CN1885443A - 一种提高Bi-2223带材临界电流密度的方法 - Google Patents

一种提高Bi-2223带材临界电流密度的方法 Download PDF

Info

Publication number
CN1885443A
CN1885443A CNA2006100811628A CN200610081162A CN1885443A CN 1885443 A CN1885443 A CN 1885443A CN A2006100811628 A CNA2006100811628 A CN A2006100811628A CN 200610081162 A CN200610081162 A CN 200610081162A CN 1885443 A CN1885443 A CN 1885443A
Authority
CN
China
Prior art keywords
band
critical current
strip
power supply
electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100811628A
Other languages
English (en)
Other versions
CN100386825C (zh
Inventor
阿木
韩征和
顾晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2006100811628A priority Critical patent/CN100386825C/zh
Publication of CN1885443A publication Critical patent/CN1885443A/zh
Application granted granted Critical
Publication of CN100386825C publication Critical patent/CN100386825C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了属于高温超导材料领域的一种提高Bi-2223带材临界电流的方法。具体是先将带材选定区域的绝缘漆用较细的砂纸仔细打磨掉,并把带材表面清洗干净;选用直流稳压电源作为电镀电源,电源输出电压3V进行电镀,通过改变电镀时间改变复合导线表面镀层厚度,得到表面有电镀铁磁体材料的Bi-2223带材,因此有效控制交流损耗。可以实际应用于Bi系高温超导带材的大规模生产。

Description

一种提高Bi-2223带材临界电流密度的方法
技术领域
本发明属于高温超导材料领域,特别涉及一种提高Bi-2223带材临界电流的方法。具体是通过在Bi-2223带材表面电镀铁磁性材料提高临界电流,同时有效控制交流损耗。可以实际应用于Bi系高温超导带材的大规模生产。
背景技术
现有提高Bi-2223多芯带材临界电流密度的方法有优化阳离子浓度,改进烧结工艺,改善机械加工变形技术以及在超导线芯外包覆铁磁体。然而,这些方法往往会导致线芯出现香肠效应,超导相污染,带材中超导相体积比下降以及超导晶粒的弱连接等不利现象。近年来,磁屏蔽技术已广泛应用于多种设备中,其主要作用是减少不利的磁场效应。在对高温超导体的研究中,人们将单根超导线芯外包覆铁磁体,利用铁磁体带来的磁屏蔽效应来降低交流损耗。例如,有人用铁块包覆带材,从而研究磁屏蔽效应对临界电流的影响。但现有实验研究表明,引入铁磁体包覆层确实能提高临界电流。但是,随之而来的是铁磁材料引入的交流损耗。实际结果是直流状态下的临界电流提高了,在电力传输中应尽量避免的交流损耗也增加了。因此,从实用可行性角度来说,到目前为止,在高温超导带材表面引入铁磁材料包覆方面的研究尚无实质进展。
发明内容
本发明的目的是针对现有技术的不足而提供一种提高Bi-2223带材临界电流的方法。其特征在于,在Bi-2223带材表面电镀铁磁体材料,即先选定带材边缘部分,后用较细的砂纸将选定带材边缘部分的绝缘漆仔细打磨掉,并把带材表面清洗干净;选用直流稳压电源作为电镀电源,电源输出电压3V,通过每根带材的电流30mA,通过改变电镀时间控制复合导线表面镀层厚度;电镀时间选取为30~180分钟,得到表面有电镀铁磁体材料的Bi-2223带材;其中电镀铁磁体材料的电镀液按体积比为50wt%的NiSO4∶50wt%的NiCl2∶3g/100ml的HBO3=1∶1∶1配成。
所述铁磁体材料为镍、或铁。
所述铁磁体材料镀层厚度或宽度为儿十到几百微米。
本发明的有益效果是因Bi-2223带材具有各向异性性质,因此对磁场取向非常敏感,其性能受磁场影响也十分显著。因此,引入铁磁体包覆层的磁屏蔽效应,进而改变磁场分布是提高Bi-2223带材性能的有效途径。
实验研究表明,镀上适量的镍后,Bi-2223带材的临界电流提高了约11%,而自场损耗没有变化。这一结果说明,包覆铁磁体引起的附加损耗可以通过磁屏蔽效应和临界电流的提高得到补偿。同时有效控制了复合导线的整体交流损耗,具有实际意义和应用价值。
附图说明
图1镀镍的Bi-2223带材截面结构示意图。其中1为铁磁涂层,2为银层,3为超导层。
图2样品A的横截面光学显微镜照片。
图3样品B的横截面光学显微镜照片。
图4样品C的横截面光学显微镜照片。
图5镀镍和未镀镍Bi-2223带材的直流电流电压特性曲线。
图6镀镍和未镀镍带材样品自场损耗的比较。图中,实线根据Norris提出的圆截面带材模型画出,假定临界电流92A。
图7镀镍样品A和未镀镍样品E的临界电流随垂直磁场变化的曲线。
具体实施方式
本发明是针对现有技术的不足而提供一种提高Bi-2223带材临界电流的方法。在Bi-2223带材表面电镀铁磁体材料,引入磁屏蔽效应,改变带材自场磁力线的分布,从而提高了带材临界电流性能。
实施例
1.先将带材选定区域(边缘部分)的绝缘漆用较细的砂纸仔细打磨掉,并把带材表面清洗干净;选用直流稳压电源作为电镀电源,电源输出电压3V,通过每根带材的电流30mA。通过改变电镀时间改变复合导线表面镀层厚度。电镀时间选取为30~180分钟,得到表面电镀铁磁体材料的Bi-2223带材,如图1所示,图中在超导层3表面被覆银层2,在银层2外面为铁磁涂层1。其中电镀铁磁体材料的电镀液按体积比为50wt%的NiSO4∶50wt%的NiCl2∶3g/100ml的HBO3=1∶1∶1配成。
2.电镀处理中,我们选择了不同的镀层宽度和厚度:
1)样品A镀层厚度T=40μm,宽度L=0.3mm,临界电流102A,如图2所示。而交流损耗性质与未镀镍样品相比基本不变,如图5,6所示。此结果表明,镀层引入的附加铁磁交流损耗可以通过磁屏蔽和临界电流的提高得到补偿。我们认为样品A的综合性能指标达到最佳。
2)样品B镀层厚度T=45μm,宽度L=0.3mm,如图3所示;临界电流104A,但交流损耗高于未镀镍样品,如图5,6所示。
3).样品C进一步增加了镀层厚度T=50μm,但减少了镀层长度L=0.2mm,如图4所示;样品临界电流降低到97.4A,而交流损耗增加,如图5,6所示。
4)四点法对镀镍和未镀镍样品分别测试了直流电流电压性质,直流磁场下临界电流随磁场的变化以及传输电流下的交流损耗性质如图6、图7所示。

Claims (3)

1.一种提高Bi-2223带材临界电流的方法,其特征在于,在Bi-2223带材表面电镀铁磁体材料,即先选定带材边缘部分,后用较细的砂纸将选定带材边缘部分的绝缘漆仔细打磨掉,并把带材表面清洗干净;选用直流稳压电源作为电镀电源,电源输出电压3V,通过每根带材的电流30mA,通过改变电镀时间控制复合导线表面镀层厚度;电镀时间选取为30~180分钟,得到表面有电镀铁磁体材料的Bi-2223带材;其中电镀铁磁体材料的电镀液按体积比为50wt%的NiSO4∶50wt%的NiCl2∶3g/100ml的HBO3=1∶1∶1配成。
2.根据权利要求1所述提高Bi-2223带材临界电流的方法,其特征在于,所述铁磁体材料为镍、或者铁。
3.根据权利要求1所述提高Bi-2223带材临界电流的方法,其特征在于,所述铁磁体材料镀层厚度或宽度为20~300微米。
CNB2006100811628A 2006-05-23 2006-05-23 一种提高Bi-2223带材临界电流密度的方法 Expired - Fee Related CN100386825C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100811628A CN100386825C (zh) 2006-05-23 2006-05-23 一种提高Bi-2223带材临界电流密度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100811628A CN100386825C (zh) 2006-05-23 2006-05-23 一种提高Bi-2223带材临界电流密度的方法

Publications (2)

Publication Number Publication Date
CN1885443A true CN1885443A (zh) 2006-12-27
CN100386825C CN100386825C (zh) 2008-05-07

Family

ID=37583550

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100811628A Expired - Fee Related CN100386825C (zh) 2006-05-23 2006-05-23 一种提高Bi-2223带材临界电流密度的方法

Country Status (1)

Country Link
CN (1) CN100386825C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728018B (zh) * 2009-12-25 2013-07-31 清华大学 一种具有外加金属壳层的高温超导导线及其制备方法
CN108401409A (zh) * 2018-01-22 2018-08-14 清华大学 一种开放式全频段调节的磁场屏蔽装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1030552C (zh) * 1992-08-27 1995-12-20 清华大学 提高高温超导线带材电流密度的方法
DK128293D0 (da) * 1993-11-12 1993-11-12 Nkt Res Center As Fremgangsmaade til fremstilling af supraledende baand med en hoej kritisk stroemtaethed
CN1127411A (zh) * 1995-09-07 1996-07-24 浙江大学 高温超导体Bi(2223)/Ag带材的联接方法
CN1333409C (zh) * 2005-07-08 2007-08-22 清华大学 高温超导双螺旋电流引线结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728018B (zh) * 2009-12-25 2013-07-31 清华大学 一种具有外加金属壳层的高温超导导线及其制备方法
CN108401409A (zh) * 2018-01-22 2018-08-14 清华大学 一种开放式全频段调节的磁场屏蔽装置

Also Published As

Publication number Publication date
CN100386825C (zh) 2008-05-07

Similar Documents

Publication Publication Date Title
Sunwong et al. The critical current density of grain boundary channels in polycrystalline HTS and LTS superconductors in magnetic fields
Jiang et al. Recent development and mass production of high Je 2G-HTS tapes by using thin hastelloy substrate at shanghai superconductor technology
Deng et al. Trapped flux and levitation properties of multiseeded YBCO bulks for HTS magnetic device applications—Part II: Practical and achievable performance
Ichiki et al. Numerical analysis of AC losses in YBCO coated conductor in external magnetic field
Miura et al. Strong flux pinning at 4.2 K in SmBa2Cu3Oy coated conductors with BaHfO3 nanorods controlled by low growth temperature
Lin et al. A review of thickness-induced evolutions of microstructure and superconducting performance of REBa 2 Cu 3 O 7− δ coated conductor
CN102306702B (zh) 适合于连续化制备高温超导带材的方法
CN100386825C (zh) 一种提高Bi-2223带材临界电流密度的方法
Takeda et al. Review of the temporal stability of the magnetic field for ultra-high field superconducting magnets with a particular focus on superconducting joints between HTS conductors
Paidpilli et al. High-current, double-sided REBCO tapes by advanced MOCVD
Feng et al. Critical current survival in the YBCO superconducting layer of a delaminated coated conductor
Xiao et al. Fabrication and superconducting properties of 19-filamentary Sr0. 6K0. 4Fe2As2/Ag/Monel composite wires and tapes
Suenaga et al. The fabrication and properties of Nb 3 Sn superconductors by the solid diffusion process
CN102251219B (zh) 制备ysz缓冲层的多通道激光镀膜方法
Alamgir et al. Experiment of enhancing critical current in Bi-2223/Ag tape by means of ferromagnetic shielding
Li et al. Current-carrying properties of REBCO multi-filamentary tapes prepared by reel-to-reel ultraviolet picosecond laser cutting
Jin et al. Development of a REBa2Cu3O7− δ multi-core superconductor with ‘inner split’technology
Oota et al. AC transport losses in Ag sheathed (Bi, Pb) 2Sr2Ca2Cu3Ox tapes
Stavrev et al. Self-field and geometry effects in transport current applications of multifilamentary Bi-2223/Ag conductors
Cogan et al. Fabrication of large diameter external-diffusion processed Nb 3 Sn composites
Ma et al. Effects of Rolling Passes on the Transport Properties of 37-Filamentary AgAu-Sheathed Bi-2223 Tapes
Yamagishi et al. Measurements of the whole profile of the Hc2-T curve and residual resistance of EuBa2Cu3OY single crystal
Shi et al. Effect of oxygenation on levitation force in seeded melt grown single-domain YBa2Cu3Ox
Ma et al. Rolling characteristics of multi-filamentary Bi-2223/AgAu tapes and roller diameter′ s effect on transport properties
Bertrand et al. Fabrication of YBa2Cu3O7 Superconducting Nanocomposite Film on Silicon Substrate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080507

Termination date: 20120523