具体实施方式
现将参考其中显示本发明的实施例的附图在其后更加全面地描述本发明。然而,本发明可以以许多不同的形式实现且不应解释为限于这里阐释的实施例。而是,提供这些实施例使得本公开充分和完整,且向那些本领域的技术人员全面地传达本发明的范围。通篇相似的附图标记指示相似的元件。
可以理解当元件被称为在另一元件“上”时,它可以直接在其他元件上或可以存在中间的元件。相反,当元件被称为“直接”在其他元件“上”时,则没有中间元件存在。这里所用的术语“和/或”包括相关列举项目的一个或更多的任何和所有组合。
可以理解虽然术语第一、第二和第三等可以用于此来描述各种元件、部件、区域、层和/或部分,这些元件、部件、区域、层和/或部分应不受这些术语限制。这些术语只用于区分一个元件、部件、区域、层或部分与其他元件、部件、区域、层或部分。因此,以下讨论的第一元件、部件、区域、层或部分可以被称为第二元件、部件、区域、层或部分,而不背离本发明的教导。
这里所使用的术语是只为了描述特别的实施例的目的且不旨在限制本发明。如这里所用,单数形式也旨在包括复数形式,除非内容清楚地指示另外的意思。可以进一步理解当在此说明书中使用时术语“包括”和/或“包含”说明所述特征、区域、整体、步骤、操作、元件和/或组分的存在,但是不排出存在或添加一个或更多其他特征、区域、整体、步骤、操作、元件、组分和/或其组。
在这里为了描述的方便,可以使用空间相对术语,诸如“下面”、“下方”、“下”、“上方”、“上”等,来描述一个元件或特征和其他元件或特征如图中所示的关系。可以理解空间相对术语旨在包含除了在图中所绘的方向之外的装置在使用或操作中的不同方向。例如,如果在图中的装置被翻转,被描述为在其他元件或特征的“下”侧的元件则应取向在所述其他元件或特征的“上”侧。因此,示范性术语“下”可以根据图的具体取向而包含下和上两个方向。相似地,被描述为在其他元件或特征的“下方”或“下面”的元件则应取向在所述其他元件或特征的“上方”。示范性术语“下方”或“下面”可以包含上方和上方两个方向。
除非另有界定,这里使用的所有术语(包括技术和科学术语)具有本发明属于的领域的普通技术人员共同理解的相同的意思。还可以理解诸如那些在共同使用的字典中定义的术语应解释为一种与在相关技术和本公开的背景中的它们的涵义一致的涵义,而不应解释为理想化或过度正式的意义,除非在这里明确地如此界定。
参考横截面图示在这里描述了本发明的实施例,该图示是本发明的理想实施例的示意图。因此,可以预期由于例如制造技术和/或公差引起的图示的形状的变化。因此,本发明的实施例不应解释为限于这里所示的具体的区域形状,而是包括由于例如由制造引起的形状的偏离。例如,示出或描述为平的区域可以通常具有粗糙和/或非线性的特征。另外,示出的尖角可以是倒圆的。因此,图中示出的区域本质上是示意性的且它们的形状不旨在示出区域的精确的形状且不旨在限制本发明的范围。
此后,将参照图1至图5,详细描述根据本发明的LCD的典型实施例。
图1是根据本发明的LCD的第一典型实施例的平面图。图2是根据本发明的LCD的第二典型实施例的平面图。图3是根据本发明的LCD的第三典型实施例的平面图。图4和图5分别是沿图1的IV-IV线和V-V线所取的示意截面图。
参照图1至图5,根据本发明的LCD的各个典型实施例包括相互面对的TFT阵列面板100和滤色器面板200、用LC分子插入其间的LC层3,LC分子被排列得垂直或平行于两个面板100和200的表面。
参照图4,第一偏振器12和第二偏振器22被单独贴附到两个面板100和200的外表面。其透射轴以直角相交。
背光单元900被提供在TFT阵列面板100的后面。背光单元900包括用于为LCD提供人工光线的灯910(仅显示了一个)、光导板940、和布置在光导板940后面的光反射板950。
在本发明中,冷阴极荧光灯(“CCFL”)或发光二极管(“LED”)被用作灯910。然而,也可以使用其它表面光源或线光源。
下面首先描述TFT阵列面板100的结构。
多个反射辅件119形成于由透明玻璃或塑料制成的绝缘基板上。反射辅件119可以由具有多层结构的介质制成,其中至少包括高折射层和低折射层。在这样的结构中,各层的厚度从nd=λ/4中导出,其中n是所述层的折射系数、λ是穿过所述层的光线的波长。高折射层可以由ZrO2、TiO2或ZnS制成,而低折射层可以由MgF2或CeF2制成。
多条栅极线121和多条存储电极线131形成于具有反射辅件119的基板110上。在图1和图2中所表示的两个典型实施例中,多个反射元件137a形成于相应的反射辅件119上。反射元件137a反射由背光单元900提供的反射光线。
如图1-3所示,用于传输栅极信号的栅极线121基本在水平方向延伸。各条栅极线121包括向上突出的多个栅电极124和端部129,端部129具有相对大的尺寸,从而连接不同的层或外部装置。用于产生栅极信号的栅极驱动器(未图示)可以安装在贴附到基板110的柔性印刷电路上,或直接在基板110上。另外,栅极驱动器可以被集成在基板110上。在这种情形,栅极线121直接连接到栅极驱动器。
接收预定电压的存储电极线131基本平行于所述栅极线121延伸。各条存储电极线131被布置在相邻的栅极线121之间;具体地,各条存储电极线131被布置在接近于两个栅极线121的下位置的栅极线121。各条存储电极线131包括多个向上和向下突出的存储电极137。类似于反射元件137a,存储电极137反射由背光单元900提供的反射光线。在图2中表示的第二实施例中,存储电极137与相应的反射元件137a一体形成。上面讨论的存储电极线131的形成和布置仅用于示出的目的,存储电极线131可以具有其它的形式和布置。
栅极线121、存储电极线131和反射元件137a可以由良反射金属制成,例如诸如铝或铝合金的含铝(Al)金属、诸如银或银合金的含银(Ag)金属,也可以由诸如铜或铜合金的含铜(Cu)金属、诸如钼或钼合金的含钼(Mo)金属、铬(Cr)、钛(Ti)或钽(Ta)制成。栅极线121、存储电极线131和反射元件137a可以被配置为多层结构,其中至少包括两层具有不同物理特性的导电层(未图示)。在这样的结构中,两个导电层之一由低电阻金属制成,例如含铝金属、含银金属、含铜金属等等,从而减小在栅极线121、存储电极线131和反射元件137a中的信号延迟或电压降。另一导电层由与例如氧化铟锡(ITO)和氧化铟锌(IZO)的其它的材料具有卓越的物理、化学和电接触性能的材料制成。例如,含钼金属、Cr、Ta或Ti可以用于形成相同的层。所述两层组合的理想的实例是下Cr层和上Al(或Al合金)层,和下Al(或Al合金)层和上Mo(或Mo合金)层。除了所述讨论的材料之外,各种金属和导电体也可以用于形成栅极线121、存储电极线131和反射元件137a。
所有栅极线121、存储电极线131和反射元件137a的侧部优选具有相对于基板110的表面在大约30°和大约80°之间的斜度。
由氮化硅(SiNX)或氧化硅(SiO2)制成的栅绝缘层140形成于栅极线121、存储电极线131和反射元件137a上。
由氢化非晶硅(简称为“a-Si”)或多晶硅制成的多个线性半导体151形成于栅绝缘层140上。参照图4,各个线性半导体151基本沿垂直方向延伸,并且包括多个突起154和多个扩展部157,突起154沿相应的栅电极124形成,扩展部157从相应的突起154延伸。在栅极线121和存储电极线131附近,线性半导体151被加大。
多个线形欧姆接触161和岛形欧姆接触165形成于线性半导体151上。欧姆接触161和165可以由高度掺杂以诸如磷(P)或硅化物的N型杂质的N+氢化非晶硅制成。线形欧姆接触161包括多个突起163。一组突起163和岛形电阻性突起165被放置在半导体151的突起154和扩展部157上。
半导体151、154和157以及欧姆接触161、163和165的所有侧部具有相对于基板110的表面在大约30°和大约80°之间的斜度。
多条数据线171和多个漏电极175形成于所述欧姆接触161、163和165以及栅绝缘层140上。在图3中所示的第三典型实施例中,多个反射元件177a也形成于栅绝缘层140上,反射元件177a反射从背光单元900提供的光线。
如在图1-3中所示,用于传输数据信号的数据线171基本在垂直方向延伸,以与栅极线121和存储电极线131交叉。各个数据线171包括多个源电极173和端部179,源电极173向相应的栅电极124延伸,端部179具有相对大的尺寸,从而连接不同的层或外部装置。用于产生数据信号的数据驱动器(未图示)可以安装在贴附到基板110的柔性印刷电路(未图示)上,或直接安装在基板110上。另外,数据驱动器可以被集成在基板110中,在这种情形数据线171直接连接到数据驱动器。
与数据线171分开的漏电极175被布置与源电极173相对、以栅电极124为中心。各个漏电极175包括具有相对大尺寸和条形端部的扩展部177。漏电极175的扩展部177与存储电极线131的存储电极137重叠(见图4),并且条形端部被以字母“J”的形状弯曲的源电极173部分包围。在图3中所示的第三典型实施例中,扩展部177与反射元件177a一体形成。
栅电极124、源电极173、漏电极175和半导体151的突起154形成薄膜晶体管(TFT)。TFT沟道形成于在源电极173和漏电极175之间提供的突起154内。
数据线171和漏电极175优选由难熔金属制成,例如Mo、Cr、Ta或Ti及其合金,并且可以配置为至少包括难熔金属层(未图示)和低电阻导电层(未图示)的多层结构。多层结构的理想的实例是由Cr、Mo或Mo合金制成的下层和由Al或Al合金制成的上层。另一个实例是由Mo或Mo合金制成的下层、由Al或Al合金制成的中间层和由Mo或Mo合金制成的上层。除了上述列举的材料之外,各种金属和导电体也可以用于形成数据线171和漏电极175。
数据线171和漏电极175的所有侧部优选具有相对于基板110的表面在大约30°和大约80°之间的斜度。
欧姆接触161、163和165仅存在于其下的半导体151和其上的数据线171之间和其上的漏电极175和其下的半导体151之间,从而减小其间的接触电阻。大多数线性半导体151形成得比数据线171窄,但是如前所述,在与栅极线121交叉附近的线性半导体151的部分被加大,从而避免数据线171短路。在数据线171和漏电极175不覆盖线性半导体151的位置,以及源电极173和漏电极175之间的位置,线性半导体151被部分暴露。
钝化层180形成于数据线171、漏电极175和半导体层151的被暴露的部分上。钝化层180被配置为双层结构,该双层结构包括由诸如SiNX或SiO2的无机绝缘材料制成的下层180p和由有机绝缘材料制成的上层180q。理想的用于上钝化层180q的有机绝缘体具有小于4.0的低介电常数和/或光敏性。上钝化层180q被提供以孔,其中下钝化层180p被部分暴露,并且上钝化层180q的顶表面是不平坦的。钝化层180可以被配置为由无机绝缘体或有机绝缘体制成的单层。
钝化层180被提供以多个接触孔182和185,通过多个接触孔182和185数据线171的端部179和漏电极175分别被暴露。多个接触孔181形成于钝化层180和栅绝缘层140内,并且栅极线121的端部129通过接触孔181被暴露。
多个像素电极191和多个接触辅件81和82形成于钝化层180上。
各个像素电极191具有由上钝化层180q的不平坦的顶表面引起的波纹形轮廓。各个像素电极191具有透明电极192和在透明电极192上面的反射电极194。透明电极192由诸如ITO或IZO的透明导电体制成,并且反射电极194由诸如Al、Cr、Ag或任何其合金的不透明导体制成。反射电极194可以被配置为双层结构。在双层结构中,上层由低电阻金属例如Al、Al合金、Ag或Ag合金制成,并且下层由例如含Mo金属、Cr、Ta或Ti制成,其具有与ITO和IZO卓越的接触特性。
各个反射电极194仅存在于透明电极192的一部分的部分上,并且具有与上钝化层180q的开口对准的透射窗195。透明电极192通过反射电极194的透射窗195被部分暴露。
通过接触孔185,像素电极191被物理和电连接到漏电极175,从而接收来自漏电极175的数据电压。被施加以数据电压的像素电极191与滤色面板200的公共电极270合作以产生电场,从而确定插入在两个电极191和270之间的LC层3内的LC分子的取向。根据LC分子的取向,改变通过LC层3的光线的偏振状态。各组对应的像素电极191和公共电极270形成LC电容器,在TFT被关闭后,LC电容器可以存储所施加的电压。
包括TFT阵列面板100、滤色器面板200和LC层3的透反型LCD被划分为透射区TA和反射区RA,透射区TA是布置在透射窗195上和下的部分,而反射区RA是布置在反射电极194上和下的部分。在透射区TA内,来自背光单元900的光线穿过TFT阵列板100和LC层3并且随后从滤色板200射出,因而贡献于用于显示的光线。在反射区RA中,通过LCD的前面提供的外部光线穿过滤色器200和LC层3,然后被TFT阵列面板100的反射电极194反射。反射光线再次穿过LC层3并且随后从滤色板200中射出,因而贡献于用于显示的光线。在这些过程中,反射电极194的不平坦的表面提高了光反射的效率。
如在图4中所示,上钝化层180q不存在于透射区TA内。因此,透射区TA的单元间隙(即LC层3的厚度)变得接近于反射区RA的两倍的大小。
参照图1至图3,各个反射元件137a和177a被布置在反射区RA内,并且被形成到直至反射区RA和透射区TA的边界附近。这些反射元件137a和177a利用存储电极137和漏电极175的扩展部177将从背光单元900进入反射区RA的光线反射到透射区TA。即从背光单元900进入反射区RA的光线通过在存储电极137和反射元件137a和177a的反射而被导入到透射区TA,由此用于显示图像。各个反射辅件119增加反射元件137a和177a以及存储电极137的反射,反射辅件119存在于反射区RA的整个部分上。
下面描述面对TFT阵列板100的滤色板200的结构。
参照图4,光延迟层24形成于由透明玻璃或塑料形成的绝缘基板210上。光延迟层24产生穿过反射区RA和透射区TA的光线之间的相差。即穿过光延迟层24的光线的偏振状态在透射区TA内不改变,而在反射区RA内改变。更具体地,在反射区RA内,通过在相互正交、并且分别平行于光延迟层24的快轴和慢轴的两个偏振分量之间引起四分之一波长的相差,光延迟层24将圆偏振光线转换为线性偏振光线,或将线性偏振光线转换为圆偏振光线。光延迟层24可以由LC聚合物制成。LC聚合物由固化可紫外线固化的向列LC单体获得。
根据本发明的LCD仅使用一层光延迟层24。因为单光延迟层24在反射区RA和透射区TA具有不同的相差延迟值,所以这是可能的。从背光单元910进入反射区RA的光线避免被第一偏振器12吸收。
称为“黑矩阵”的遮光构件220被提供于光延迟层24上。遮光构件220避免光线通过像素电极191之间的阻挡泄漏,并且界定面对像素电极191的开口区。
多个滤色器230形成于基板210、光延迟层24和遮光构件220上,并且大多数的滤色器被布置在由遮光构件220界定的开口区内。滤色器230沿相应的像素电极191延伸,并且相互以条形连接。各个滤色器230展示诸如红、绿和蓝色的三种颜色之一,也可以是原色。
在透反型LCD中,由于在透射区TA内光线仅穿过滤色器230一次,而在反射区RA内穿过两次,所以在透射区TA和反射区RA之间产生了色调差。为了减小两个区TA和RA之间的色调差,可以使用两种方法。第一种方法是根据其位置形成不同厚度的各个滤色器230。即在这种方法中,布置在透射区TA的特定部分的滤色器230比布置在反射区RA的剩余部分形成得厚。第二种方法是在滤色器230的反射区RA内以相同厚度形成光孔。
滤色器230可以形成于光延迟层24下面。在这种情形,滤色器230可以根据颜色以不同的厚度形成,并且在这样的滤色器230上面的光延迟层24也可以以不同的厚度形成,从而通过各个滤色器230的光线具有四分之一波长的相差。
公共电极270形成于遮光构件220和滤色器230上。公共电极270优选由透明导电体制成,例如ITO或IZO。
此后将参照图6详细描述上述LCD的显示原理。
图6是在图1中所示的LCD的垂直示意图。图6仅表示了解释LCD的显示原理所必须的部件。假定在LC层3内LC分子以扭曲向列(“TN”)模式排列,第一偏振器12仅传输在垂直于基准的Y方向(⊙)振动的光线,并且第二偏振器22仅传输在平行于基准的X方向()振动的光线,而给出下列描述。通常,TNLC分子具有特定的光学特性。详细地,当施加电场时,TNLC分子在垂直方向被排列,由此不改变穿过LC层3的光线的偏振状态,但是在未施加电场时,TNLC分子在水平方向上排列,由此改变穿过LC层3的光线的偏振状态。
下面首先描述由周边环境提供的光的显示原理。
下面首先描述当电场未被施加到LC层3时从周边环境进入反射区RA的光的偏振状态的变化。
如在图6中所示,外部光线首先入射到第二偏振器22上。此时,第二偏振器22仅传输入射光线的X方向上的线性偏振光线。然后,线性偏振光线穿过光延迟层24,由此被转换为左手圆偏振光线。接着,左手圆偏振光线进入LC层3。此时,LC层3将左手圆偏振光线转换为Y方向的线性偏振光线。然后,线性偏振光线被反射电极194反射,由此再次进入LC层3。此时,LC层3将线性偏振光线转换为左手圆偏振光线。随后,左手圆偏振光线穿过光延迟层24。此时,左手圆偏振光线被转换为X方向上的线性偏振光线。接着,在穿过第二偏振器22之后,线性偏振光线射出LCD。此时,LCD屏幕展示为白状态(W)。
接着,下面描述当电场施加到LC层3时,从周边环境进入反射区RA的光线的偏振状态的变化。
外部光线首先入射到第二偏振器22。此时,第二偏振器22仅传输入射光线的X方向上的线性偏振光线。然后,线性偏振光线穿过光延迟层24,由此被转换为左手圆偏振光线。接着,左手圆偏振光线穿过LC层3而不改变其偏振状态。然后,左手圆偏振光线以在反射电极194上的反射被转换为右手圆偏振光线。右手圆偏振光线再次穿过LC层3而不改变其偏振状态,然后进入光延迟层24。此时,通过光延迟层24光线被转换为Y方向上的线性偏振光线。接着,第二偏振器22完全吸收在Y方向上的线性偏振光线。在这种情形,LCD屏幕展示为黑状态(B)。
下面描述由背光单元900提供的光线的显示原理。
从背光单元900进入LCD反射区RA的光线首先入射到第一偏振器12。此时,第一偏振器12仅传输在入射光的Y方向上的线性偏振光线。线性偏振光线被反射元件137a或177a或存储电极137反射,反射元件137a或177a或存储电极137形成于TFT阵列面板100的基板110上,由此再次返回到背光单元900而未改变偏振状态。当碰到背光单元900的反射板950时,被反射的光线再次返回,由此进入透射区TA。用这种方法,从背光单元900进入反射区RA的光线最终被导入到透射区TA,由此被用于显示图像。反射元件137a和177a延伸到界定反射区RA的轮廓线或至少一条轮廓线,在这些连续的过程中,反射元件137a和177a通过反射将入射光线的行进路径改变为向后,从而不接触由可以吸收光线的有机材料制成的上钝化层180q,由此提高了从背光单元900提供给LCD的反射区RA的光线的利用效率。
下面描述当电场未施加到LC层3时,从背光单元900进入透射区TA的光线的偏振状态的变化。
来自背光单元900的光线首先入射到第一偏振器12上。此时,第一偏振器12仅传输入射光线的Y方向上的线性偏振光线。然后,线性偏振光线进入LC层3。当没有电场时,在LC层3引起通过LC层3的光线λ/2的相差的情形,在通过LC层3之后,在Y方向上被线性偏振的光线被转换为在X方向上的线性偏振光线。接着,被转换的光线连续穿过光延迟层24和第二偏振器22而不改变其偏振状态。在这种情形,LCD屏幕表示为白状态(W)。然而,当没有电场时,在LC层3引起通过LC层3的光线λ/4的相差的情形,在通过LC层3之后,在Y方向上被线性偏振的光线被转换为左手圆偏振光线。然后,左手环形光线进入光延迟24。接着,线性偏振光线穿过第二偏振器22。在这种情形,LCD屏幕展示为白状态(W)。
下面描述当电场被施加到LC层3时,从背光单元900进入透射区TA的光线的偏振状态的变化。
来自于背光单元900的光线首先入射到第一偏振器12上。此时,第一偏振器12仅传输入射光线的Y方向上的线性偏振光线。然后,线性偏振光线进入LC层3。在这种情形,由于在具有电场的LC层3内的LC分子被排列为垂直于面板100和200的表面,所以穿过LC层3的光线未改变偏振状态。接着线性偏振光线穿过光延迟层24,并且被第二偏振器22完全吸收。在这种情形,LCD屏幕显示为黑状态(B)
此后,参照图7A至图7E详细描述根据本发明典型实施例的LCD的TFT阵列面板100的制造方法。
图7A至图7E是显示根据本发明的LCD的TFT阵列面板100的制造方法的典型实施例的示意截面图。
首先通过溅射工艺在绝缘基板110上交替地沉积具有不同折射系数的两种介质,由此形成包括交替层119a和119b的介电层。接着,如在图7A中所示,通过光刻去除对应于透射区TA的介电层,由此形成仅存在于反射区RA的多个反射辅件119。
接着,通过溅射工艺在具有反射辅件119的基板110上形成导电层。导电层可以由诸如A1或Al合金的含Al金属、诸如Ag或Ag合金的含Ag金属、诸如Cu或Cu合金的含Cu金属、诸如Mo或Mo合金的含Mo金属、Cr、Ti或Ta制成。
然后,如在图7B中所示,通过光刻来选择性地蚀刻导电层,由此形成多条具有栅电极124的栅极线124、多条具有存储电极137的存储电极线131、和多个反射辅件137a。在图7B中,反射辅件137a与存储电极线131一体形成。然而,与图7B不同,在替代的典型实施例中,反射辅件137a可以与存储电极线131分开。
随后,通过低压化学气相沉积(“LPCVD”)或等离子体增强化学气相沉积(“PECVD”),在图7B的生成物上顺序沉积栅绝缘层140、氢化非晶硅层、和掺杂以N+杂质的非晶硅层。然后,如在图7C中所示,构图氢化非晶硅层和掺杂非晶硅层,从而形成具有多个突起154和扩展部157的半导体151,和多个欧姆接触图案164。栅绝缘层140可以由SiNX制成。
接着,在图7C的生成物上,通过溅射工艺形成由诸如含Mo金属、Ta、Cr或Ti的难熔金属制成的导电层。然后,如在图7D中所示,通过光刻来选择性地蚀刻导电层,由此形成多条具有源电极173和端部179(图1-3)的漏极线171和多个具有扩展部177的漏电极175。此刻,还可以形成图3的第三典型实施例的多个反射辅件177a。各个反射辅件177a形成于反射区RA内,并且形成到直至反射区RA和透射区TA的边界。
随后,去除欧姆接触图案164的被暴露的部分,该部分未被数据线171和漏电极175覆盖。结果,如在图7D中所示,形成多个欧姆接触163和165,并且在欧姆接触163和165之间暴露下面的半导体154。接着,优选进行O2等离子体处理,以稳定半导体154被暴露的表面。
接着,如在图7E中所示,通过CVD工艺,由SiNx构成的下钝化层180p形成于整个基板110上。然后,由有机材料构成的上钝化层180q形成于下钝化层180p上。上钝化层180q通过掩膜被部分曝光,并且随后进行显影工艺,由此形成多个接触孔185,通过接触孔185在漏电极175的扩展部177上面的钝化层180p被部分暴露。接着,在上钝化层180q的表面形成不平坦的图案,并且去除对应于透射区TA的上钝化层180q,由此形成多个透射窗195(图1-3)。
接着,如在图7E中所示,通过使用光刻胶图案的光刻来构图下钝化层180p,以形成穿透上和下钝化层180q和180p的接触孔185。
然后,如在图7F中所示,多个透明电极192形成于图7E的生成物上。透明电极192通过接触孔185被连接到漏电极175。随后,由Ag或Al制成的多个反射电极194形成于透明电极192上。
此后,将参照图8A至图8D描述根据本发明另一实施例的LCD的滤色面板200的制造方法。
图8A至图8D是显示根据本发明的LCD的滤色面板200的制造方法的另一典型实施例的示意截面图。
首先,如在图8A中所示,光延迟层24形成于绝缘基板210上。光延迟层24不引起穿过在透射区TA内的光线的偏振状态的变化,而确实引起穿过在反射区RA内的光线的四分之一波长的相差。光延迟层24通过下述连续的工艺制造。首先在基板210上印刷和摩擦聚合物,以形成配向层(未表示)。在摩擦工艺中,反射区RA以对偏振器的透射轴45度的角度摩擦,而透射区TA平行于透射轴摩擦。接着,在配向层上旋涂LC聚合物或可紫外线固化的向列型LC单体。然后,基板210被暴露于光线,从而形成光延迟层24。
在下一步骤中,具有良好遮光性能的材料被沉积在光延迟层24上,并且所述沉积层使用掩膜光刻而构图,由此形成如图8B中所示的遮光构件220。
接着,如在图8C中所示,光敏化合物被涂覆在具有光延迟层24和遮光构件220的基底210上,由此形成多个三个一组的滤色器230。
在各个滤色器230中,对应于透射区TA的部分可以形成得比对应于反射区RA的部分厚。这些滤色器230的制造如下所述。首先在基板210上涂覆具有颜料的光刻胶,然后预烘基板210,以去除在光刻胶膜中存在的溶剂。接着,光刻胶被选择性地曝光,由此区分曝光部分和未曝光部分之间的固化程度。然后,进行显影工艺。采用显影工艺,完成滤色器230。
此外,在滤色器230的反射区RA可以形成光孔。在这种情形,光孔以透明有机材料填充。
同时,滤色器230可以在形成光延迟层24之前形成。在这种情形,滤色器230根据展示的颜色以不同的厚度形成,并且因而根据位置,在这样的滤色器230上面的光延迟层24的厚度不同。在该结构中,光延迟层24对于对应的滤色器230的中心波长具有四分之一波长的相差。结果,穿过各个滤色器230的光线具有四分之一波长的相差。
随后,如在图8D中所示,公共电极270形成于具有滤色器230的基板210上。
如上所述,根据本发明,从背光单元进入LCD的反射区的光线通过LCD的内部反射系统被导入透射区而没有吸收光损失。这样的光线随后用于显示图像,因而改善了LCD中光线的利用效率。
本发明不应理解为限于上述具体的实施例,而是应当理解为覆盖在权力要求中清楚地提出的本发明的所有方面。当本发明被直接置于本领域的技术人员的检视时,可应用本发明的各种修改、等同工艺、以及大量的等同结构对于本领域的技术人员显见的。