CN1898455A - 井中的井下流量测量 - Google Patents

井中的井下流量测量 Download PDF

Info

Publication number
CN1898455A
CN1898455A CNA2004800386976A CN200480038697A CN1898455A CN 1898455 A CN1898455 A CN 1898455A CN A2004800386976 A CNA2004800386976 A CN A2004800386976A CN 200480038697 A CN200480038697 A CN 200480038697A CN 1898455 A CN1898455 A CN 1898455A
Authority
CN
China
Prior art keywords
well
fluid
along
inflow region
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800386976A
Other languages
English (en)
Inventor
A·M·范德斯佩克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1898455A publication Critical patent/CN1898455A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7084Measuring the time taken to traverse a fixed distance using thermal detecting arrangements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/103Locating fluid leaks, intrusions or movements using thermal measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/6884Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element making use of temperature dependence of optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种用于在井中的井下流量测量的方法,该方法包括:将光纤分布温度传感器(DTS)系统沿着井的流入区域长度的至少一部分安装;用传感器测量从地层流入井中的流体的温度波动和所述自然波动沿着下游方向流过井的速度。所测量的温度变化可为在0.1-0.5摄氏度之间的低频温度波动,该温度波动在井的流入区域的下游逐渐消失。

Description

井中的井下流量测量 
技术领域
本发明涉及一种用于井中的井下流量测量的方法。
从国际专利申请WO01/75403中已知这样一种方法,在已知的方法中,通过将氮注入井中和使氮在所选定的井下冷却站(stations)处膨胀而在井管中形成一个或多个低温点(cold spots)。
纤维光缆(fibre optical cable)沿纵向延伸通过井,并被构造成为分布的温度传感器(”DTS”),其中通过光缆传输一个和多个光脉冲,并且基于在反向散射的光信号中的拉曼峰值(Raman peak)的强度确定沿光缆长度的温度图形(temperature pattern)。在DTS系统中,利用反向散射信号的行程时间,以类似于雷达系统操作的方式确定反向散射信号的位置。
在已知方法中,DTS系统测量施加于每个冷却站处的低温点沿下游方向迁移通过生产管的速度。
已知方法的缺点在于在井中安装一个和多个冷却站以及氮或其它冷却流体供应管路是昂贵的,而且安装的这些设施是易碎的,由此容易损坏。
本发明的一个目的在于提供一种在井中的井下流量测量方法,其不需要在井下安装一个或多个冷却站和易碎的冷却流体供应管路。
本发明的另一个目的在于提供一种方法,用于测量沿着流入区域的至少一部分流入井中的流体流入量,流体从周围地层沿着该流入区域流入井中。
发明内容
根据本发明、用于井下流量测量的方法包括:将光纤分布温度传感器(DTS)系统沿着井的流入区域长度的至少一部分安装;使用该传感器测量从地层流入井中的流体的温度的一个或多个波动以及所述自然波动中的至少一个沿下游方向迁移通过井的速度。
令人惊讶地发现,流入井中的流体的温度存在波动,所述波动在产出的流体到达井口之前大致消失。所述温度波动通常很小,并且可能小于1摄氏度。
因此,优选的是,DTS系统被构造为追踪该向下流动具有小于1摄氏度、通常在0.1-0.5摄氏度之间的低频温度波动的通过井的向下游的迁移。
另外,优选的是,DTS系统沿着井的流入区域长度的至少相当部分延伸,并且该方法用来以所测量到的在纵向上的沿所述流入区域的长度的至少一部分上的流体速度的变化为基础,评估在沿着流入区域长度的不同位置处的流体流入流量。沿DTS测量间隔的沿下游方向的流体的固定流量通常表明没有流体流入测量间隔,而沿DTS测量间隔的沿下游方向的增加的流量通常表明沿DTS测量间隔的长度流体从地层流入并中。
根据本发明的方法可用于测量在烃类流体生产井中的井下流体流量和流入流量。
流入井中的流体可包括气态组分例如天然气和/或在流入区域中至少部分蒸发的组分。在这样的情况下,井的流体产量随着时间而周期性变化,以形成由气态和/或蒸发流体的膨胀和/或蒸发速度的变化引起的温度波动。在这样的情况下,可通过生产阻流或井下阀的打开的周期性变化或通过在井中或在井口下游的处理设备和/或生产流动管路中产生段塞流状态而使井的流体产量周期性变化。
在所附权利要求和摘要中对根据本发明的流量测量方法的这些和其它的特征、实施例和优点进行说明。

Claims (7)

1.一种用于在井中的井下流量测量的方法,该方法包括:将光纤分布温度传感器(DTS)系统沿着所述井的流入区域的长度的至少一部分安装;使用所述传感器测量从地层流入所述井中的流体的温度的一个或多个波动和所述自然波动中的至少一个沿着下游方向迁移通过所述井的速度。
2.根据权利要求1所述的方法,其特征在于,所述DTS系统被构造成追踪小于1摄氏度的低频温度波动的、通过所述井的下游迁移。
3.根据权利要求2所述的方法,其特征在于,所述DTS系统被构造成追踪在0.1-0.5摄氏度之间的自然低频温度变化的、通过所述井的下游迁移。
4.根据权利要求1所述的方法,其特征在于,所述DTS系统沿着所述井的流入区域的长度的至少相当部分延伸,并且所述方法用来以所测得的在纵向上的沿所述流入区域的长度的至少一部分上的所述流体的速度的变化为基础,评估在沿着所述流入区域的长度的不同位置处的所述流体流入流量。
5.根据上述权利要求任一项所述的方法,其特征在于,所述井为烃类流体生产井。
6.根据上述权利要求任一项所述的方法,其特征在于,流入所述井的所述流体包括气态组分和/或在所述流入区域中至少部分蒸发的组分,所述井的所述流体产量随着时间而周期性变化。
7.根据权利要求6所述的方法,其特征在于,通过生产阻流或井下阀的打开的周期性变化或通过在所述井中或在井口下游的处理设备和/或生产流动管路中产生段塞流状态来周期性改变所述井的所述流体产量。
CNA2004800386976A 2003-12-24 2004-12-22 井中的井下流量测量 Pending CN1898455A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03104971.1 2003-12-24
EP03104971 2003-12-24

Publications (1)

Publication Number Publication Date
CN1898455A true CN1898455A (zh) 2007-01-17

Family

ID=34717256

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800386976A Pending CN1898455A (zh) 2003-12-24 2004-12-22 井中的井下流量测量

Country Status (7)

Country Link
US (1) US20070283751A1 (zh)
CN (1) CN1898455A (zh)
AU (1) AU2004309117B2 (zh)
BR (1) BRPI0418076A (zh)
CA (1) CA2551282A1 (zh)
GB (1) GB2426047B (zh)
WO (1) WO2005064116A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338668B (zh) * 2008-08-29 2012-02-22 北京豪仪测控工程有限公司 测定钻井液溢漏的方法及系统
CN102124185B (zh) * 2007-12-07 2014-01-29 兰德马克绘图国际公司,哈里伯顿公司 使用基于单元的流动模拟结果计算流线轨迹的系统和方法
CN105658903A (zh) * 2013-09-17 2016-06-08 马士基橄榄和气体公司 用于确定裸眼完井中的流量分布的系统和方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416871A (en) 2004-07-29 2006-02-08 Schlumberger Holdings Well characterisation using distributed temperature sensor data
US8056619B2 (en) 2006-03-30 2011-11-15 Schlumberger Technology Corporation Aligning inductive couplers in a well
US7793718B2 (en) 2006-03-30 2010-09-14 Schlumberger Technology Corporation Communicating electrical energy with an electrical device in a well
US8121790B2 (en) 2007-11-27 2012-02-21 Schlumberger Technology Corporation Combining reservoir modeling with downhole sensors and inductive coupling
US8839850B2 (en) 2009-10-07 2014-09-23 Schlumberger Technology Corporation Active integrated completion installation system and method
US8783355B2 (en) 2010-02-22 2014-07-22 Schlumberger Technology Corporation Virtual flowmeter for a well
GB201008823D0 (en) 2010-05-26 2010-07-14 Fotech Solutions Ltd Fluid flow monitor
US8930143B2 (en) * 2010-07-14 2015-01-06 Halliburton Energy Services, Inc. Resolution enhancement for subterranean well distributed optical measurements
US8584519B2 (en) 2010-07-19 2013-11-19 Halliburton Energy Services, Inc. Communication through an enclosure of a line
US8985200B2 (en) 2010-12-17 2015-03-24 Halliburton Energy Services, Inc. Sensing shock during well perforating
US9091152B2 (en) 2011-08-31 2015-07-28 Halliburton Energy Services, Inc. Perforating gun with internal shock mitigation
US9249559B2 (en) 2011-10-04 2016-02-02 Schlumberger Technology Corporation Providing equipment in lateral branches of a well
US9644476B2 (en) 2012-01-23 2017-05-09 Schlumberger Technology Corporation Structures having cavities containing coupler portions
US9175560B2 (en) 2012-01-26 2015-11-03 Schlumberger Technology Corporation Providing coupler portions along a structure
US9938823B2 (en) 2012-02-15 2018-04-10 Schlumberger Technology Corporation Communicating power and data to a component in a well
US9297228B2 (en) 2012-04-03 2016-03-29 Halliburton Energy Services, Inc. Shock attenuator for gun system
US10036234B2 (en) 2012-06-08 2018-07-31 Schlumberger Technology Corporation Lateral wellbore completion apparatus and method
MX356089B (es) 2012-09-19 2018-05-14 Halliburton Energy Services Inc Sistema y métodos de administración de propagación de energía de la sarta de pistolas de perforación.
WO2014046655A1 (en) 2012-09-19 2014-03-27 Halliburton Energy Services, Inc. Perforation gun string energy propagation management with tuned mass damper
US8978817B2 (en) 2012-12-01 2015-03-17 Halliburton Energy Services, Inc. Protection of electronic devices used with perforating guns
GB2580445A (en) * 2019-05-28 2020-07-22 Equinor Energy As Flow rate determination

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69914462T2 (de) * 1998-03-06 2004-07-01 Shell Internationale Research Maatschappij B.V. Zuflussermittlungsvorrichtung und system zum durchführung
EP1109990A1 (en) * 1998-08-25 2001-06-27 Baker Hughes Incorporated Method of using a heater with a fiber optic string in a wellbore
GB9916022D0 (en) * 1999-07-09 1999-09-08 Sensor Highway Ltd Method and apparatus for determining flow rates
GB0007587D0 (en) * 2000-03-30 2000-05-17 Sensor Highway Ltd Flow-rate measurement
US20030234921A1 (en) * 2002-06-21 2003-12-25 Tsutomu Yamate Method for measuring and calibrating measurements using optical fiber distributed sensor
US7255173B2 (en) * 2002-11-05 2007-08-14 Weatherford/Lamb, Inc. Instrumentation for a downhole deployment valve
US6997256B2 (en) * 2002-12-17 2006-02-14 Sensor Highway Limited Use of fiber optics in deviated flows
US6994162B2 (en) * 2003-01-21 2006-02-07 Weatherford/Lamb, Inc. Linear displacement measurement method and apparatus
WO2004085795A1 (en) * 2003-03-28 2004-10-07 Sensor Highway Limited Method to measure injector inflow profiles
GB2401430B (en) * 2003-04-23 2005-09-21 Sensor Highway Ltd Fluid flow measurement
GB0407982D0 (en) * 2004-04-08 2004-05-12 Wood Group Logging Services In "Methods of monitoring downhole conditions"
GB2416394B (en) * 2004-07-17 2006-11-22 Sensor Highway Ltd Method and apparatus for measuring fluid properties

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102124185B (zh) * 2007-12-07 2014-01-29 兰德马克绘图国际公司,哈里伯顿公司 使用基于单元的流动模拟结果计算流线轨迹的系统和方法
CN101338668B (zh) * 2008-08-29 2012-02-22 北京豪仪测控工程有限公司 测定钻井液溢漏的方法及系统
CN105658903A (zh) * 2013-09-17 2016-06-08 马士基橄榄和气体公司 用于确定裸眼完井中的流量分布的系统和方法
US10260333B2 (en) 2013-09-17 2019-04-16 Total E&P Danmark A/S System and a method for determining inflow distribution in an openhole completed well
CN105658903B (zh) * 2013-09-17 2020-02-07 马士基橄榄和气体公司 用于确定裸眼完井中的流量分布的系统和方法

Also Published As

Publication number Publication date
AU2004309117B2 (en) 2007-09-13
AU2004309117A1 (en) 2005-07-14
WO2005064116A1 (en) 2005-07-14
GB0612514D0 (en) 2006-08-16
GB2426047B (en) 2007-07-25
GB2426047A (en) 2006-11-15
CA2551282A1 (en) 2005-07-14
BRPI0418076A (pt) 2007-04-17
US20070283751A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
CN1898455A (zh) 井中的井下流量测量
CA2378564C (en) Method and apparatus for determining flow rates
US20060065393A1 (en) Use of fiber optics in deviated flows
US7610960B2 (en) Depth correlation device for fiber optic line
US7424366B2 (en) Time-of-flight stochastic correlation measurements
GB2496863A (en) Distributed two dimensional fluid sensor
US20130091942A1 (en) Downhole monitoring with distributed acoustic/vibration, strain and/or density sensing
US20050224229A1 (en) Methods of monitoring downhole conditions
EP2577235A1 (en) Fluid flow monitor
BRPI0418100A (pt) métodos para determinar um perfil de afluxo de fluìdo ao longo de uma região de afluxo permeável de um furo de poço subterráneo e de produzir óleo bruto de uma formação subterránea, e, aquecedor e sistema de sensoriamento de temperatura distribuìda
BRPI0618659B1 (pt) Method for monitoring fluid properties with a distributed sensor in a well hole
US8146656B2 (en) Method to measure injector inflow profiles
US10392882B2 (en) Flow monitoring using distributed strain measurement
US20160376888A1 (en) Multiphase Thermal Flowmeter for Stratified Flow
CA2519066C (en) Method to measure injector inflow profiles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication