CN1908584A - Method for determining initial status of strapdown inertial navigation system - Google Patents

Method for determining initial status of strapdown inertial navigation system Download PDF

Info

Publication number
CN1908584A
CN1908584A CN 200610112526 CN200610112526A CN1908584A CN 1908584 A CN1908584 A CN 1908584A CN 200610112526 CN200610112526 CN 200610112526 CN 200610112526 A CN200610112526 A CN 200610112526A CN 1908584 A CN1908584 A CN 1908584A
Authority
CN
China
Prior art keywords
mtd
msub
mrow
mtr
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610112526
Other languages
Chinese (zh)
Other versions
CN100516775C (en
Inventor
房建成
宫晓琳
盛蔚
杨胜
徐帆
刘百奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CNB2006101125264A priority Critical patent/CN100516775C/en
Publication of CN1908584A publication Critical patent/CN1908584A/en
Application granted granted Critical
Publication of CN100516775C publication Critical patent/CN100516775C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)

Abstract

The initial attitude determination method for SINS comprises: rotating the SINS from initial position to any one position round arbitrary 3D axis; according to SINS output on first position and the relation of earth rotational angular velocity and acceleration of gravity, determining the initial attitude primarily; then, using Kalman filter to estimate the gyro constant drift and other values for more accurate initial attitude. This invention improves observability and precision.

Description

Initial attitude determination method for strapdown inertial navigation system
Technical Field
The invention relates to a method for determining the initial attitude of a Strapdown Inertial Navigation System (SINS), which can be used for determining the initial attitude of various high-and-medium-precision strapdown inertial navigation systems, and is particularly suitable for the conditions that no indexing mechanism exists during the installation of an airborne SINS, or the indexing mechanism has low precision and limited rotation angle.
Background
The basic principle of a Strapdown Inertial Navigation System (SINS) is that according to a mechanical law relative to an inertial space proposed by Newton, a gyroscope and an accelerometer are used for measuring linear motion and angular motion parameters of a carrier relative to the inertial space, and under a given motion initial condition, a computer is used for carrying out integral operation to continuously provide position, speed and attitude information in real time. The SINS completely depends on self inertia sensitive elements and does not depend on any external information to measure navigation parameters, so the SINS has the advantages of good concealment, no limitation by weather conditions, no signal loss, no interference and the like, is a completely autonomous and all-weather navigation system, and is widely applied to the fields of aviation, aerospace, navigation and the like. According to the basic principles of SINS, the SINS must obtain initial information, including initial position, velocity, and attitude, before navigation positioning is resolved. The initial position and speed information of the SINS are easier to obtain than the initial attitude, and the accuracy after the initial attitude is determined is the initial accuracy when the SINS enters the navigation working state. Therefore, it is an important step to make a fast and accurate initial attitude determination when the SINS starts to work.
The initial attitude determination of the existing strapdown inertial navigation system can be divided into two stages of coarse alignment and fine alignment. In the coarse alignment stage, the output of a gyroscope and an accelerometer at a single position or two positions (fixed two positions or any two positions) is directly introduced into a computer under the condition of a static base, and the initial attitude of the carrier is calculated. In this method, errors of the gyroscope and the accelerometer and external interference factors are often ignored, but these factors cause errors, so the initial attitude calculation accuracy is not high. Particularly, when the outputs of the gyroscope and the accelerometer which are fixed at two positions are adopted for calculation, the SINS is required to rotate 180 degrees or 90 degrees around the Z axis, so that the SINS needs to be installed on an indexing mechanism, the 180-degree or 90-degree rotation is realized by using the indexing mechanism, the engineering use is very inconvenient, the precision of the indexing mechanism is not high, the rotation angle cannot be accurately measured, and the precision of initial attitude determination is reduced. Due to the limitation of the installation position of the SINS in specific engineering, the rotation angle cannot meet the requirement of 180 degrees or 90 degrees, and at the moment, the existing method for determining the initial posture of fixing two positions cannot be applied. In addition, when the gyroscope and the accelerometer at any two positions are used for output, an arcsine function, errors of the gyroscope and the accelerometer, measurement errors and the like are required to be calculated, so that the calculation result is easy to be unstable, and an imaginary number phenomenon occurs. Thus, the time for determining the initial attitude is multiplied, and the accuracy of the initial attitude calculation cannot be guaranteed.
And the fine alignment stage is carried out on the basis of coarse alignment, and data output by the gyroscope and the accelerometer are processed by using a state space method of a modern control theory. When data of a single position is processed, the observability of an azimuth misalignment angle is poor, the convergence rate is low, the required time is long, and errors of a gyroscope and an accelerometer cannot be observed, so that better estimation cannot be performed, the purpose of improving the accuracy of an initial attitude cannot be achieved, and the calibration of the gyroscope and the accelerometer cannot be realized while the initial attitude is calculated. When data of two fixed positions are processed, as described above, the conventional method for determining the initial posture of the two fixed positions has the limitation of a rotation angle, has high requirements on the precision of a steering mechanism, and cannot be applied to specific engineering.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: the method overcomes the defects of the prior art and provides an accurate and convenient method for determining the initial attitude of the strapdown inertial navigation system.
The technical solution of the invention is as follows: a method for determining initial attitude of strapdown inertial navigation system,
the method comprises the following specific steps:
(1) SINS preheating preparation, wherein the specific preparation time is different according to different systems;
(2) after the SINS is prepared, keeping the SINS still at an initial position (called as a first position), and collecting gyroscope output and accelerometer output;
(3) calculating a heading angle * for the first location using the relationship of the accelerometer output to gravitational acceleration and the relationship of the gyroscope output to the angular rate of rotation of the earth1Angle of pitch theta1And roll angle γ1
(4) Rotating the SINS from a first position to any position (called a second position) around a space three-dimensional arbitrary axis by any method without an indexing mechanism, keeping the SINS stationary at the second position, and collecting gyroscope output and accelerometer output;
(5) using kalman filtering technique, *1、θ1And gamma1As initial parameters, the data output by the gyroscope and accelerometer at two positions are processed. Due to the change of the SINS position, a system matrix in the SINS error model is changed, so that the observability of the SINS system is improved, the filtering effect is improved, and an error angle (misalignment angle phi for short) between a geographic coordinate system n' and a real geographic coordinate system n is calculated when the second position is estimated betterx、φyAnd phiz) Gyroscope constant drift and accelerometer constant bias;
(6) using estimated phix、φyAnd phizCalculating a transformation matrix C between a real geographic coordinate system n and a calculated geographic coordinate system nn′ n. According to the angular increment or angular speed information output by the gyroscope, a quaternion method is adopted to calculate a conversion matrix C between a carrier coordinate system b and a geographical coordinate system nb n′. From Cn′ nAnd Cb n′Calculating a transformation matrix C between the carrier coordinate system b and the real geographic coordinate system nb nThen from Cb nCalculating a heading angle * for the second location2Angle of pitch theta2And roll angle γ2This is taken as the initial attitude of the SINS.
The principle of the invention is as follows: when the SINS keeps still at a certain position, the output of the accelerometer and the gravity acceleration and the output of the gyroscope and the rotation angular rate of the earth have the following relations:
f x 1 f y 1 f z 1 = C n b 0 0 g . . . ( 1 )
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&omega;</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mrow> <mi>z</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msubsup> <mi>C</mi> <mi>n</mi> <mi>b</mi> </msubsup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein f isx1、fy1And fz1And ωx1、ωy1And ωz1The specific force and angular rate of the X-axis, Y-axis and Z-axis outputs of the SINS at the position are respectively; g is the acceleration of gravity; omegaieThe angular velocity of the earth rotation is the projection of the angular velocity of the earth in the east, north and sky directions, which is omega-0 omegaiecosL ωiesinL](ii) a L is the local latitude; cn bFor the transformation matrix of the navigation coordinate system to the carrier coordinate system, C n b = ( C b n ) T = C 11 C 13 C 13 C 21 C 12 C 23 C 31 C 32 C 33 .
Cn bthe heading angle * at this position may be expressed1Angle of pitch theta1And roll angle γ1Using the expressions (1) and (2), * at the position can be calculated1、β1And gamma1. The calculation formula is as follows:
the formula (1) and (2) can be used for obtaining:
C 13 = f x 1 g
C 23 = f y 1 g
C 33 = f z 1 g
<math> <mrow> <msub> <mi>C</mi> <mn>12</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>&omega;</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>f</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mi>g</mi> </mfrac> </mrow> </math>
<math> <mrow> <msub> <mi>C</mi> <mn>22</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>&omega;</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mrow> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>f</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mi>g</mi> </mfrac> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>C</mi> <mn>32</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>&omega;</mi> <mrow> <mi>z</mi> <mn>1</mn> </mrow> </msub> <mrow> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>f</mi> <mrow> <mi>z</mi> <mn>1</mn> </mrow> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mi>g</mi> </mfrac> </mrow> </math>
C11=C22C33-C23C32
C21=-C12C33+C13C32
C31=C12C23-C13C22
heading angle *1Angle of pitch theta1And roll angle γ1The main value calculation formula of (2) is:
Figure A20061011252600068
Figure A200610112526000610
if the heading angle *1Angle of pitch theta1And roll angle γ1Is defined as [0, 2 pi ]]、
Figure A200610112526000611
[-π,+π]Then *1、θ1And gamma1The true value of (c) can be determined as follows.
θ1=θ1 main (5)
Figure A20061011252600072
* determined by formula (5)1、θ1And gamma1Namely the heading angle, pitch angle and roll angle of the SINS at the position.
Heading angle * determined by equation (1) and equation (2) without taking into account accelerometer bias, gyroscope drift, and measurement errors in accelerometer and gyroscope output information1Angle of pitch theta1And roll angle γ1The true angular relationship between the carrier coordinate system and the local geographical coordinate system cannot be accurately described. Therefore, the initial attitude misalignment angle should be estimated from random errors and random disturbances on this basis, further using modern estimation theory.
Using kalman filtering technique, *1、θ1And gamma1As initial parameters, the error angle between the calculated geographic coordinate system n' and the true geographic coordinate system n can be estimated, and C can be correctedb n′Then, a more accurate initial posture can be obtained. However, when kalman filtering processes outputs of an accelerometer and a gyroscope at a single position, the system is not completely observable, wherein errors of two accelerometers and one gyroscope are not observable, so that the estimation effect is poor, and the purpose of improving the initial attitude precision is not achieved. The SINS is rotated to any position around a space three-dimensional arbitrary axis from the first position, namely the position of the SINS is changed, so that a system matrix in an SINS error model is changed, the observability of the SINS system is improved, the Kalman filtering effect is improved, and the misalignment angle and errors of a gyroscope and an accelerometer are better estimated. Using estimated misalignment angle versus conversion matrix Cb n′And correcting to obtain more accurate course angle, pitch angle and roll angle.
Compared with the prior art, the invention has the advantages that:
(1) the method breaks through the constraint that the SINS needs to be rotated by 180 degrees or 90 degrees around the Z axis through an indexing mechanism in the traditional fixed two-position initial attitude calculation, but does not need to be rotated to any position around any axis through the indexing mechanism, and is a spatial three-dimensional arbitrary two-position initial attitude calculation method. The reduction of the calculation precision of the initial posture of the two fixed positions caused by low precision of the indexing mechanism is avoided, namely, the calculation precision of the initial posture is improved. In addition, the SINS can be rotated to any position around any axis, and the application in practical engineering is greatly facilitated.
(2) The invention utilizes the data output by the gyroscope and the accelerometer on two positions to improve the observability of the SINS system, improve the filtering effect of the Kalman filter, better estimate the misalignment angle, the constant drift of the gyroscope and the constant offset of the accelerometer, and correct the attitude matrix by utilizing the estimated misalignment angle to obtain more accurate course angle, pitch angle and roll angle.
(3) The invention can complete the tasks of drift measurement and calibration while calculating the initial attitude, not only improves the calculation precision of the initial attitude of the system, but also improves the calibration precision, and can effectively improve the navigation positioning precision by compensating in the SINS navigation state.
Drawings
FIG. 1 is a flow chart of an initial pose determination method of the present invention;
FIG. 2 is a schematic view of heading angle *, pitch angle θ and roll angle γ, where OxnynznFor navigation, i.e. the northeast geographic coordinate system, OxbybzbIs a carrier coordinate system. Wherein fig. 2a shows a secondary navigation coordinate system OxnynznRotates counterclockwise * around zn axis and the carrier coordinate system OxbybzbSuperposition, * is the course angle; fig. 2b shows a slave navigation coordinate system OxnynznAround xnAxis anticlockwise rotation theta and carrier coordinate system OxbybzbSuperposing, wherein theta is a pitch angle; fig. 2c shows a navigation coordinate system OxnynznAround ynAxle anticlockwise rotation gamma and carrier coordinate system OxbybzbAnd (5) overlapping, wherein gamma is the roll angle.
Detailed Description
As shown in fig. 1, the specific implementation method of the present invention is as follows:
1. preparation of strapdown inertial navigation system
After the SINS is started, entering a preparation state.
2. First position data acquisition
After the SINS is prepared, the SINS is kept still at an initial position (called a first position), 5 minutes of gyroscope output and accelerometer output are collected, and if the SINS is low in precision, the collecting time can be properly prolonged.
3. First position attitude calculation
The navigation coordinate system is taken as the northeast geographic coordinate system, the first position heading angle *1Angle of pitch theta1And roll angle γ1As shown in fig. 2a, 2b and 2 c.
The accelerometer output has the following relationship with the gravitational acceleration and the gyroscope output with the earth rotation angular rate:
f x 1 f y 1 f z 1 = C n b 0 0 g . . . ( 6 )
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&omega;</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mrow> <mi>z</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msubsup> <mi>C</mi> <mi>n</mi> <mi>b</mi> </msubsup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula (f)x1、fy1And fz1And ωx1、ωy1And ωz1The specific force and the angular rate of the X-axis output, the Y-axis output and the Z-axis output of the SINS at the first position are respectively; g is the acceleration of gravity; omegaieThe angular velocity of the earth rotation is the projection of the angular velocity of the earth in the east, north and sky directions, which is omega-0 omegaiecosL ωiesinL]L represents the local latitude; cn bFor navigation of the transformation matrix tied to the carrier system, we can write:
C n b = ( C b n ) T = C 11 C 13 C 13 C 21 C 12 C 23 C 31 C 32 C 33 .
the formula (6) and (7) can be used for obtaining:
C 13 = f x 1 g
C 23 = f y 1 g
C 33 = f z 1 g
<math> <mrow> <msub> <mi>C</mi> <mn>12</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>&omega;</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mrow> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>f</mi> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mi>g</mi> </mfrac> </mrow> </math>
<math> <mrow> <msub> <mi>C</mi> <mn>22</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>&omega;</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mrow> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>f</mi> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mi>g</mi> </mfrac> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>C</mi> <mn>32</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>&omega;</mi> <mrow> <mi>z</mi> <mn>1</mn> </mrow> </msub> <mrow> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>f</mi> <mrow> <mi>z</mi> <mn>1</mn> </mrow> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mi>g</mi> </mfrac> </mrow> </math>
C11=C22C33-C23C32
C21=-C12C33+C13C32
C31=C12C23-C13C22
heading angle *1Angle of pitch theta1And roll angle γ1The main value calculation formula of (2) is:
θ1 main=arcsin(C23) (9)
Figure A20061011252600103
If the heading angle *1Angle of pitch theta1And roll angle γ1Is defined as [0, 2 pi ]]、
Figure A20061011252600104
[-π,+π]Then *1、θ1And gamma1The true value of (c) can be determined as follows.
Figure A20061011252600105
θ1=θ1 main (10)
Figure A20061011252600106
* determined by formula (10)1、θ1And gamma1Namely the heading angle, the pitch angle and the roll angle of the SINS at the first position.
4. Second position data acquisition
Rotating the SINS from an initial position to any position (called a second position) around a space three-dimensional arbitrary axis by an arbitrary method, keeping the SINS still at the second position, and acquiring 5-minute gyroscope output and accelerometer output.
5. Filtering the data at two positions
* will be mixed1、θ1And gamma1As initial parameters, processing data output by the gyroscope and the accelerometer at two positions by using a Kalman filtering technology to accurately estimate a misalignment angle phix、φyAnd phiz(the northeast geographyPhi in the coordinate systemE、φNAnd phiU) And gyroscope constant drift and accelerometer constant bias.
(1) Establishment of SINS initial attitude determination error model
The navigation coordinate system is taken as a northeast geographical coordinate system, errors of position and vertical speed are omitted, errors of an accelerometer and a gyroscope are taken as a random bias whitening noise process, and an error model of the SINS is as follows:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>E</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>N</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>E</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>N</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>U</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mo>&dtri;</mo> <mo>&CenterDot;</mo> </mover> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mo>&dtri;</mo> <mo>&CenterDot;</mo> </mover> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <msub> <mi>&Omega;</mi> <mi>U</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>g</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>T</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>12</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>2</mn> <msub> <mi>&Omega;</mi> <mi>U</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>g</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>T</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>22</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Omega;</mi> <mi>U</mi> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>&Omega;</mi> <mi>N</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>T</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msub> <mi>&Omega;</mi> <mi>U</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>T</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msub> <mi>&Omega;</mi> <mi>N</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>T</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>33</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>E</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>N</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&phi;</mi> <mi>E</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&phi;</mi> <mi>N</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&phi;</mi> <mi>U</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mo>&dtri;</mo> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&epsiv;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, subscripts E, N, U represent east, north, and day, respectively. Angular rate of rotation omega of the earthieIn east and northAnd the projection in the vertical direction is [0 ω ═ 0 ωiecosL ωiesinL]=[0 ΩN ΩU]L represents the local latitude; subscripts x, y and z are carrier coordinate systems; t isij(i-1, 2, 3; j-1, 2, 3) is an attitude matrix Cb nThe elements (A) and (B) in (B),
C b n = { T ij } i = 1,2,3 ; j = 1,2,3 .
(2) establishment of SINS initial attitude determination Kalman filtering model
For a strapdown inertial navigation system, equation (11) is modified to the form:
<math> <mrow> <mo>[</mo> <mfrac> <mrow> <msub> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>]</mo> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>F</mi> </mtd> <mtd> <msub> <mi>T</mi> <mi>i</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>5</mn> <mo>&times;</mo> <mn>5</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>5</mn> <mo>&times;</mo> <mn>5</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>[</mo> <mfrac> <mrow> <msub> <mi>X</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>X</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>]</mo> <mo>+</mo> <mo>[</mo> <mfrac> <mrow> <msup> <mi>W</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msub> <mn>0</mn> <mrow> <mn>5</mn> <mo>&times;</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>]</mo> <mo>=</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein W (t) is white Gaussian noise of N (O, Q); state variable Xa=[δVE δVN φE φN φU]T,Xb=[▽xyεxεyεz]T(ii) a Random noise state vector <math> <mrow> <msup> <mi>W</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>w</mi> <mrow> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>E</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mrow> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>N</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mi>&phi;E</mi> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mi>&phi;N</mi> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mi>&phi;U</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> Wherein, δ VE、δVNEast and north velocity errors, phi, respectivelyE、φNIs a horizontal misalignment angle; phi is aUIs the azimuth misalignment angle; ▽x、▽yFor random constant bias of accelerometers, epsilonx、εy、εzIs the gyroscope random constant drift; 05×5And 05×1All are zero matrices of specified dimensions; f and TiContent of the representativeThe following were used:
T i = T 11 T 12 0 0 0 T 21 T 22 0 0 0 0 0 T 11 T 12 T 13 0 0 T 21 T 22 T 23 0 0 T 31 T 32 T 33 , <math> <mrow> <mi>F</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <msub> <mi>&Omega;</mi> <mi>U</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>g</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>2</mn> <msub> <mi>&Omega;</mi> <mi>U</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>g</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Omega;</mi> <mi>U</mi> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>&Omega;</mi> <mi>N</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msub> <mi>&Omega;</mi> <mi>U</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Omega;</mi> <mi>N</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
(12) the formula is a system equation for determining a Kalman filtering model for the initial attitude of the strapdown inertial navigation system. In order to apply the kalman filter to perform the optimal estimation of the state vector, a system observation equation needs to be established. Two horizontal velocity errors are selected as observed quantities, and a system observation equation is established
<math> <mrow> <mi>Z</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>X</mi> <mi>b</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&eta;</mi> <mi>E</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&eta;</mi> <mi>N</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>HX</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&eta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein η (t) is the system observation noise vector, which is the gaussian white noise process of N (O, R).
(3) Establishment of discrete Kalman filtering model
From the system equation and the observation equation, a discrete kalman filter equation can be established as follows.
The filter equation:
Figure A20061011252600124
gain equation:
K k = P k , k - 1 H k T [ H k P k , k - 1 H k T + R k ] - 1 . . . ( 15 )
prediction error variance equation:
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
filter error variance equation:
Pk=[I-KkHk]Pk,k-1 (17)
in the formula phik,k-1For the discretized state transition matrix (system matrix), Q, R are covariance matrices of the system noise and the observed noise, respectively.
(4) Initial condition of filtering
X(0)=010×1
The values of the medium-precision SINS corresponding to P (0), Q and R are as follows:
P(0)=diag{(0.3m/s)2,(0.3m/s)2,(30′)2,(10″)2,(10″)2
(100μg)2,(100μg)2,(0.1°)2,(0.1°)2,(0.1°)2};
Q=diag{(100μg)2,(100μg)2,(0.1°)2,(0.1°)2,(0.1°)2,0,0,0,0,0};
R=diag{(0.1m/s)2,(0.1m/s)2}。
6. calculating gyroscope random constant drift and accelerometer random constant bias
▽ estimated by the filterx、▽yI.e. the accelerometer is biased at a random constant, epsilonx、εy、εzBeing gyroscopesA random constant drift.
7. Conversion matrix C between the calculation of the carrier coordinate system b and the calculation of the geographical coordinate system nb n′
C can be calculated by utilizing angular increment or angular speed information output by a gyroscope and adopting a quaternion methodb n′The calculation steps are as follows:
(1) using heading angle *1Angle of pitch theta1And roll angle γ1Initializing the attitude at the first position, and calculating an initial transformation matrix Cb n′And a quaternion q, the calculation formula is as follows:
order to <math> <mrow> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>T</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>T</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>T</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>T</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
Then there are:
<math> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>&PlusMinus;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msqrt> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>11</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>22</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>33</mn> </msub> </msqrt> </mrow> </math>
<math> <mrow> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>&PlusMinus;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msqrt> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>11</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>22</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>33</mn> </msub> </msqrt> </mrow> </math>
<math> <mrow> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>&PlusMinus;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msqrt> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>11</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>22</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>33</mn> </msub> </msqrt> </mrow> </math>
<math> <mrow> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>&PlusMinus;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msqrt> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>11</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>22</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>33</mn> </msub> </msqrt> </mrow> </math>
(2) updating quaternion q0、q1、q2、q3And a conversion matrix Cb n′
<math> <mrow> <mi>q</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>{</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>&Delta;</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mn>8</mn> </mfrac> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>&Delta;</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>4</mn> </msup> <mn>384</mn> </mfrac> <mo>)</mo> </mrow> <mi>I</mi> <mo>+</mo> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>&Delta;</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mn>48</mn> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> <mo>}</mo> <mi>q</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,
<math> <mrow> <mi>&Delta;&theta;</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>&Delta;</mi> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&Delta;</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>&Delta;&theta;</mi> <mi>z</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;&theta;</mi> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Delta;&theta;</mi> <mi>z</mi> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>&Delta;&theta;</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;&theta;</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>&Delta;&theta;</mi> </mrow> <mi>z</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Delta;&theta;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;&theta;</mi> <mi>z</mi> </msub> </mtd> <mtd> <msub> <mi>&Delta;&theta;</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>&Delta;&theta;</mi> </mrow> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
<math> <mrow> <mi>&Delta;</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mo>=</mo> <msqrt> <msubsup> <mi>&Delta;&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&Delta;&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&Delta;&theta;</mi> <mi>z</mi> <mn>2</mn> </msubsup> </msqrt> </mrow> </math>
conversion matrix Cb n′The update formula of (2) is as follows:
<math> <mrow> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
8. calculate heading angle *2Angle of pitch theta2And roll angle γ2
Phi estimated using Kalman filteringE、φN、φUCalculating a transformation matrix C between a real geographic coordinate system n and a calculated geographic coordinate system nn′ n. According to Cn′ nC calculated by the formula (20)b n′Calculating a transformation matrix C between the carrier coordinate system b and the real geographic coordinate system nb nThen from Cb nCalculating a heading angle * for the second location2Angle of pitch theta2And roll angle γ2This is taken as the initial attitude of the SINS. The specific calculation steps are as follows:
(1) calculating a transformation matrix C between a real geographic coordinate system n and a calculated geographic coordinate system nn n′
<math> <mrow> <msubsup> <mi>C</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mi>n</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>U</mi> </msub> </mtd> <mtd> <msub> <mi>&phi;</mi> <mi>N</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&phi;</mi> <mi>U</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>E</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>&phi;</mi> <mi>N</mi> </msub> </mtd> <mtd> <msub> <mi>&phi;</mi> <mi>E</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
(2) Calculating a transformation matrix C between the carrier coordinate system b and the real geographic coordinate system nb n
<math> <mrow> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mo>=</mo> <msubsup> <mi>C</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mi>n</mi> </msubsup> <msubsup> <mi>C</mi> <mi>b</mi> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> </msubsup> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
(3) Calculate heading angle *2Angle of pitch theta2And roll angle γ2
Heading angle *2Angle of pitch theta2And roll angleγ2As shown in fig. 2a, 2b and 2 c.
C calculated from the formula (22)b nIs marked as
C b n = T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 . . . ( 23 )
And because of
Figure A20061011252600152
Thus, from equations (23) and (24), heading angle * may be determined2Angle of pitch theta2And roll angle γ2Principal value of, i.e.
Figure A20061011252600153
If the heading angle *2Angle of pitch theta2And roll angle γ2Are respectively defined as [0, 2 pi ]]、
Figure A20061011252600156
[-π,+π]. Then *2、θ2And gamma2The true value of (c) can be determined by:
Figure A20061011252600158
θ2=θ2 main (26)
* determined by formula (26)2、θ2And gamma2Namely the course angle, the pitch angle and the roll angle of the SINS at the second position, and the course angle, the pitch angle and the roll angle are used as the initial attitude of the SINS entering the navigation working state.

Claims (1)

1. A strap-down inertial navigation system initial attitude determination method is characterized by comprising the following steps:
(1) after the SINS preheating preparation is finished, keeping the SINS at an initial position, namely a first position, standing still, and collecting gyroscope output and accelerometer output;
(2) calculating a heading angle * for the first location based on the relationship of the accelerometer output to gravitational acceleration and the relationship of the gyroscope output to the angular rate of rotation of the earth1Angle of pitch theta1And roll angle γ1
(3) Rotating the SINS from a first position to any position around a spatial three-dimensional arbitrary axis, wherein the position is called a second position, keeping the SINS still at the second position, and collecting gyroscope output and accelerometer output;
(4) using kalman filtering technique, *1、θ1And gamma1Processing data output by the gyroscope and the accelerometer on two positions as initial parameters, and calculating an error angle between a geographic coordinate system n' and a real geographic coordinate system n when estimating a second position, which is referred to as a misalignment angle phi for shortx、φyAnd phizGyroscope constant drift and accelerometer constant bias;
(5) phi estimated using Kalman filteringx、φyAnd phi z calculating a transformation matrix C between the real geographic coordinate system n and the calculated geographic coordinate system nn' nAccording to the angular increment or angular speed information output by the gyroscope, a quaternion method is adopted to calculate a conversion matrix C between a carrier coordinate system b and a geographical coordinate system nb n′Then from Cb nCalculating a heading angle * for the second location2Angle of pitch theta2And roll angle γ2This is taken as the initial attitude of the SINS.
CNB2006101125264A 2006-08-23 2006-08-23 Method for determining initial status of strapdown inertial navigation system Expired - Fee Related CN100516775C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101125264A CN100516775C (en) 2006-08-23 2006-08-23 Method for determining initial status of strapdown inertial navigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101125264A CN100516775C (en) 2006-08-23 2006-08-23 Method for determining initial status of strapdown inertial navigation system

Publications (2)

Publication Number Publication Date
CN1908584A true CN1908584A (en) 2007-02-07
CN100516775C CN100516775C (en) 2009-07-22

Family

ID=37699758

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101125264A Expired - Fee Related CN100516775C (en) 2006-08-23 2006-08-23 Method for determining initial status of strapdown inertial navigation system

Country Status (1)

Country Link
CN (1) CN100516775C (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983304A2 (en) * 2007-04-16 2008-10-22 Honeywell International Inc. Heading stabilization for aided inertial navigation systems
CN101256080B (en) * 2008-04-09 2010-06-23 南京航空航天大学 Midair aligning method for satellite/inertia combined navigation system
CN101270993B (en) * 2007-12-12 2011-08-31 北京航空航天大学 Remote high-precision independent combined navigation locating method
CN101561292B (en) * 2009-05-12 2011-11-16 北京航空航天大学 Method and device for calibrating size effect error of accelerometer
CN102486377A (en) * 2009-11-17 2012-06-06 哈尔滨工程大学 Method for acquiring initial course attitude of fiber optic gyro strapdown inertial navigation system
CN102564421A (en) * 2012-02-09 2012-07-11 北京机械设备研究所 Method for prolonging service life of inertia measurement unit
CN102589546A (en) * 2012-03-02 2012-07-18 北京航空航天大学 Optical-fiber strap-down inertial measurement unit reciprocating-type two-position north finding method for inhibiting slope error influence of devices
CN102865881A (en) * 2012-03-06 2013-01-09 武汉大学 Quick calibration method for inertial measurement unit
CN102933937A (en) * 2010-06-10 2013-02-13 高通股份有限公司 Use of inertial sensor data to improve mobile station positioning
CN102937450A (en) * 2012-10-31 2013-02-20 北京控制工程研究所 Relative attitude determining method based on gyroscope metrical information
CN103822633A (en) * 2014-02-11 2014-05-28 哈尔滨工程大学 Low-cost attitude estimation method based on second-order measurement update
EP2239539A3 (en) * 2009-04-06 2014-09-03 Honeywell International Inc. Technique to improve navigation performance through carouselling
CN104919277A (en) * 2012-12-20 2015-09-16 大陆-特韦斯贸易合伙股份公司及两合公司 Method for determining initial data for determining position data of a vehicle
CN106123921A (en) * 2016-07-10 2016-11-16 北京工业大学 Latitude the unknown Alignment Method of SINS under the conditions of dynamic disturbance
CN103954298B (en) * 2014-04-18 2017-03-01 中国人民解放军国防科学技术大学 Microthrust test g sensitivity error compensating method in a kind of GNSS and MIMU integrated navigation
CN109163721A (en) * 2018-09-18 2019-01-08 河北美泰电子科技有限公司 Attitude measurement method and terminal device
CN110006456A (en) * 2019-04-24 2019-07-12 北京星网宇达科技股份有限公司 A kind of detection vehicle alignment methods, device and equipment
CN110095115A (en) * 2019-06-04 2019-08-06 中国科学院合肥物质科学研究院 A kind of carrier navigation attitude measurement method updated based on Geomagnetism Information
CN112665610A (en) * 2019-10-15 2021-04-16 哈尔滨工程大学 External measurement information compensation method for SINS/DVL integrated navigation system
CN112747770A (en) * 2020-12-16 2021-05-04 中国船舶重工集团有限公司第七一0研究所 Speed measurement-based initial alignment method in carrier maneuvering

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900572B (en) * 2010-07-09 2012-01-04 哈尔滨工程大学 Rapid measuring method for installation error of strapdown inertial system gyroscope based on three-axle rotary table

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983304A2 (en) * 2007-04-16 2008-10-22 Honeywell International Inc. Heading stabilization for aided inertial navigation systems
EP1983304A3 (en) * 2007-04-16 2014-08-27 Honeywell International Inc. Heading stabilization for aided inertial navigation systems
CN101270993B (en) * 2007-12-12 2011-08-31 北京航空航天大学 Remote high-precision independent combined navigation locating method
CN101256080B (en) * 2008-04-09 2010-06-23 南京航空航天大学 Midair aligning method for satellite/inertia combined navigation system
EP2239539A3 (en) * 2009-04-06 2014-09-03 Honeywell International Inc. Technique to improve navigation performance through carouselling
US9599474B2 (en) 2009-04-06 2017-03-21 Honeywell International Inc. Technique to improve navigation performance through carouselling
CN101561292B (en) * 2009-05-12 2011-11-16 北京航空航天大学 Method and device for calibrating size effect error of accelerometer
CN102486377B (en) * 2009-11-17 2014-10-22 哈尔滨工程大学 Method for acquiring initial course attitude of fiber optic gyro strapdown inertial navigation system
CN102486377A (en) * 2009-11-17 2012-06-06 哈尔滨工程大学 Method for acquiring initial course attitude of fiber optic gyro strapdown inertial navigation system
CN102933937A (en) * 2010-06-10 2013-02-13 高通股份有限公司 Use of inertial sensor data to improve mobile station positioning
CN102564421A (en) * 2012-02-09 2012-07-11 北京机械设备研究所 Method for prolonging service life of inertia measurement unit
CN102589546A (en) * 2012-03-02 2012-07-18 北京航空航天大学 Optical-fiber strap-down inertial measurement unit reciprocating-type two-position north finding method for inhibiting slope error influence of devices
CN102589546B (en) * 2012-03-02 2014-09-03 北京航空航天大学 Optical-fiber strap-down inertial measurement unit reciprocating-type two-position north finding method for inhibiting slope error influence of devices
CN102865881A (en) * 2012-03-06 2013-01-09 武汉大学 Quick calibration method for inertial measurement unit
CN102865881B (en) * 2012-03-06 2014-12-31 武汉大学 Quick calibration method for inertial measurement unit
WO2013131471A1 (en) * 2012-03-06 2013-09-12 武汉大学 Quick calibration method for inertial measurement unit
CN102937450A (en) * 2012-10-31 2013-02-20 北京控制工程研究所 Relative attitude determining method based on gyroscope metrical information
CN102937450B (en) * 2012-10-31 2015-11-25 北京控制工程研究所 A kind of relative attitude defining method based on gyro to measure information
CN104919277A (en) * 2012-12-20 2015-09-16 大陆-特韦斯贸易合伙股份公司及两合公司 Method for determining initial data for determining position data of a vehicle
CN103822633B (en) * 2014-02-11 2016-12-07 哈尔滨工程大学 A kind of low cost Attitude estimation method measuring renewal based on second order
CN103822633A (en) * 2014-02-11 2014-05-28 哈尔滨工程大学 Low-cost attitude estimation method based on second-order measurement update
CN103954298B (en) * 2014-04-18 2017-03-01 中国人民解放军国防科学技术大学 Microthrust test g sensitivity error compensating method in a kind of GNSS and MIMU integrated navigation
CN106123921B (en) * 2016-07-10 2019-05-24 北京工业大学 The unknown Alignment Method of the latitude of Strapdown Inertial Navigation System under the conditions of dynamic disturbance
CN106123921A (en) * 2016-07-10 2016-11-16 北京工业大学 Latitude the unknown Alignment Method of SINS under the conditions of dynamic disturbance
CN109163721A (en) * 2018-09-18 2019-01-08 河北美泰电子科技有限公司 Attitude measurement method and terminal device
CN110006456A (en) * 2019-04-24 2019-07-12 北京星网宇达科技股份有限公司 A kind of detection vehicle alignment methods, device and equipment
CN110006456B (en) * 2019-04-24 2021-05-14 北京星网宇达科技股份有限公司 Method, device and equipment for detecting alignment of vehicle
CN110095115A (en) * 2019-06-04 2019-08-06 中国科学院合肥物质科学研究院 A kind of carrier navigation attitude measurement method updated based on Geomagnetism Information
CN110095115B (en) * 2019-06-04 2020-12-25 中国科学院合肥物质科学研究院 Carrier attitude and heading measurement method based on geomagnetic information update
CN112665610A (en) * 2019-10-15 2021-04-16 哈尔滨工程大学 External measurement information compensation method for SINS/DVL integrated navigation system
CN112747770A (en) * 2020-12-16 2021-05-04 中国船舶重工集团有限公司第七一0研究所 Speed measurement-based initial alignment method in carrier maneuvering

Also Published As

Publication number Publication date
CN100516775C (en) 2009-07-22

Similar Documents

Publication Publication Date Title
CN1908584A (en) Method for determining initial status of strapdown inertial navigation system
CN108318052B (en) Hybrid platform inertial navigation system calibration method based on double-shaft continuous rotation
CN106959110B (en) Cloud deck attitude detection method and device
CN1314946C (en) Mixed calibration method for inertial measurement unit capable of eliminating gyro constant drift
CN108051866B (en) Based on strap down inertial navigation/GPS combination subsidiary level angular movement isolation Gravimetric Method
CN1821721A (en) Precise decoupling detecting method for gyroscope scale factor and input shaft default angle
CN106679657B (en) A kind of motion carrier navigation locating method and device
CN101029902A (en) Non-oriented multi-position and high-precision calibrating method for inertial measuring unit
CN109211269B (en) Attitude angle error calibration method for double-shaft rotary inertial navigation system
CN1270162C (en) Attitude estimation in tiltable body using modified quaternion data representation
CN103196448B (en) A kind of airborne distributed inertia surveys appearance system and Transfer Alignment thereof
CN105806363B (en) The underwater large misalignment angle alignment methods of SINS/DVL based on SRQKF
CN109443385B (en) Inertial navigation installation error automatic calibration method of communication-in-moving antenna
CN102052921B (en) Method for determining initial heading of single-axis rotating strapdown inertial navigation system
CN1837848A (en) Calibration method for ultra-short baseline acoustic positioning system
JP2012173190A (en) Positioning system and positioning method
CN103697911A (en) Initial attitude determination method for strapdown inertial navigation system under circumstance of unknown latitude
CN101067628A (en) Vector correcting method for non-gyro accelerometer array mounting error
JP2004239643A (en) Hybrid navigator
CN107525492B (en) Drift angle simulation analysis method suitable for agile earth observation satellite
CN106940193A (en) A kind of ship self adaptation based on Kalman filter waves scaling method
CN112197765B (en) Method for realizing fine navigation of underwater robot
CN114964222A (en) Vehicle-mounted IMU attitude initialization method, and mounting angle estimation method and device
CN104776847B (en) A kind of method that gyroscopic drift is estimated suitable for underwater navigation system single-point
CN104482941A (en) Systematic compensation method of fixed-precision navigation of ship optical inertial navigation system when in long voyage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090722

CF01 Termination of patent right due to non-payment of annual fee