subcutaneous injection (dosage of microcapsule is 60mg/kg) the male SD Mus in 10 length of times in week.Behind the successive administration, Mus is killed,, measure the amount of physiologically active peptide A in the microcapsule from the residue of medicine-feeding part taking-up microcapsule.The results are shown in the table 1.
Experimental example 2-6
The microcapsule that use-case 2-6 is obtained is pressed the residual quantity that experimental example 1 method is measured physiologically active peptide A in the microcapsule.The result also is shown in Table 1.
Table 1
The residue of physiologically active peptide A (%)
1 day 1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 8 weeks
Experimental example 1 experimental example 2 experimental examples 3 experimental examples 4 experimental examples 5 experimental examples 6 88.0 92.8 96.5 99.4 92.9 92.3 66.5 76.6 90.5 94.5 75.0 61.3 42.3 62.6 77.5 87.2 45.7 33.5 15.2 48.7 64.9 76.3 - 6.4 38.6 59.2 66.0 17.5 26.5 46.9 - 38.7 46.6 20.3 30.7
Can find out obviously that from table 1 all microcapsule features of the present invention are that all substantial constant discharges physiologically active peptide, and another feature is essentially no initial sharply enhancing.
Linear regression pattern, correction coefficient and the release time that the x-refraction is calculated is pressed in table 2 expression, (June 5 for authored by Akira Sakuma, Tokyo University Press by bioassay method (Methods of Bioassay), 1978, p.111) described program is measured.
Table 2
The weight average molecular weight of polylactic acid The linear regression pattern Correction coefficient Release time (week)
Experimental example 1 experimental example 2 experimental examples 3 experimental examples 4 3000 5000 7500 9000 Residue (%)=95.4-(26.9 * all numbers) residue (%)=94.4-(14.2 * all numbers) residue (%)=98.4-(10.0 * all numbers) residue (%)=102.1-(8.9 * all numbers) (R 2= 0.992) (R 2= 0.975) (R 2= 0.996) (R 2= 0.995) 3.5 6.6 9.8 11.5
Can obviously find out from table 2, change with the blended polylactic acid weight average molecular weight of glycolic-2-hydroxybutyric acid copolymer can with discharge the time limit freely be controlled at about 3.5 the week-scope in Yue 11.5 weeks in.
Table 3 shows press the refractive linear regression pattern of x-, correction coefficient and release time, and these all are according to the data determination of table 1 by usefulness table 2 same program.
Table 3
The molar ratio of glycolic in ethanol copolymer The linear regression pattern Correction coefficient Release time (week)
Experimental example 2 experimental examples 5 experimental examples 6 60% 65% 70% Residue, (%)=94.4-, (14.2 * all numbers) residue, (%)=95.7-, (20.6 * all numbers) residue, (%)=96.6-, (30.9 * all numbers) (R 2= 0.975) (R 2= 0.976) (R 2= 0.994) 6.6 4.6 3.1
Can obviously find out from table 3, by change with the blended glycolic of polylactic acid-2-hydroxybutyric acid copolymer in the molar ratio of glycolic, freely the sustained release time about 3.1 the week-scope in Yue 6.6 weeks in.
Experimental example 7-9
The microcapsule that use-case 7-9 is obtained is by the residual volume of physiologically active peptide in the example 1 mensuration microcapsule, except that microcapsule dosage is about the 30mg/kg.The results are shown in table 4.Table 5 shows that reflecting linear regression pattern, the school of calculating by x-ends coefficient and release time, and these results measure by using table 2 same program according to the data of table 4.
Table 4
The residue of physiologically active peptide (%)
Physiologically active 1 day 1 week 2 weeks 3 weeks 4 weeks
Experimental example 7 A 99.3 74.5 51.4 33.2 24.1
Experimental example 8 B 87.4 75.0 52.3 32.8 25.1
Experimental example 9 C 89.4 73.6 54.9 37.7 23.4
Table 5
Physiologically active peptide The linear regression pattern Correction coefficient Release time (week)
Experimental example 7 A Residue (%)=97.8-(20.1 * all numbers) (R 2= 0.975) 4.9
Experimental example 8 B Residue (%)=93.5-(18.6 * all numbers) (R 2= 0.971) 5.0
Experimental example 9 C Residue (%)=94.4-(18.5 * all numbers) (R 2= 0.987) 4.9
Can find out obviously that from table 4 and 5 microcapsule feature of the present invention is not have basically initial rapid enhancing in the release of what physiologically active peptide substantial constant and another feature.
Experimental example 10
The microcapsule that use-case 10 is obtained is pressed the residual volume that experimental example 7 is measured physiologically active peptide in the microcapsule.The results are shown in table 6.Table 7 shows linear regression pattern, correction coefficient and the release time of calculating by x-refraction, and these results are by the data determination of table 6 according to the used same program of table 2.
Table 6
The residue of physiologically active peptide D (%)
1 day 1 week 2 weeks 3 weeks 3 weeks
Experimental example 10 93.5± 0.5 69.9± 3.6 37.3± 1.6 17.0± 1.4 7.9±0.5
Table 7
The linear regression pattern Correction coefficient Release time (week)
Experimental example 10 Residue (%)=95.0-(24.1 * all numbers) (R 2= 0.969) 3.9
Can find out obviously that from table 6 and 7 microcapsule feature of the present invention discharges in what physiologically active peptide substantial constant, and another feature is not have basically initial rapid enhancing.
Experimental example 11
The microcapsule that about 30mg example 11 is obtained is scattered in the disperse medium of 0.5ml (preparing in distilled water by dissolving carboxymethyl cellulose (2.5mg), PS (0.5mg) and mannitol (25mg)), injects this dispersion liquid (dosage of microcapsule is 60mg/kg) with the 22G pin at the male S D Mus back in 10 all length of times.Behind the successive administration, kill mice, take out the residue of microcapsule, and measure the amount of physiologically active peptide A in the microcapsule by medicine-feeding part.The results are shown in the table 8.
Experimental example 12
The microcapsule that use-case 12 is obtained, the program of repeated experiments example 11 in addition, the residue of check physiologically active peptide A.The results are shown in Table 8.
Experimental example 13
The microcapsule that use-case 13 is obtained, the residue of the physiologically active peptide of the program of repeated experiments example 11, and check in addition A.The results are shown in Table 8.
Experimental example 14
The microcapsule that use-case 14 is obtained, the residue of the physiologically active peptide of the program of repeated experiments example 11, and check in addition A.The results are shown in Table 8.
Table 8
The residue of physiologically active peptide A (%)
1 day 1 week 2 weeks 3 weeks 4 weeks 6 weeks 8 weeks
Experimental example 11 experimental examples 12 experimental examples 13 experimental examples 14 82.8 96.7 100.0 96.3 21.8 91.7 84.3 67.5 - 79.5 43.9 38.0 - 69.2 31.9 23.5 - 59.2 - - - - - - - 22.8 - -
(-: do not surveyed)
Table 9 shows linear regression pattern, correction coefficient and the release time of calculating by x-refraction, these all by with the used same program of table 2 by table 8 DATA REASONING.
Table 9
The linear regression pattern Correction coefficient Release time (week)
Experimental example 11 experimental examples 12 experimental examples 13 experimental examples 14 Residue (%)=97.1-(75.7 * all numbers) residue (%)=92.2-(9.7 * all numbers) residue (%)=102.4-(24.8 * all numbers) residue (%)=97.7-(26.5 * all numbers) (R 2= 0.994) (R 2= 0.998) (R 2= 0.982) (R 2= 0.989) 1.3 10.3 4.1 3.7
Can find out obviously that from table 8 and 9 extended release preparation of the present invention always guarantees the substantial constant release peptide in different time sections.
Comparative Examples 1
400mg physiologically active peptide A acetate is added to lactic acid-ethanol copolymer (lactic acid/glycolic=50/50 (mole %), GPC weight average molecular weight=58,000, GPC number-average molecular weight=14,000, number-average molecular weight=45,000 of pressing end group measurement; Manufacturer: Boeh ringer-Ingelheim (Lot.RG505-05077)) in the solution in 3.6g what 33.2g (25.0ml) dichloromethane, but physiologically active peptide A ethyl ester salt can not dissolve fully.
Comparative Examples 2
400mg physiologically active peptide A acetate is added to lactic acid-ethanol copolymer (lactic acid/glycolic=75/25 (mole %), GPC weight average molecular weight=18,000, GPC number-average molecular weight=8,400, number-average molecular weight=30,000 of pressing end group measurement; Manufacturer: Boeh-ringer-Ingelheim (Lot.RG752-15057)) in the solution of 3.6g in 8.0g (6.0ml) dichloromethane, but physiologically active peptide A can not dissolve fully.Make this dispersion liquid be cooled to 17 ℃, pour into again in the aqueous solution of modulated in advance 1000ml 0.1% polyvinyl alcohol to 15 ℃.Prepare microcapsule with the method that is same as example 11.The content of the particle size distribution of microcapsule and physiologically active peptide A is respectively 10-90 μ m and 2.5% (W/W).
Comparative Examples 3
400mg physiologically active peptide A acetate is added to lactic acid-ethanol copolymer (lactic acid/glycolic=75/25 (mole %), GPC weight average molecular weight=58,000, GPC number-average molecular weight=15,000, number-average molecular weight=53,000 of pressing end group measurement; Manufacturer: Boehringer-Ingelheim (Lot.RG755-05019)) 3.6g, in the solution in 21.2g (16.0ml) dichloromethane, but physiologically active peptide A can not dissolve fully.Make this dispersion liquid be cooled to 17 ℃, pour into again in the aqueous solution of modulated in advance 1000ml 0.1% polyvinyl alcohol to 16 ℃.Prepare microcapsule with the method that is same as example 11.The content of the particle size distribution of this microcapsule and physiologically active peptide A is respectively 10-90 μ m and 3.6% (W/W).
Shown in Comparative Examples 1-3, when using the lactic acid do not have terminal carboxyl group basically-ethanol ester copolymer, peptide then of the present invention [I] can not dissolve fully.
Comparative Examples 4
With Leuprolerin acetate (manufacturer: Takeda Chemical Industries), 400mg is added to the same lactic acid-ethanol copolymer that Comparative Examples 2 is used, 3.6g, in the solution in what 8.0g (6.0ml) dichloromethane, but the Leuprolerin acetate can not dissolve fully.
Extended release preparation of the present invention can be in long-time scope constant release medicine, especially peptide [I], therefore help prolonging and Stabilization.In addition, excessive immediately release after easily what is controlled the time limit of medicine release and can be suppressed administration.Especially suppress the release histamine activity in the peptide [I] after the extended release preparation administration.This extended release preparation has good dispersibility.And said preparation is stable (for example to light, heat, humidity, painted) and low toxicity, therefore, and administration safely.
According to production method of the present invention, the extended release preparation that contains a kind of physiologically active peptide can obtain high yield at an easy rate.The extended release preparation that is obtained has level and smooth surface and good flowability thus.

Claims (3)

1. method for preparing large quantity of micro-capsule, described microcapsule forms the extended release preparation of leuprorelin, and described method comprises:
(a) with leuprorelin dissolving or be suspended in the organic solvent solution of biodegradable polymer, described polymer comprises the copolymer of lactic acid and glycolic;
(b) mixture is added in the aqueous matrix to obtain o/w emulsion;
(c) change mixture into microcapsule by shifting out organic solvent.
2. the process of claim 1 wherein that 1euprorelin exists with the form of leuprorelin acetate.
3. the process of claim 1 wherein that the aqueous matrix of step (b) is a polyvinyl alcohol water solution.
CNB2006100997237A 1992-12-07 1993-12-07 Method for preparing large quantity of micro-capsule Expired - Lifetime CN100463672C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP327070/1992 1992-12-07
JP32707092 1992-12-07
JP18978/1993 1993-02-05
JP145134/1993 1993-06-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB021082065A Division CN100488560C (en) 1992-12-07 2002-03-22 Method for preparing mass micro-capsule

Publications (2)

Publication Number Publication Date
CN1911214A true CN1911214A (en) 2007-02-14
CN100463672C CN100463672C (en) 2009-02-25

Family

ID=18194959

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100997237A Expired - Lifetime CN100463672C (en) 1992-12-07 1993-12-07 Method for preparing large quantity of micro-capsule

Country Status (4)

Country Link
CN (1) CN100463672C (en)
LT (1) LT3265B (en)
UA (1) UA61046C2 (en)
ZA (1) ZA939163B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US511094A (en) 1893-12-19 Rope or cable drive for machinery
PH19942A (en) 1980-11-18 1986-08-14 Sintex Inc Microencapsulation of water soluble polypeptides
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
US4690916A (en) * 1984-11-13 1987-09-01 Syntex (U.S.A.) Inc. Nona and decapeptide analogs of LHRH useful as LHRH antagonists
US4897268A (en) * 1987-08-03 1990-01-30 Southern Research Institute Drug delivery system and method of making the same
GB2209937B (en) 1987-09-21 1991-07-03 Depiopharm S A Water insoluble polypeptides
US5110904A (en) * 1989-08-07 1992-05-05 Abbott Laboratories Lhrh analogs
CA2046830C (en) 1990-07-19 1999-12-14 Patrick P. Deluca Drug delivery system involving inter-action between protein or polypeptide and hydrophobic biodegradable polymer
NO302481B1 (en) * 1990-10-16 1998-03-09 Takeda Chemical Industries Ltd Polymer for an extended release preparation, as well as an extended release preparation

Also Published As

Publication number Publication date
LTIP1526A (en) 1994-10-25
ZA939163B (en) 1995-06-07
CN100463672C (en) 2009-02-25
LT3265B (en) 1995-05-25
UA61046C2 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
CN1099893C (en) Substained-release preparation
CN1057095C (en) Novel peptides the preparation and use thereof
CN1199686C (en) Sustained release compositions, process for producing the same and utilization thereof
CN1173946C (en) Method for preparing an N-[(aliphatic or aromatic) carbonyl]-2-aminoacetamide compound and a cyclyzed compound
CN1292796C (en) Controlled release composition and method of producing the same
CN1268391C (en) Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity
CN1188172C (en) G-CSF conjugates
CN1182153C (en) Novel dolastatin derivatives, their preparation and use
CN1268636C (en) Dolastatin 15 derivatives
CN1215340A (en) Composition comprising interleukin-1 inhibitor and controlled release polymer
CN1902222A (en) Fc-erythropoietin fusion protein with improved pharmacokinetics
CN1214339A (en) Pyrazole derivatives, their preparation and their use in pharmaceuticals
CN1678612A (en) Viral inhibitors
CN1918131A (en) Novel inhibitors of glutaminyl cyclase
CN1505617A (en) Peptides as met-ap2 inhibitors
CN1747941A (en) HIV inhibiting 1,2,4-triazines
CN1894245A (en) Pyrido[2,3-d]pyrimidine-2,4-diamines as PDE2 inhibitors
CN1839149A (en) Peptides which can bind to transforming growth factor beta 1 (tgf-beta1)
CN1615148A (en) Methods and compositions for derepression of IAP-inhibited caspase
CN1361685A (en) Sustained release compositions, process for producing the same and use thereof
CN1536998A (en) Integrin inhibitors for treatment of eye diseases
CN1756765A (en) Metastin derivatives and their use
CN1742997A (en) Mimetics of interleukin-8 and use of them in the prevention, treatment, diagnosis of a disease
CN1275132A (en) Treatmet of obesity
CN1109780A (en) Sustained-release preparation of anti-endothelin substance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20131207

Granted publication date: 20090225