CN1892420B - Mask for continuous lateral solidification technology and method for forming polycrystalline silicon layer by using same - Google Patents
Mask for continuous lateral solidification technology and method for forming polycrystalline silicon layer by using same Download PDFInfo
- Publication number
- CN1892420B CN1892420B CN200510082849A CN200510082849A CN1892420B CN 1892420 B CN1892420 B CN 1892420B CN 200510082849 A CN200510082849 A CN 200510082849A CN 200510082849 A CN200510082849 A CN 200510082849A CN 1892420 B CN1892420 B CN 1892420B
- Authority
- CN
- China
- Prior art keywords
- area
- mask
- region
- polysilicon
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims abstract description 61
- 238000005516 engineering process Methods 0.000 title claims abstract description 14
- 238000007711 solidification Methods 0.000 title claims abstract description 13
- 230000008023 solidification Effects 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims description 26
- 229920005591 polysilicon Polymers 0.000 claims abstract description 53
- 230000002093 peripheral effect Effects 0.000 claims abstract description 17
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 24
- 239000013078 crystal Substances 0.000 claims description 13
- 238000005499 laser crystallization Methods 0.000 claims description 9
- 238000002425 crystallisation Methods 0.000 abstract description 4
- 230000008025 crystallization Effects 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 20
- 239000010409 thin film Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 13
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Landscapes
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种多晶硅薄膜工艺中使用的掩膜,特别涉及一种连续横向固化技术产生一结晶边界分散的多晶硅薄膜的掩膜,具体的讲是一种掩膜及其形成的多晶硅。The invention relates to a mask used in polysilicon thin film technology, in particular to a mask for producing a polysilicon thin film with dispersed crystal boundaries by continuous lateral solidification technology, specifically a mask and the formed polysilicon.
背景技术Background technique
薄膜晶体管(Thin Film Transistor;TFT)已广泛应用在主动式液晶显示器上,其中薄膜晶体管使用的材料通常有非晶硅(amorphous-silicon)与多晶硅(poly-silicon)两种类型。Thin Film Transistor (TFT) has been widely used in active liquid crystal displays, and the materials used in thin film transistors generally include amorphous silicon (amorphous-silicon) and polysilicon (poly-silicon).
在液晶显示器制造中,多晶硅材料具有许多优于非晶硅材料的特性。如,多晶硅具有较大的晶粒(grain),电子在多晶硅中容易自由移动,因此多晶硅的电子迁移率(mobility)高于非晶硅。以多晶硅制作的多晶硅薄膜晶体管的反应时间快于非晶硅薄膜晶体管。在相同分辨率的液晶显示器中,使用多晶硅薄膜晶体管(poly-Si TFT)占用的基板面积小于使用非晶硅薄膜晶体管占用的基板面积,提高了液晶面板的开口率。在相同的亮度下,使用多晶硅薄膜晶体管的液晶显示器(poly-Si TFT LCD)可以使用低瓦数的背光源,达到低耗电量的要求。In the manufacture of liquid crystal displays, polycrystalline silicon materials have many characteristics superior to amorphous silicon materials. For example, polysilicon has larger grains, and electrons are easy to move freely in polysilicon, so the electron mobility (mobility) of polysilicon is higher than that of amorphous silicon. The response time of polysilicon thin film transistors made of polysilicon is faster than that of amorphous silicon thin film transistors. In a liquid crystal display with the same resolution, the substrate area occupied by the polysilicon thin film transistor (poly-Si TFT) is smaller than that occupied by the amorphous silicon thin film transistor, which improves the aperture ratio of the liquid crystal panel. Under the same brightness, a liquid crystal display (poly-Si TFT LCD) using polysilicon thin film transistors can use a low-wattage backlight source to meet the requirements of low power consumption.
目前,大多使用低温多晶硅工艺(Low Temperature Poly-Silicon;LTPS)在基板上制作多晶硅薄膜,低温多晶硅工艺是以准分子激光(Excimer Laser)作为热源。当激光光照射(irradiate)在具有非晶硅薄膜的基板上,非晶硅薄膜吸收准分子激光的能量而转变成多晶硅薄膜。At present, most of the low temperature polysilicon (Low Temperature Poly-Silicon; LTPS) processes are used to produce polysilicon thin films on substrates. The low temperature polysilicon process uses an excimer laser (Excimer Laser) as a heat source. When laser light is irradiated on a substrate with an amorphous silicon film, the amorphous silicon film absorbs the energy of the excimer laser and transforms into a polysilicon film.
连续横向固化(Sequential Lateral Solidification;SLS)技术为一种利用准分子激光退火开发出的多晶硅形成技术。使用激光通过掩膜产生特定形状的激光,第一道激光结晶出横向成长的晶粒后,第二道激光照射与第一道结晶区域的一部份区域重叠,通过照射非晶硅区域,第二道激光照射区域的硅薄膜开始熔融后会以第一道结晶多晶硅薄膜为晶种成长出长柱状的结晶颗粒。Sequential Lateral Solidification (SLS) technology is a polysilicon formation technology developed using excimer laser annealing. Use a laser to generate a laser with a specific shape through a mask. After the first laser crystallizes the laterally grown grains, the second laser irradiation overlaps with a part of the first crystallization area. By irradiating the amorphous silicon area, the second After the silicon film in the area irradiated by the second laser beam starts to melt, long columnar crystal grains will grow out of the first crystalline polysilicon film as a seed crystal.
图1A所示为一使用连续横向固化方法制造多晶硅薄膜的侧剖视简图。如图1A所示,一非晶硅薄膜11通过化学气相沉积(CVD)或溅镀法(sputtering)形成在一基板10上,一掩膜2设置于非晶硅薄膜11的上方。如图1B所示,掩膜2包含多个长条状透光区21及多个长条状遮光区22,。一激光光源会依平行于透光区21及遮光区22长条行图案短轴的方向平行步进对进行扫描,以在非晶硅薄膜11上步进照射不同的区域以逐步得到横向生长的多晶硅图案。FIG. 1A is a schematic side sectional view of a polysilicon thin film fabricated using a continuous lateral solidification method. As shown in FIG. 1A , an amorphous silicon film 11 is formed on a substrate 10 by chemical vapor deposition (CVD) or sputtering, and a mask 2 is disposed above the amorphous silicon film 11 . As shown in FIG. 1B , the mask 2 includes a plurality of elongated light-transmitting
图1C所示为透过掩膜2所得到的多晶硅图案结构示意图。由掩膜2得到的多晶硅得到的晶粒边界111(grain boundary)垂直于晶粒成长的方向。根据实验结果显示:薄膜晶体管的信道在与晶粒成长方向平行时可有较优良的电性表现,反之,若晶体管的信道在与晶粒成长方向垂直,其电性则较差。因此,面板上的薄膜晶体管信道往往都必须按单一方向排列,这对于电路设计有许多的不便。FIG. 1C is a schematic diagram of the structure of the polysilicon pattern obtained through the mask 2 . The grain boundary 111 (grain boundary) obtained from the polysilicon obtained by the mask 2 is perpendicular to the direction of grain growth. According to the experimental results, it is shown that when the channel of the thin film transistor is parallel to the grain growth direction, the electrical performance is better. On the contrary, if the channel of the transistor is perpendicular to the grain growth direction, the electrical performance is poor. Therefore, the thin film transistor channels on the panel must be arranged in a single direction, which is very inconvenient for circuit design.
因此,如何解决SLS工艺过程中遇到的结晶方向影响的电路布线设计的问题是为相关从业人员的努力方向之一.Therefore, how to solve the problem of circuit layout design affected by the crystallization direction encountered in the SLS process is one of the efforts of relevant practitioners.
发明内容Contents of the invention
本发明的目的在于提供一种多晶硅薄膜掩膜,以应用于连续横向固化技术,以产生一结晶边界分散的多晶硅薄膜。The purpose of the present invention is to provide a polysilicon thin film mask, which can be applied to the continuous lateral solidification technology to produce a polysilicon thin film with dispersed crystal boundaries.
本发明的另一目的在于提供一种应用于连续横向固化技术的掩膜,以制作出具有至少两种晶粒方向的多晶硅图案。Another object of the present invention is to provide a mask applied to the continuous lateral solidification technique to produce polysilicon patterns with at least two grain orientations.
本发明提供了一种应用于连续横向固化技术的掩膜,用以产生一结晶边界分散的多晶硅薄膜。本发明的掩膜至少包含:一第一区域、一第二区域及一第三区域。其中第一区域及第三区域透光,第二区域遮光。第一区域围绕在第二区域的周围,且第一区域以及第二区域具有基本上相同的外围形状。第三区域与第一区域具有相同的外围形状,且与第一区域与第二区域按一预定方向平行配置。The invention provides a mask applied to the continuous lateral solidification technique to produce a polysilicon film with dispersed crystal boundaries. The mask of the present invention at least includes: a first area, a second area and a third area. Wherein the first area and the third area are light-transmitting, and the second area is light-shielding. The first area surrounds the second area, and the first area and the second area have substantially the same peripheral shape. The third area has the same peripheral shape as the first area, and is arranged parallel to the first area and the second area in a predetermined direction.
本发明还提供了一种应用掩膜形成一多晶硅层的方法,其特征在于,包含:The present invention also provides a method for forming a polysilicon layer using a mask, characterized in that it comprises:
一第一次雷射结晶工艺,提供一激光束透过所述的掩膜扫描一非晶硅薄膜;改变所述的掩膜与所述的激光束扫描方向的相对位置;以及一第二次雷射结晶工艺,提供一激光束透过所述的掩膜扫描所述的非晶硅薄膜;其中,所述的激光第二次照射在所述的非晶硅薄膜的照射区域时,是沿所述的掩膜的所述的第一区域向所述的第三区域的方向移动。A laser crystallization process for the first time, providing a laser beam to scan an amorphous silicon film through the mask; changing the relative position of the mask and the scanning direction of the laser beam; and a second The laser crystallization process provides a laser beam to scan the amorphous silicon film through the mask; wherein, when the laser is irradiated on the irradiation area of the amorphous silicon film for the second time, it is along the The first region of the mask moves toward the third region.
综上所述,本发明揭露的应用SLS技术中的掩膜是利用掩膜上的图案图形互补的概念,设计出可产生至少两种晶粒方向的多晶硅图案,并且通过控制掩膜上的多个遮光区及透光区图案面积大小,以得到完美的晶粒边界。In summary, the mask in the application of SLS technology disclosed by the present invention utilizes the concept of complementarity of patterns on the mask to design polysilicon patterns that can produce at least two grain directions, and by controlling the multi-silicon pattern on the mask The size of the pattern area of the light-shielding area and the light-transmitting area to obtain a perfect grain boundary.
附图说明Description of drawings
图1A为一使用连续横向固化方法制造多晶硅薄膜的侧剖视简图;FIG. 1A is a schematic side sectional view of a polysilicon thin film manufactured using a continuous lateral solidification method;
图1B为图1A中所使用的掩膜正面示意图;FIG. 1B is a schematic front view of the mask used in FIG. 1A;
图1C为通过图1B中的掩膜得到的多晶硅图案结构示意图;FIG. 1C is a schematic diagram of the polysilicon pattern structure obtained through the mask in FIG. 1B;
图2为本发明的一较佳实施例的掩膜俯视示意图;FIG. 2 is a schematic top view of a mask according to a preferred embodiment of the present invention;
图3为应用本发明揭露的掩膜在SLS技术中形成一多晶硅层的流程示意图;3 is a schematic flow chart of forming a polysilicon layer in SLS technology using the mask disclosed by the present invention;
图4A~图4B为图2中掩膜形成的多晶硅图案示意图;4A to 4B are schematic diagrams of polysilicon patterns formed by the mask in FIG. 2;
图4C为使用图2中掩膜形成多晶硅图案信道配置示意图;FIG. 4C is a schematic diagram of a polysilicon pattern channel configuration formed using the mask in FIG. 2;
图5A~图5B为图2中掩膜形成的多晶硅图案示意图;5A to 5B are schematic diagrams of polysilicon patterns formed by the mask in FIG. 2;
图6为本发明揭露的掩膜另一较佳实施例图案示意图;FIG. 6 is a schematic diagram of the pattern of another preferred embodiment of the mask disclosed in the present invention;
图7A~图7B为图6中掩膜形成的多晶硅图案示意图;7A to 7B are schematic diagrams of polysilicon patterns formed by the mask in FIG. 6;
图8为本发明揭露的掩膜的另一较佳实施例图案示意图;FIG. 8 is a schematic diagram of another preferred embodiment of the mask disclosed in the present invention;
图9A~图9B为图8中掩膜形成的多晶硅图案示意图;9A to 9B are schematic diagrams of polysilicon patterns formed by the mask in FIG. 8;
图10为本发明揭露的掩膜另一较佳实施例图案示意图。FIG. 10 is a schematic diagram of the pattern of another preferred embodiment of the mask disclosed in the present invention.
主要组件符号说明Explanation of main component symbols
10 基板 11 非晶硅薄膜 2 掩膜10 Substrate 11 Amorphous silicon film 2 Mask
21 透光区 22 遮光区 111 晶粒边界21
3 掩膜 31 第一区域 32 第二区域3 mask 31 first area 32 second area
33 第三区域 3a 薄膜晶体管信道 3b 栅极线33 third area 3a thin film transistor channel 3b gate line
4 掩膜 41 第一区域 42 第二区域4 mask 41
43 第三区域 5 掩膜 51 第一区域43 Third area 5 Mask 51 First area
52 第二区域 53 第三区域 6 掩膜52 Second area 53
61 第一区域 62 第二区域 63 第三区域61 The
64 第四区域 65 第五区域 66 第六区域64
67 第七区域 68 第八区域67
具体实施方式Detailed ways
本发明揭露了一种应用于连续横向固化技术(SLS)的掩膜,用以产生一结晶边界分散的多晶硅薄膜。以下结合附图及多个个具体实施例,详细描述本发明所述的掩膜,。The invention discloses a mask applied to continuous lateral solidification (SLS) to produce a polysilicon film with dispersed crystal boundaries. The mask of the present invention will be described in detail below with reference to the accompanying drawings and multiple specific embodiments.
如图2所示为本发明的一较佳实施例的掩膜俯视示意图。图2中的掩膜3至少包含:一第一区域31、一第二区域32、及一第三区域33。其中,第一区域31及第三区域33为透光,第二区域32则为遮光。FIG. 2 is a schematic top view of a mask according to a preferred embodiment of the present invention. The mask 3 in FIG. 2 at least includes: a first region 31 , a second region 32 , and a third region 33 . Wherein, the first area 31 and the third area 33 are light-transmitting, and the second area 32 is light-shielding.
第一区域31围绕在第二区域32的周围,且第一区域31以及第二区域32具有基本上相同的外围形状。第三区域33与第一区域31具有相同的外围形状,在本实施例中,上述三区域的外围形状为矩形结构。并且,第三区域33与第一区域31以及第二区域32以一预定方向平行配置。The first region 31 surrounds the second region 32 , and the first region 31 and the second region 32 have substantially the same peripheral shape. The third region 33 has the same peripheral shape as the first region 31 , and in this embodiment, the peripheral shapes of the above three regions are rectangular structures. Moreover, the third area 33 is arranged parallel to the first area 31 and the second area 32 in a predetermined direction.
将本发明的掩膜应用在图1A中的现有技术所述的连续横向固化技术中,以达到产生一结晶边界分散的多晶硅薄膜的目的。图3所示为在SLS技术中应用本发明揭露的掩膜以形成一多晶硅层的流程示意图,至少包括:The mask of the present invention is applied in the continuous lateral solidification technique described in the prior art in FIG. 1A to achieve the purpose of producing a polysilicon film with dispersed crystal boundaries. FIG. 3 is a schematic flow chart of applying the mask disclosed by the present invention to form a polysilicon layer in SLS technology, at least including:
步骤S301:提供一激光束扫描透过掩膜3的第一区域31或第三区域33对一非晶硅薄膜进行一第一次激光结晶工艺;Step S301: providing a laser beam to scan through the first region 31 or the third region 33 of the mask 3 to perform a first laser crystallization process on an amorphous silicon film;
步骤S302:改变掩膜3与激光束扫描方向的相对位置,其中改变掩膜3以及激光束扫描方向的相对位置的方法包含:移动掩膜3或移动激光束扫描方向,可根据操作机台的情况而变化;Step S302: Change the relative position of the mask 3 and the scanning direction of the laser beam. The method of changing the relative position of the mask 3 and the scanning direction of the laser beam includes: moving the mask 3 or moving the scanning direction of the laser beam. circumstances change;
步骤S303:提供一激光束透过掩膜3扫描对同一非晶硅薄膜进行一第二次激光结晶工艺。其中,激光二次照射在非晶硅薄膜的照射区域对应步骤301,沿掩膜3的第一区域31向第三区域33方向移动,或是由第三区域33向第一区域31的方向移动。Step S303: Provide a laser beam to scan through the mask 3 to perform a second laser crystallization process on the same amorphous silicon film. Wherein, the secondary irradiation of the laser on the irradiation area of the amorphous silicon thin film corresponds to step 301, moving along the first area 31 of the mask 3 to the third area 33, or moving from the third area 33 to the first area 31 .
图4A,图4B所示为通过上述掩膜3及工艺制造出来的多晶硅薄膜。图4A所示为步骤S301完成第一次激光结晶工艺后,非晶硅薄膜上呈现的多晶硅图案。由于熔融后的晶硅具有从低温处开始成长晶粒的特性,因此会形成如图4A所示的晶粒边界分散的多晶硅图案。当工艺进入步骤S303的第二次激光结晶工艺,掩膜3上的遮光区与透光区恰为相反时,则会完成如图4B所示的多晶硅图案。FIG. 4A and FIG. 4B show the polysilicon film manufactured through the above-mentioned mask 3 and the process. FIG. 4A shows the polysilicon pattern present on the amorphous silicon film after the first laser crystallization process is completed in step S301. Since the molten crystalline silicon has the characteristic of growing crystal grains from a low temperature, a polycrystalline silicon pattern with dispersed grain boundaries as shown in FIG. 4A is formed. When the process enters the second laser crystallization process in step S303, and the light-shielding area and the light-transmitting area on the mask 3 are exactly opposite, the polysilicon pattern as shown in FIG. 4B will be completed.
上述步骤S302中,改变掩膜3以及激光束扫描方向的相对位置,当移动的方为沿掩膜3的第一区域31向第三区域33的方向移动,可得到图4A~图4B所示的多晶硅图案;若由第三区域33向第一区域31的方向移动,则会得到如图5A~图5B所示的多晶硅图案.本发明揭露的掩膜图案用于得到晶粒边界分散、至少有两个方向结晶的晶粒的多晶硅图案,无论激光的照射顺序为何,只要是依序将不同区域逐步照射,都可得到本发明希望达到的目的.In the above step S302, the relative positions of the mask 3 and the scanning direction of the laser beam are changed, and when the moving direction is moving along the direction from the first area 31 to the third area 33 of the mask 3, the result shown in FIGS. 4A to 4B can be obtained. polysilicon pattern; if it moves from the third region 33 to the direction of the first region 31, the polysilicon pattern as shown in Figure 5A to Figure 5B will be obtained. The mask pattern disclosed in the present invention is used to obtain grain boundary dispersion, at least For polysilicon patterns with crystal grains crystallized in two directions, no matter what the laser irradiation sequence is, as long as different regions are irradiated sequentially, the desired purpose of the present invention can be obtained.
本发明设计的掩膜图案是通过类似图形互补的概念,设计出不同的遮光区域及透光区域。值得一提的是,为了使多晶硅图案晶粒边界多向化的同时,使晶粒成长匀称完美,本发明的掩膜图案的大小设计上具有巧思。以图2的掩膜3为例,其中第三区域33的面积大小介于第一区域31的面积及第二区域32的面积间。这是为了在第一次激光工艺及第二次激光结晶工艺中移动掩膜与激光位置时,造成激光重复照射透光区域。由于第二区域22遮光区的边界为非晶硅熔融时较低温的区域,会较快的结晶,从而导致晶粒结晶不良的机率提高,因此激光重复照射透光区域将局部区域再度熔融以达到晶粒边界成长更为完美的目的。The mask pattern designed in the present invention is to design different light-shielding areas and light-transmitting areas through the concept of similar figure complementarity. It is worth mentioning that in order to make the grain boundaries of the polysilicon pattern multi-directional and at the same time make the grain growth uniform and perfect, the size design of the mask pattern of the present invention is ingenious. Taking the mask 3 in FIG. 2 as an example, the area of the third area 33 is between the area of the first area 31 and the area of the second area 32 . This is to cause the laser to irradiate the light-transmitting area repeatedly when the position of the mask and the laser is moved in the first laser process and the second laser crystallization process. Since the boundary of the shading area of the
利用本发明揭露的掩膜可以成长出两种方向的结晶薄膜,配合双栅极薄膜晶体管得到均匀且良好的电性。如图4C所示为使用掩膜3形成的多晶硅图案配置的薄膜晶体管信道(channel)3a与栅极线(gate line)3b示意图。The mask disclosed by the present invention can grow crystalline thin films in two directions, and can obtain uniform and good electrical properties in conjunction with double-gate thin film transistors. 4C is a schematic diagram of a TFT channel (channel) 3a and a gate line (gate line) 3b configured by using a mask 3 to form a polysilicon pattern.
本发明揭露的掩膜应用在连续横向固化技术中可以得到一结晶边界分散的多晶硅薄膜,掩膜上使用的图案形状不受限制。只要图案设计能够同时制作出至少两种方向和任意形状的框状形状都可以套用在本发明的掩膜图案中。图6及图8所示为本发明揭露的掩膜的另外两个较佳实施例的图案示意图。图6中的掩膜4包括第一区域41、第二区域42及第三区域43,相对位置的设计及光学特性与上述掩膜3相同,只是掩膜4的第一区域41、第二区域42及第三区域43的外围形状为圆形。将掩膜4应用在SLS工艺中可得到如图7A~图7B所示的多晶硅图案。同样地,利用图8中的掩膜5,其第一区域51、第二区域52及第三区域53的外围形状为三角形,可得到如图9A~图9B所示的多晶硅图案。The mask disclosed in the present invention is applied in the continuous lateral solidification technology to obtain a polysilicon film with dispersed crystal boundaries, and the shape of the pattern used on the mask is not limited. As long as the pattern design can simultaneously produce at least two directions and any frame shape can be applied to the mask pattern of the present invention. FIG. 6 and FIG. 8 are schematic diagrams of patterns of other two preferred embodiments of the mask disclosed in the present invention.
本发明中揭露的掩膜中掩膜图案里的遮光区域及透光区域的数目不受到限定。只要图案设计能够同时制作出至少两种方向,多个同样形状的框状就可套用在本发明的掩膜图案中。如图10所示为本发明揭露的掩膜另一较佳实施例示意图。图10中的掩膜6包括:一第一区域61、一第二区域62、一第三区域63、一第四区域64、一第五区域65、一第六区域66、一第七区域67、及一第八区域68。其中第一区域61、第三区域63、第四区域64、第七区域67、及第八区域68为透光区;第二区域62、第五区域65、及第六区域66为遮光区,上述区域的基本外围形状为矩形。The number of light-shielding regions and light-transmitting regions in the mask pattern in the mask disclosed in the present invention is not limited. As long as the pattern design can produce at least two directions at the same time, multiple frames of the same shape can be applied to the mask pattern of the present invention. FIG. 10 is a schematic diagram of another preferred embodiment of the mask disclosed in the present invention.
与其它实施例设计概念等同,利用掩膜6中的图案的每个区域间的面积大小的不同使激光重复照射透光区域。例如,第六区域66的面积介于第二区域62面积及第四区域64的面积之间,第八区域68的面积介于第四区域64面积及第五区域65的面积之间。The design concept is the same as that of other embodiments, the difference in area size between each region of the pattern in the
与现有技术比较,本发明揭露的在SLS技术中应用的掩膜具有以下下列特性及优点:Compared with the prior art, the mask applied in the SLS technology disclosed by the present invention has the following characteristics and advantages:
1.利用掩膜上的图案图形互补的概念,设计出可制作至少两种晶粒方向的多晶硅图案。1. Utilizing the complementary concept of patterns on the mask to design polysilicon patterns that can produce at least two crystal grain directions.
2.通过控制掩膜上多个遮光区及透光区图案面积大小,可得到完美的晶粒边界。2. By controlling the pattern size of multiple light-shielding areas and light-transmitting areas on the mask, perfect grain boundaries can be obtained.
上列详细说明是针对本发明较佳实施例的具体说明,上述实施例并非用于限制本发明的保护范围,凡是未脱离本发明技术所作的等效实施或变更,均应包含于本案的保护范围中。The above detailed description is a specific description of the preferred embodiments of the present invention. The above embodiments are not intended to limit the scope of protection of the present invention. All equivalent implementations or changes that do not depart from the technology of the present invention should be included in the protection of this case. in range.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200510082849A CN1892420B (en) | 2005-07-08 | 2005-07-08 | Mask for continuous lateral solidification technology and method for forming polycrystalline silicon layer by using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200510082849A CN1892420B (en) | 2005-07-08 | 2005-07-08 | Mask for continuous lateral solidification technology and method for forming polycrystalline silicon layer by using same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1892420A CN1892420A (en) | 2007-01-10 |
CN1892420B true CN1892420B (en) | 2010-05-05 |
Family
ID=37597407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200510082849A Expired - Fee Related CN1892420B (en) | 2005-07-08 | 2005-07-08 | Mask for continuous lateral solidification technology and method for forming polycrystalline silicon layer by using same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1892420B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101221902B (en) * | 2008-02-03 | 2010-11-24 | 友达光电股份有限公司 | Mask applied to continuous lateral crystal growth technology and laser crystallization method |
KR20120048240A (en) * | 2010-11-05 | 2012-05-15 | 삼성모바일디스플레이주식회사 | Crystallization apparatus, crystallization method, and method of manufacturing organic light emitting display apparatus using sequential lateral solidification |
CN104576438B (en) * | 2013-10-29 | 2018-02-13 | 昆山国显光电有限公司 | A kind of apparatus and method for preparing polysilicon membrane |
CN109270743B (en) * | 2018-11-13 | 2024-02-13 | 成都京东方显示科技有限公司 | Mask plate for photo-alignment and mask set for photo-alignment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW527732B (en) * | 2001-08-21 | 2003-04-11 | Samsung Electronics Co Ltd | Masks for forming polysilicon and methods for manufacturing thin film transistor using the masks |
JP2005175463A (en) * | 2003-11-19 | 2005-06-30 | Samsung Electronics Co Ltd | Crystallization mask, crystallization method using the same, and method for manufacturing thin film transistor array panel including the same |
-
2005
- 2005-07-08 CN CN200510082849A patent/CN1892420B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW527732B (en) * | 2001-08-21 | 2003-04-11 | Samsung Electronics Co Ltd | Masks for forming polysilicon and methods for manufacturing thin film transistor using the masks |
JP2005175463A (en) * | 2003-11-19 | 2005-06-30 | Samsung Electronics Co Ltd | Crystallization mask, crystallization method using the same, and method for manufacturing thin film transistor array panel including the same |
Also Published As
Publication number | Publication date |
---|---|
CN1892420A (en) | 2007-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6495405B2 (en) | Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films | |
US6573163B2 (en) | Method of optimizing channel characteristics using multiple masks to form laterally crystallized ELA poly-Si films | |
CN100372058C (en) | Laser beam pattern mask and crystallization method using it | |
US7135388B2 (en) | Method for fabricating single crystal silicon film | |
JP4211967B2 (en) | Method for crystallizing silicon using mask | |
US20080135785A1 (en) | Method of and apparatus for manufacturing semiconductor thin film, and method of manufacturing thin film transistor | |
JP6163270B2 (en) | Method for producing low-temperature polysilicon thin film | |
JP2004031809A (en) | Photomask and method of crystallizing semiconductor thin film | |
US20020102821A1 (en) | Mask pattern design to improve quality uniformity in lateral laser crystallized poly-Si films | |
JP2003318111A (en) | Laser annealing method, shielding mask used in laser annealing method, and laser annealing apparatus | |
JP4798937B2 (en) | Semiconductor crystal layer manufacturing method, semiconductor substrate, and liquid crystal display panel | |
US7008863B2 (en) | Method for forming polycrystalline silicon film | |
CN1892420B (en) | Mask for continuous lateral solidification technology and method for forming polycrystalline silicon layer by using same | |
US20080237724A1 (en) | Semiconductor thin film manufacturing method, semiconductor thin film and thin film transistor | |
US7879511B2 (en) | Sequential lateral solidification mask | |
JP4769491B2 (en) | Crystallization method, thin film transistor manufacturing method, thin film transistor, and display device | |
JP2007281465A (en) | Method for forming polycrystalline film | |
KR100803867B1 (en) | Crystallization method of amorphous silicon layer and manufacturing method of thin film transistor using same | |
JP2003151904A (en) | Semiconductor thin film crystallization method, semiconductor thin film, and thin film semiconductor device | |
CN101221902A (en) | Mask applied to continuous lateral crystal growth technology and laser crystallization method | |
JP2003257861A (en) | Semiconductor element and method for manufacturing the same | |
US20060172469A1 (en) | Method of fabricating a polycrystalline silicon thin film transistor | |
KR101289066B1 (en) | Method for crystallizing layer and method for fabricating crystallizing mask | |
CN101655645B (en) | Mask and Laser Crystallization Method for Sequential Lateral Crystallization Technology | |
JP2007287866A (en) | Method for manufacturing semiconductor crystal thin film and manufacturing apparatus thereof, photomask, and semiconductor element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100505 |