CN1842635A - 在地质结构中使用的可扩张管、扩张管的方法以及制造可扩张管的方法 - Google Patents

在地质结构中使用的可扩张管、扩张管的方法以及制造可扩张管的方法 Download PDF

Info

Publication number
CN1842635A
CN1842635A CNA2004800246330A CN200480024633A CN1842635A CN 1842635 A CN1842635 A CN 1842635A CN A2004800246330 A CNA2004800246330 A CN A2004800246330A CN 200480024633 A CN200480024633 A CN 200480024633A CN 1842635 A CN1842635 A CN 1842635A
Authority
CN
China
Prior art keywords
tube
energy storage
distensible
diameter
storage member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800246330A
Other languages
English (en)
Other versions
CN1842635B (zh
Inventor
杰弗里·A·斯普雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1842635A publication Critical patent/CN1842635A/zh
Application granted granted Critical
Publication of CN1842635B publication Critical patent/CN1842635B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/108Expandable screens or perforated liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Earth Drilling (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Processing Of Solid Wastes (AREA)
  • Sewage (AREA)
  • Buffer Packaging (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)
  • Laminated Bodies (AREA)
  • Revetment (AREA)
  • Foundations (AREA)

Abstract

在地质结构中使用的可扩张管(50),包括扩张管的方法以及制造可扩张管的方法,可扩张管包括使用扩张能量存储部件,该部件为可扩张管提供了自扩张的特征。

Description

在地质结构中使用的可扩张管、扩张管的方法以及 制造可扩张管的方法
1.相关申请
申请人要求2003年8月25日提交的序列号为60/497,688以及2003年9月16日提交的序列号为60/503,287的美国临时专利申请的优先权。
                        发明背景
2.技术领域
本发明涉及:在地质结构中使用的可扩张管,比如用于如油和气的碳氢化合物的生产,或油田管,以及用于类似的井和结构,例如水井、监测和补救井、隧道和管道;扩张油田管和其他可扩张管的方法;以及制造可扩张管的方法。可扩张管包括但不限于这些产品如:衬管、衬管悬挂器、防砂筛管、封隔器以及隔离套筒,所有这些都通常使用于地质结构中,比如用于碳氢化合物的生产,且向外扩张而与井眼或井筒接触,以及如前所述的在类似井和结构中使用的产品。
3.参考信息
申请人在此合并通过参考美国专利5,785,122、6,089,316和6,298,914,每一个题目为“Wire Wrapped Well Screen”,并共同为本申请人拥有。
4.背景技术
虽然经过一个世纪不断的技术进步,油井和气井的钻井和建造仍然是慢速的、危险的和非常昂贵的过程。一些井的成本接近1亿美元,如此高的成本的主要原因在于需要中断钻井进度,以便维修井中与地质相关的问题断面。
通常仍然仅仅通过昂贵且耗时的加套和固井操作,来改正漏失循环液、钻孔失稳和井压力控制等主要问题。在每一个问题实例中都需要这样的传统密封过程,这经常要求在大多数井中安装一系列的几个直径递减的或套叠的套管柱。一般来说,每个套管柱从表面安装到每个问题区域,10,000英尺深的井经常需要20,000至30,000英尺的管。
套叠实践的不利之处有很多,包括需要过多的挖掘工作以及需要相应的装备来应付尺寸过大的钻岩和昂贵废产品的过量生产。通常需要超过24英寸的起始直径,以允许5英寸或更小的最终生产套管。当今的大型钻井操作可能需要额定提升负荷高达2,000,000磅的钻井设备,并占据几英亩的井位位置,而这两个需要都主要归因于各种套管需要和操作。尽管花了很大的费用和努力,常常因为最终的套叠式套管尺寸或生产套管太小而不能经济地生产碳氢化合物资源,形成报废井。
近年来,能源工业在从事作为另一选择的“单钻孔”井筒系统的开发,其中从表面到通常为1至7英里深的目标区域使用单一尺寸的套管。单钻孔概念利用在分立区域放置可扩张套管来取代每个原先为同心的从表面到问题区域的套管柱的安装。通过在原地进行的冷作、机械的钢变形的过程,外径(“OD”)为7-5/8英寸的中等套管尺寸将理想地扩张至大致符合10英寸的标定钻孔。扩张的套管组件必须满足一定的强度要求,并当钻井变深并出现新的问题区域时,允许随后的7-5/8英寸外径的套管柱通过。
上述的变形过程在本质上需要使用软钢,其不能够产生高要求环境中所需要的很多关键机械特性,这些高要求环境对于油井和气井来说是普通的。由于具有基本上不能解决的技术问题,相信60-70%的潜在客户不会考虑使用当今的可扩张套管。变形的套管不提供密封效果,因此仍然需要固井操作。
目前,在油气生产中使用多种井下可扩张管和井下“工具”。这些新的可扩张管和/或井下工具的最终成功,将依赖于其遵循或附着到各种地下它们贴着其扩张的几何形状的能力及其建立对井眼流体流动的一些控制的使用。在任何类型的井的寿命中,由于历年来发生的地层砂粒的磨损、下陷或各种生物、化学及地质化学过程,地下条件不断变化。这些可扩张管在扩张后,必须在其整个使用寿命里大致保持其顺性。
最初由于钢材料从其改变状态“回弹”至其自然或原始形式的自然倾向,使用当今的可扩张管不能够实现真正的可扩张管或装置的顺性。回弹有时候也称为“恢复”、“弹性”、“弹性恢复”、“弹性滞后”和/或“动态蠕变”。该原理存在于处理过的钢或其他金属材料的各个阶段,直至由于过度变形导致的断裂点。对于断裂前的管子,在管子-弧度的整个厚度上有不同程度的变形,其以根据弧度的程度而变化的比率转化为保证回弹,相应于变形的程度。当然,如果例如钢的金属材料的变形尚未超出材料的弹性极限,那么“回弹”比较大。
当今的扩张方法和可扩张装置只能够根据一个矢量来使材料变形,并假定装置自由,或者说要求没有障碍或其他功作用在井眼岩石上,如压力。实际上,当遇上这样的工作阻碍,局部扩张就基本上停止了;而且该扩张永不可能达到100%的附着。在遇上障碍或岩石时,扩张基本上停止,且可扩张管随后收缩,对于当前的技术,环形空间通常总是存在的。
主要是局部的过度扩张和过度的材料变形,邻接在任何井眼或有套的孔的环境里为非常普通的缺陷,其形成粘合充分的任何类型的装置或管;然而,扩张的装置和井的构成并不彼此大致附着。对于在不规则几何形状的环境里发生的扩张,问题变得更复杂。由于在最后扩张时,装置是静止的,没有恢复或回弹的倾向,且井眼环境没有在其上施加任何作用,顺性缺乏或井中高速和高压的流体流动的不受控制的“热点”可能导致问题。
可扩张管的目的是允许“固体管”穿过井中的最小直径的套管和/或钻孔,以生产碳氢化合物,固体管如套管、衬管悬挂器、隔离套筒、封隔器和/或防砂筛管,并且随后贴着该套管扩张或贴着较大的无套管的钻孔直接扩张。重要的经济利益是:安装水泥或砾石充填封套的花费和时间不再需要了,或大大减少了。
对于防砂筛管,技术好处始于改善的井筛管和钻孔的接近性,因为井的流体被较少地阻止进入筛管。其他好处可包括:用于去除钻探泥浆、维修钻子损坏、恢复自然生产潜力的改善的通道和机械有效性。此外,产生了较大的功能性的筛管表面积,其提供了更多有功能的流体流动的面积和防止阻塞。井筛管扩张产生的另一个好处是:可扩张管具有更大的内直径。这允许放置更大直径的泵和其他设备,或加工到井的生产区,其使用于各种现存的“智能井”流动控制硬件中,如泵、阀门和原位分离器。
当今现有的可扩张管和扩张管的方法,通常利用穿孔的或开槽的基管或原始管构件,通过促使扩张装置,如清管器或心轴,穿过基管,并且使其扩张和变形,或者通过在基管内拖拉或旋转锥形楔或滚子,基管扩张或变形至超出形成基管的材料的弹性极限,或者说塑性变形,以再次扩张基管,并使其永久变形。相信当前使用的可扩张管具有使其外径以25-50%的因子扩张的能力,但相信增大100%是理想的。当今现有的可扩张管的另一个不利在于扩张的可靠性。可靠性问题来源于装置本身的复杂性,其中,通过一些当今已知的可扩张管,需要多个层元件相互配合作用。钻孔条件的不规则性,包括过度的弯曲程度、膨胀引起的直径限制以及非同心性,可能都趋于阻止这些配合要求。
当今使用的可扩张管的另一个不利与其有限的抗破坏强度有关。当今现有的基管的扩张和永久变形,必然导致外壁厚度逐渐变薄。为了抗破坏,当可扩张管或装置的直径增加时,需要更大的壁厚度。一些当今的产品在完全扩张时,提供小至270psi的抗破坏强度,而其他的可能提供大约1000psi的抗破坏强度。工业的优选将是最小为大约3500psi。当其直径增加时,传统可扩张管迅速变薄。这也是公知的:高度的变形导致应力开裂和各种冶金问题。变形装置的抗破坏力按照某个与其外径成立方的比率减小。相信抗破坏强度的减小随着使用开槽基管而加速,其实际导致任何钢质量的实质面积的缺失。虽然采用具有更厚壁的基管可能是抗破坏强度问题的一个解决方法,但坚固壁的厚度需要显著的额外的机械功来使其扩张。而额外的功又确信超出了当今扩张装置的能力、成本以及有竞争力领域的时间要求。此外,过于坚固的扩张过程可在一些地质和井的材料内形成额外的空隙区。
另一个不利在于通用顺性,因为传统只针对理想状态,但井下的几何条件的极少方面是理想的。对于圆度来说,这尤其是正确的,因为对于传统技术的有效性来说,这通常是必要的条件。甚至带套管孔的环境都只以不定程度的偏心率或椭圆率而存在,通常不是理想的圆度。潜在的无套管的钻孔的几何形状是不受限制的。相信传统的可扩张管不适合用于非圆条件下,因为这些条件为已经以立方成反比的变量增加了按指数规律变化的所有的破坏应力,可在Timoshenko和类似的板壳公式中找到这些变量。
传统的可扩张管的另一个不利在于缺乏以扩张-能量存储和动态校正能力为形式的真实顺性。当前,由于延性材料的变形而发生的能量阻尼效应、穿过一些可扩张管的多层的低效能量传输、以及任何材料阶段所固有的“回弹”原理,尚未提供使已扩张的可扩张管装置的附着最大化的机构。此外,软的延性基管材料超出其弹性/塑性极限外的扩张和变形,可能出现公知的应力开裂问题。
当前的传统可扩张管的另一个不利在于:当基管或原先使用的管构件向外变形而与井眼接合时,这种向外的径向扩张导致管构件的总长度变短。当在套管“卡点”之间套管时,这种沿管构件纵轴线的收缩能阻止径向扩张,并且当在钻孔内连接基管的多个部分时,可造成间隔和连接问题,因为可能具有可变长度的轴向间隙,其依赖于基管已经发生了多少径向扩张,这导致基管不理想的轴向缩短。
                      发明内容
总的来说,本发明是一种可扩张管,其具有至少一个与其相关的能量存储部件,在可扩张管从其第一未扩张直径扩张至第二扩张直径时,释放存储的能量,以促使已扩张的可扩张管与地质或类似结构,如井筒或钻孔的内部成顺从或大致邻接的关系。
                      附图说明
在附图中:
图1是根据本发明的可扩张管的实施例的透视图;
图2是沿图1的线2-2截取的截面图;
图3是与图2的视图类似的可扩张管的另一个实施例的截面图;
图4是图3的可扩张管的实施例在开始扩张后的截面图;
图5是图2的可扩张管的实施例在大致扩张至其最大直径后的截面图;
图6是根据本发明的可扩张管的另一个实施例的透视图;
图7是根据本发明的可扩张管的另一个实施例的部分的分解图;
图8是根据本发明的可扩张管的另一个实施例的透视图;
图9是根据本发明的可扩张管的另一个实施例的透视图。
图10是根据本发明的砂筛的透视图;以及
图11是根据本发明的套筒的透视图。
虽然将结合优选实施例来描述本发明,应当理解:本发明并不局限于该实施例。相反,应当包括所有的变动、改动和等效物,正如后附的权利要求书中所限定的本发明的精神实质和范围所包括的。
                    具体实施方式
参考图1,结合可扩张管50显示了本发明的实施例。通过使用术语“可扩张管”,意在包括但并不限于:用于地质结构中的通常为管形状的构件,比如井眼或钻孔内、或带套管的井眼或钻孔的套管内井下使用的构件,或用于类似井和结构内的通常为管形状的构件,比如水井、监测和补救井、隧道和管道。这些通常为管形状的构件包括但并不限于:衬管、衬管悬挂器、防砂筛管、封隔器以及隔离套筒,如比如油和气的碳氢化合物,以及用于先前提出的类似井和结构中的产品的生产领域中所已知的。图1中显示的可扩张管50,结合了过滤器构件,如下文将详细描述的,可用作防砂筛管或井筛管。如果管50的外表面51上具有一固态层的塑料或弹性体材料53(图2),比如一层橡胶、塑料或类似的弹性体材料,那么可扩张管或管50就成了隔离套筒。在以下所有的描述中,相同的参考数字用于具有相同或类似功能与结构的元件,而带斜撇的参考数字通常代表所描述元件的不同实施例。
可扩张管50包括可扩张管50的第一部分55,其中部分55具有未扩张的第一直径D,沿着管50的纵轴线56测量,第一部分55具有长度L。可扩张管50的第二部分57代表可扩张管50的过渡或中间阶段,具有长度L’,其中显示的第二部分57处于从未扩张直径D至扩张直径的扩张过程中,扩张直径大于未扩张的第一直径D。可扩张管50的第三部分58代表可扩张管50在其扩张至预期扩张直径D’后的构型,如下文将详细描述的。因此,图1显示了可扩张管50的部分,其扩张并获得增大的直径D’。
仍然参考图1,可扩张管50通常包括传统的可扩张基管或通常为管形状的构件60,其具有外壁表面51和内壁表面52。基管60可最初形成带有形成在其上的多个开口或穿孔61;当第一部分55具有未扩张直径D时,结合可扩张管50的第一部分55来看,穿孔61最初具有通常为卵形或椭圆形的形状。以传统方式扩张基管60,如使用推或拖拉穿过基管60的心轴或清管器。基管60经过中间的或过渡的第二部分57,在此期间,可以看出,卵形穿孔或开口从卵形转变为中间的卵形或椭圆形62。当基管60继续扩张并且变形至结合具有直径D’的第三部分58所显示的构型时,开口或穿孔呈现圆形63。开口61-63的形状变化通常是基管60的直径相对于扩张的管50的纵轴线56在径向向外方向上扩张的结果。类似的,当发生扩张时,可扩张管50或基管60的总长度将沿着可扩张管50的纵轴线56的方向而减小。类似的,当扩张至直径D’时,形成基管60的壁65的厚度将稍微减小,或者说变薄。
仍然参考图1,所显示的穿孔61可以热处理和淬火为偏向于它们的扩大。如果锻造出而不是钻出孔或穿孔61,提供给可扩张管50的抗破坏强度功能的总的最终质量可以增大,因为钻孔去除了材料或质量。对于具有多个槽的管来说,可以使用同样的热处理,如下所述。
作为另一种选择,基管60可以具有形成在其上的多个交替的交错排列的槽,如本领域中已知的,且槽通常沿着可扩张管50的纵轴线56排列。在基管60的该实施例(图中未示)扩张时,形成在基管60内的开口或槽在基管60扩张时呈现六边形的构型,如本领域中已知的。如传统的,基管60扩张或变形至超出制造基管60的材料的弹性极限,该材料通常是钢,其具有所需要的强度和耐久性特征,以便在井下环境中作为可扩张管而起作用。作为另一种选择,具有所需要的强度、耐久性和柔性特征并能够以前述方式在井下环境中起作用的任何其他材料,也可以用来制造基管60。
仍然参考图1,可扩张管50也包括至少一个弹簧或能量存储部件70,优选地包括多个弹簧或能量存储部件,如下文将详细描述的。当基管具有其第一未扩张直径D时,弹簧或能量存储部件70用来在其中存储能量或扩张能量,并且在可扩张管50被放置于井下在套管或钻孔75(图2)内的其理想位置期间,能量存储部件70优选地连续释放至少部分其存储的能量,优选地释放其存储的大部分能量。存储能量的释放会使可扩张管50的外壁表面51被向外沿径向推动或偏置,该方向大致垂直于可扩张管50的纵轴线56。这个向外延伸的偏置力因此倾向于连续地偏置或作用于可扩张管50,此时促使其理想的扩张直径D’靠着套管或钻孔75的内部,以实现与套管或钻孔内部的充分改善的顺从或邻接的关系。
图1和2显示的实施例中的能量存储部件70,最初可以包括与基管60相关的凹槽、沟槽或凹口71。凹口71可以是独立的部件,或类似弹簧的凹槽,位于基管60的相邻部分之间,而能量存储部件70或凹槽71可以固定于基管50的相邻部分上,例如通过焊接过程。作为另一种选择,能量存储部件70或凹口71可以与基管60形成一整体,例如利用滚子或任何其他合适的制造技术来形成。能量存储部件70或凹槽71通常沿着可扩张管50的纵轴线56的方向延伸,如图1所示,能量存储部件70通常以螺旋或螺线的方向和方式来环绕基管60。
从图2中可看出,在可扩张管50的第一部分55内的凹槽71可以初始形成为具有带凹槽的构型,其中凹槽71的壁74的外表面72相对于基管60的外壁表面51是凸的,而内壁73相对于基管60的内壁表面52具有凹的构型。能量存储部件70或凹槽71的截面构型,可以典型地具有半圆形或其他构型,其中凹槽71的外壁表面72相对于基管60的外壁表面51是凸的。通过沿着基管60的纵轴线56径向向内推动或压缩壁74,能量或扩张能量随后存储在能量存储部件70或凹槽71的壁74内。如图2中可看出的,通过向内压缩或者另外推动凹槽71的壁74,凹槽71被布置为外壁72相对于基管60的外壁表面51成凹形,且被布置为相对于基管60的内壁表面52成凸的关系。如果壁74未变形超出其弹性极限,呈现出图2所示的向内设置的关系,能量就存储在能量存储部件70内。换言之,形成凹槽、凹口或沟槽71的壁74起弹簧的作用,其现在被压缩并存储能量。设置于可扩张管50的第一部分55的外壁表面51上的任何合适的约束装置,如外衬管、至少一根且优选地为多根带子或条带(图中未示),可用来将凹槽71或能量存储部件70保持在其压缩状态,在其中存储所需要的能量。作为另一种选择,点焊、焊料、环氧树脂;可去除的、可蚀刻的、可剪切的金属或塑料带子、涂层或条带;或化学粘合剂,可以用来将能量存储部件70约束或保持在其压缩的存储能量的配置。在例如通过溶解、剪切、蚀刻、去除或撕裂外衬管或条带,或通过溶解焊接点或化学粘合剂等释放作用于能量存储部件70上的压缩力时,凹槽71的壁74将开始朝着套管或钻孔75的内部而向外弹出。在那个时候,壁74可向外移动,直至其与基管60的内外壁表面51、52大致共面,如图1中80处所示,壁74随后向外弹出,使得壁74的外壁表面72具有图1中结合可扩张管50的第三部分58在81处所示的构型。能量存储部件70随后起弹簧或自扩张弹簧的作用,以向外推动或偏置可扩张管50的扩张的第三部分58的外壁表面51,使其与套管或钻孔75的内部成邻接的顺从关系,如图5所示。
存储在能量存储部件或弹簧70内的力或能量,也可以在基管以传统方式扩张的同时进行释放,传统方式如通过推动或拖拉清管器或心轴穿过基管60。基管60的扩张又能够释放任何约束装置或机构,其用于将能量存储部件70或凹槽71的壁74保持在其初始的压缩构型。因此,如果条带或外衬管(图中未示)围绕基管60的外壁表面51布置,基管60的扩张能够一开始就导致条带和/或衬管断裂或开口,从而释放存储在能量存储部件70内的弹簧能量。
作为另一种选择,应该注意的是:前述的能量存储部件70和下文将描述的那些能量存储部件,也可以单独使用于基管60中,而不具有开口或穿孔61或交错排列的槽。因此通过单独使用本发明的能量存储部件来实现可扩张管所需要的扩张,本发明的能量存储部件提供了一种自扩张的可扩张管。
仍然参考图2,基管60位于钻孔75内,显示了其插入孔未扩张的或较小的直径,其可为4英寸直径的管子,具有至少一个能量存储部件或高张力的拱形弹簧元件或凹槽71,其按螺旋线固定。凹槽71的自然形式可以是凹的,如结合图2所显示和所描述的,但其也可以最初是凸的,因为在图5中显示的其最终扩张的工作形式中,其是凸的。此外,在制造时推动相反的拱形位置或构型,是另一种给基管60提供更大的质量-能量关系和自扩张偏置的方法。
这对于本领域中的普通技术人员来说是显然的:能量存储部件70可具有其他构型,以及其他机构可用来提供所需要的偏置能量。比如,替代具有半圆形截面构型的凹槽71来提供能量存储部件,能量存储部件70’可以是按具有蜿蜒或Z形构型的截面构型形成的壁74的一部分或几部分,如图3所示。和Z形(图中未示)弹簧70’相比,图3中的蜿蜒构型具有更倒圆的连接器部分91,弹簧70’的腿92在连接部分91处彼此连接。蜿蜒的或Z形的壁表面90起弹簧70’的作用,其可以压缩以存储能量。Z形的能量存储部件70’可以布置得大致平行于可扩张管50的纵轴线56,或者可以按照图1中所示的凹槽71的方式相对于纵轴线56为螺线或螺旋布置。具有蜿蜒或Z形截面构型的能量存储部件70’起弹簧的作用,其可以按照前述方式被压缩来存储所需要的能量。
参考图4,显示了图3中可扩张管50’的部分截面视图,其处于过渡阶段或中间阶段57(图1)。在从凹形到其被促动的凸形转化的过程中,该特定类型的弹簧元件或能量存储部件70’正向其蜿蜒的或Z形的形式转变。参考图5,显示了图1中最终扩大的部分58’的基管60或可扩张管50的部分截面视图,但只显示了能量存储部件70的形状81(图1)。为了便于图解,以夸大的关系显示了弹性部件或凹槽71的能量存储部件70的凸的位置或构型,使得凹槽71的壁74的外壁表面72与钻孔75切向接触。
向外偏置的弹簧部件或能量存储部件70、70’以及那些下文将要描述的部件,起三个作用。第一,弹性接触点前摄地决定钻孔75内的某个几何形状和表现,可扩张管的能量在该弹性接触点处显现。第二,弹簧70以周向的方式提供顺性类型的压力或质量-能量关系相当的抗破坏偏置。最后,能量存储部件或弹簧70、70’提供了更大的最终所需要的基管60直径D’。
在200%的扩张设计中,例如具有牢固的1/2英寸或更大壁厚的基管60从4英寸外径扩张至8英寸外径,允许使用高张力材料来代替弹簧元件70,如向外径向滑动/径向推动的弹簧设计。如下文将要描述的,在该实施例中的能量存储部件或弹簧70,类似发夹的几何形状,并且是相对薄壁构件。小直径的、相对厚壁的圆柱或部分的壳结构原则,可用作弹性强度的提供者。将这些圆柱转化为1/2英寸的壳、3/4英寸的壳或其他比率,并且添加短板或腿来形成发夹的形式,这允许操纵合适的外部压缩及当元件相互作用时的最终的井下顺性弹性。当然,许多这样的小弹簧构件可以成层。
参考图6,说明了可扩张管50”的另一个实施例,其中显示的可扩张管50”具有扩张的三个部分或阶段55、57、58,其结合图1的可扩张管50说明。部分或阶段55具有未扩张直径D,部分58具有完全扩张的部分或扩张直径D’。可扩张管50”具有至少一个、优选地具有多个能量存储部件70,其径向围绕并且大致平行于可扩张管50”的纵轴线56布置。能量存储部件70布置于轴向延伸的大致刚性的构件、壁构件或杆支撑构件110之间。能量存储部件70可以是细长的通常为V形或通常为U形的弹簧构件111的形式,其最初被压缩并布置于壁构件110之间,以形成如部分55处所显示的基管60’。可扩张管50”的部分55的扩张最初被任何合适的方式所约束,如之前结合可扩张管50、50’所描述的。当释放作用于能量存储部件70或弹簧111的约束力时,最初与基管60的外壁表面51成间隔关系而布置的弹簧111,径向向外扩张并滑动,直至其布置成图6的可扩张管50”的部分58中所说明的构型。出于说明的目的,朝图6的左侧显示了可扩张管50”的部分120,并显示了与可扩张管50”的外表面51向内间隔布置的弹簧111,其中弹簧构件111的每个优选地布置于细长的支撑构件110之间。在这点上,可扩张管50”的部分120更能代表可扩张管50”处于过渡阶段或者说图6中显示的部分57的构型。
图7是位于钻孔75内的可扩张管50的另一个实施例的分解图,与图6的可扩张管50”类似。显示的可扩张管50处于图6的部分或阶段58的完全扩张构型,其中细长的大致或通常为V形或U形的弹簧构件111布置于细长支撑构件110’之间。替代如图6实施例的支撑构件110的相对刚性,杆或支撑构件110’也形成为能量存储部件70或细长的大致为V或U形的弹簧构件112。通过能量存储部件70或弹簧构件111、112的相互作用,相信该可扩张管50可提供更细微、详尽的顺性程度。在可扩张管50的该实施例中,优选地使用了护套、衬管或包层53。构件53的衬管可以是砂筛膜或固体的套管层,取决于可扩张管50的预期用处。
参考图8,显示了可扩张管50””的另一个实施例,处于未扩张构型或部分55以及扩张构型或部分58。该可扩张管的构造可以和先前结合图6和7描述的那些以及下文将要描述的可扩张管的后续实施例相同或类似。如果需要,可以结合可扩张管来利用后张力原理,由此可以通过在细长构件110或替代的细长构件110’上沿箭头130所示的方向拉或施加张力,来实现基管60’的外壁表面51的额外向外偏置或向外自扩张。从较大直径的锚定点或通过实际的后张力实践来施加张力或拉力,在后张力实践中,通过在其他部件下放置张力构件来引起向外的拱形偏置。出于说明的目的,图8只显示了几个处于张力下的细长构件110;然而,所有细长构件110优选地都被施加张力。如前所述,如果需要,也可以使用护套、涂层或包层53。
参考图9,显示了可扩张管50””的另一个实施例,处于其插入或未扩张阶段55以及其扩张的大致完全的直径D’的阶段58。通过多个能量存储部件70来形成基管60的外壁表面51,能量存储部件70大致平行于可扩张管50””基管60’的纵轴线56延伸。作为另一种选择,基管60’的外壁表面51的至少一部分由一些能量存储部件70所形成,而其他部分可以由一些其他类型的元件来形成,如先前描述的壁构件110。优选地,基管60的大致所有外壁表面51由多个能量存储部件70所形成。
仍然参考图9,能量存储部件70的至少一些,如果不是所有的,优选地为能量存储部件70的大部分,是通常的U形或V形的细长弹簧构件111’,弹簧构件的每个通常布置得大致平行于基管60’的纵轴线56。每个细长弹簧构件111’优选地包括细长曲壁表面140,其布置于大致平行于基管60’的纵轴线56的方向。壁表面140跨接弹簧构件111’的腿92之间的空间。可以认为包括曲壁表面140的弹簧构件111’是由壁或腿92所支撑的圆柱表面,通常称该结构为“拱顶”,如图9所示。曲壁表面140通常表现得很象一系列平行的拱形。曲壁表面140可以以任何合适的方式固定于弹簧构件111’的腿92上,只要所形成的结构能够起作用,以允许可扩张管50””在释放约束力时向外扩张,如前所述。优选地,当可扩张管由合适的钢或其他金属材料制成时,曲壁构件140可以通过焊接固定到腿92上。如果使用塑料材料,可以通过粘合剂或环氧树脂或其他类似的连接方法或任何合适的连接技术,将曲壁表面或壁构件140固定到腿92上。虽然显示了两个腿92,在弹簧构件111’中可以使用更少或更多的腿92。
通过在扩张阶段58中联合多个能量存储部件70或弹簧111’,可以装配可扩张管50””,随后可扩张管50””可以径向压缩而呈现插入构型55。如果可扩张管50””被压缩,弹簧构件111’的腿92朝彼此移动,且曲壁表面或壁构件140被推动在径向方向向外移动远离基管60的纵轴线56,如145处所示。随后受压缩的可扩张管50””被约束在压缩构型,或缩小直径的阶段或部分55,如先前结合本发明可扩张管的其他实施例所描述的。例如,在可扩张管50””置于地质结构或钻孔75内后,可以如前所描述地去除约束力,由此每个弹簧构件111’的腿92背离彼此而移动或者说自扩张,这导致每个弹簧构件111’的外壁表面140呈现较小的拱形,同时可扩张管50””的直径增大。
仍然参考图9,通过装配多个个体的被压缩的弹簧构件111’,以形成处于其插入或减小直径的构型55的基管60,也可以可选的构成可扩张管50””。在任何一种情况中,弹簧构件111’的每个优选地相联于,或以某种方式固定于邻近的弹簧构件111’或壁构件110(图中未示),例如通过保持机构,如点焊、化学粘合剂、内部可扩张衬管(图中未示),或通过环氧树脂或类似技术。作为另一种选择,可扩张管50””可以作为整体式结构而形成,该整体式结构由通常为圆柱形的、整体式的折叠结构所形成,其中褶的每个是一个类似弹簧的构件或弹簧构件。
应该注意的是,当曲壁表面或壁构件140以及弹簧构件111’的腿92被压缩时,必须要小心,以避免使腿92或曲壁表面140超出其弹性极限而永久变形。这对于本领域中的普通技术人员来说是显然的:如果腿92或曲壁表面140变形超出其弹性极限,可扩张管50””将可能不再如所需要的那样扩张或自扩张,或如果其仍然继续自扩张,扩张可能不是有效的。例如,如果用低于形成腿的材料的弹性极限的力来压缩腿92,而用高于形成曲壁构件140的材料的弹性极限的力来压缩或使壁表面140变形,可能弹簧构件111’将不再自扩张或可选地可能将不再自扩张至其最完全的程度,因为其运动可能被永久变形的壁表面140所约束。
参考图10,显示了用于井眼的采用砂筛或井筛管150形式的可扩张管。砂筛150的通常构造类似于作为参考合并的专利中的砂筛;然而,根据本发明,本发明的图10中的砂筛150是自扩张的或可自扩张的。砂筛150的构造类似于图6的可扩张管50”的构造,并包括多个能量存储部件70,其径向围绕砂筛150的纵轴线56布置。能量存储部件70可以是细长的V形或U形的弹簧构件的形式。代替弹簧构件111’被布置于图6中显示的轴向延伸的大致刚性的构件或壁构件110之间,纵向延伸的弹簧构件111’与邻近弹簧构件111’以间隔的关系布置,如通过多个间隔构件151。间隔构件151在邻近弹簧构件111’之间提供了多个空隙或开口,由此流体(图中未示)可向内流入砂筛150,如本领域中所已知的。如图10所示,当砂筛150从其减小直径的构型55扩张至其完全扩张直径的构型58时,提供了所需要的砂筛构型。如同可扩张管的其他实施例,砂筛150可以在最初压缩至其需要的以55显示的构型,并通过使用先前结合其他实施例描述的任何技术,将砂筛暂时约束在那个构型。如前所述,在释放约束力时,砂筛150扩张或自扩张至以58显示的构型。砂筛150可以起可扩张砂筛的作用,可作为另一个基管60的外罩,或起基管60的作用,该基管可以与一层橡胶或塑料材料(图中未示)一起使用,如先前结合图2和7所描述的。
图11显示了图10的砂筛150,在砂筛150的外表面51上具有弹性体层53,由此砂筛150结合弹性体层53可起自适应套筒结构的作用,用于地质结构。弹簧构件111’可以与图10中显示的包括间隔构件151的那些具有相同的结构。如果需要,也可以提供内部弹性体层160。此外,在井筛管和防砂筛管150的外壁表面上,也可以使用可扩张的过滤器层。
应该注意的是,在本发明的可扩张管的每个实施例中,在可扩张管或砂筛向外扩张至其需要的扩张构型时,扩张管或砂筛沿其纵轴线的长度基本不缩短。相信本发明的该特征,即不管在扩张构型58或压缩构型55中,每个扩张管的长度大致保持相同,可导致可扩张管的长度容易而有效的连接,以及可扩张管在例如钻孔的地质结构中容易而有效的安装。同时相信:在例如钻孔的地质结构内遇到障碍的范围里,能量存储部件或弹簧的柔性特性将允许本发明的可扩张管更好地适应钻孔或其他地质结构的内壁表面。
应当理解:本发明并不局限于所显示的和所描述的结构的确切细节、操作、确切材料或实施例,因为对于本领域中的普通技术人员来说,明显的改动和等效物是显然的。例如,如在包括的专利里所显示的井筛管,可以这样来制造:在井筛管内施加并锁定或存储纵向张力或伸长的力;在井筛管内施加并锁定或存储径向施加的压缩力;或在井筛管内施加和存储扭转或扭曲力。所有这些力或存储的能量在施加时将先减小井筛管的直径。在释放该力或能量时,在井筛管达到第二扩大直径后,存储的能量将提供向外指向的偏置力。施加的力将都小于被张紧、压缩或扭转的材料的弹性极限。因此,本发明只受后附权利要求书的范围的限定。

Claims (41)

1.一种用于地质结构的可扩张管,其包括:
通常为管形状的构件,其具有第一直径、外壁表面和纵轴线;
该管形状的构件包括至少一个能量存储部件,当管形状的构件具有第一直径时,该能量存储部件在管形状的构件内存储扩张能量;以及
当从至少一个能量存储部件释放扩张能量时,通常为管形状的构件扩张,从而具有大于第一直径的第二直径。
2.根据权利要求1所述的可扩张管,其特征在于,至少一个能量存储部件是至少一个弹簧。
3.根据权利要求2所述的可扩张管,其特征在于,弹簧形成为形成于管形状的构件的外壁表面内的凹槽。
4.根据权利要求2所述的可扩张管,其特征在于,弹簧是外壁表面的一部分,具有通常的蜿蜒的或Z形的构型。
5.根据权利要求2所述的可扩张管,其特征在于,弹簧是细长的通常为V形或通常为U形的弹簧构件,弹簧构件布置得大致平行于管形状的构件的纵轴线。
6.根据权利要求5所述的可扩张管,其特征在于,弹簧构件包括细长的曲壁表面,其布置得大致平行于管形状的构件的纵轴线。
7.根据权利要求6所述的可扩张管,其特征在于,弹簧构件包括至少两个腿,并且曲壁表面固定到该至少两个腿上。
8.根据权利要求1所述的可扩张管,其特征在于,约束装置将管形状的构件保持在其第一直径。
9.根据权利要求8所述的可扩张管,其特征在于,约束装置将至少一个能量存储部件保持在压缩状态,由此扩张能量存储在该至少一个能量存储部件内。
10.根据权利要求1所述的可扩张管,其特征在于,该至少一个能量存储部件形成通常为管形状的构件的外壁表面的至少一部分。
11.根据权利要求1所述的可扩张管,包括围绕通常为管形状的构件的外壁表面布置的弹性体层。
12.根据权利要求1所述的可扩张管,包括多个形成于管形状的构件的外壁表面内的开口或槽,由此管形状的构件也可以通过心轴来扩张和变形。
13.一种扩张地质结构中的可扩张管的方法,其包括以下步骤:
提供具有第一直径、外壁表面和纵轴线的可扩张管,该可扩张管包括至少一个能量存储部件,当可扩张管具有第一直径时,该能量存储部件在可扩张管内存储扩张能量;
将可扩张管置于地质结构中;以及
从至少一个能量存储部件释放扩张能量,其导致可扩张管扩张,从而具有大于第一直径的第二直径。
14.根据权利要求13所述的方法,包括步骤:利用至少一个弹簧作为至少一个能量存储部件。
15.根据权利要求14所述的方法,包括步骤:大致平行于可扩张管的纵轴线来布置弹簧。
16.根据权利要求13所述的方法,包括步骤:利用约束装置,将可扩张管保持在其第一直径。
17.根据权利要求13所述的方法,包括步骤:当可扩张管具有第一直径时,将至少一个能量存储部件保持在压缩状态,以在该至少一个能量存储部件内存储扩张能量。
18.根据权利要求13所述的方法,包括步骤:在可扩张管的外壁表面上提供弹性体层。
19.根据权利要求13所述的方法,包括如下步骤:为可扩张管的外壁表面提供多个槽或开口;以及在可扩张管位于地质结构中以后,扩张和变形可扩张管的至少部分。
20.一种形成用于地质结构中的可扩张管的方法,其包括如下步骤:
形成具有第一直径的通常为管形状的构件,该第一直径将允许可扩张管置于地质结构中;以及
为通常为管形状的构件提供至少一个能量存储部件,其在管形状的构件内存储扩张能量,当可扩张管位于地质结构中,在后来释放扩张能量时,可扩张管将具有大于第一直径的第二直径。
21.根据权利要求20所述的方法,包括步骤:利用至少一个弹簧作为至少一个能量存储部件。
22.根据权利要求21所述的方法,包括步骤:大致平行于可扩张管的纵轴线来布置弹簧。
23.根据权利要求20所述的方法,包括步骤:为通常为管形状的构件提供约束装置,以将管形状的构件保持在第一直径。
24.根据权利要求20所述的方法,包括步骤:当管形状的构件具有第一直径时,将至少一个能量存储部件保持在压缩状态,以在该至少一个能量存储部件内存储扩张能量。
25.根据权利要求20所述的方法,包括步骤:在管形状的构件的外壁表面上提供弹性体层。
26.根据权利要求20所述的方法,包括如下步骤:为管形状的构件的外壁表面提供多个槽或开口;以及在管形状的构件位于地质结构中以后,扩张和变形管形状的构件的至少部分。
27.一种用于地质结构的防砂筛管,其包括:
通常为管形状的构件,其具有第一直径、外壁表面和纵轴线;
该管形状的构件包括至少一个能量存储部件,当管形状的构件具有第一直径时,该能量存储部件在管形状的构件内存储扩张能量;以及
当从至少一个能量存储部件释放扩张能量时,通常为管形状的构件扩张,从而具有大于第一直径的第二直径。
28.根据权利要求27所述的防砂筛管,其特征在于,至少一个能量存储部件是至少一个弹簧。
29.根据权利要求28所述的防砂筛管,其特征在于,弹簧是细长的通常为V形或通常为U形的弹簧构件,弹簧构件布置得大致平行于管形状的构件的纵轴线。
30.根据权利要求29所述的防砂筛管,其特征在于,弹簧构件包括细长的曲壁表面,其布置得大致平行于管形状的构件的纵轴线。
31.根据权利要求30所述的防砂筛管,其特征在于,弹簧构件包括至少两个腿,并且曲壁表面固定到该至少两个腿上。
32.根据权利要求27所述的防砂筛管,其特征在于,约束装置将管形状的构件保持在其第一直径。
33.根据权利要求32所述的防砂筛管,其特征在于,约束装置将至少一个能量存储部件保持在压缩状态,由此扩张能量存储在该至少一个能量存储部件内。
34.根据权利要求27所述的可扩张管,其特征在于,该至少一个能量存储部件形成通常为管形状的构件的外壁表面的至少一部分。
35.根据权利要求27所述的可扩张管,包括围绕通常为管形状的构件的外壁表面布置的过滤器层。
36.一种扩张地质结构中的防砂筛管的方法,其包括以下步骤:
提供具有第一直径、外壁表面和纵轴线的防砂筛管,该防砂筛管包括至少一个能量存储部件,当防砂筛管具有第一直径时,该能量存储部件在防砂筛管内存储扩张能量;
将防砂筛管置于地质结构中;以及
从至少一个能量存储部件释放扩张能量,其导致防砂筛管扩张,从而具有大于第一直径的第二直径。
37.根据权利要求36所述的方法,包括步骤:利用至少一个弹簧作为至少一个能量存储部件。
38.根据权利要求37所述的方法,包括步骤:大致平行于防砂筛管的纵轴线来布置弹簧。
39.根据权利要求36所述的方法,包括步骤:利用约束装置,将防砂筛管保持在其第一直径。
40.根据权利要求36所述的方法,包括步骤:当防砂筛管具有第一直径时,将至少一个能量存储部件保持在压缩状态,以在该至少一个能量存储部件内存储扩张能量。
41.根据权利要求36所述的方法,包括步骤:在防砂筛管的外壁表面上提供过滤器层。
CN2004800246330A 2003-08-25 2004-08-25 在地质结构中使用的可扩张管、扩张管的方法以及制造可扩张管的方法 Expired - Fee Related CN1842635B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US49768803P 2003-08-25 2003-08-25
US60/497,688 2003-08-25
US50328703P 2003-09-16 2003-09-16
US60/503,287 2003-09-16
PCT/US2004/027580 WO2005021931A1 (en) 2003-08-25 2004-08-25 Expandable tubulars for use in geologic structures, methods for expanding tubulars, and methods of manufacturing expandable tubulars

Publications (2)

Publication Number Publication Date
CN1842635A true CN1842635A (zh) 2006-10-04
CN1842635B CN1842635B (zh) 2010-06-23

Family

ID=34278558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800246330A Expired - Fee Related CN1842635B (zh) 2003-08-25 2004-08-25 在地质结构中使用的可扩张管、扩张管的方法以及制造可扩张管的方法

Country Status (10)

Country Link
US (1) US7677321B2 (zh)
EP (1) EP1658416B1 (zh)
CN (1) CN1842635B (zh)
AT (1) ATE349598T1 (zh)
AU (1) AU2004268229B2 (zh)
BR (1) BRPI0413886A (zh)
CA (1) CA2533640C (zh)
DE (1) DE602004003962T2 (zh)
EA (1) EA008205B1 (zh)
WO (1) WO2005021931A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852414A (zh) * 2020-07-23 2020-10-30 中国石油大学(华东) 一种吞吐生产油井活动滤网式防砂筛管及其应用
CN117514125A (zh) * 2024-01-08 2024-02-06 江苏雄越石油机械设备制造有限公司 一种可防砂除砂的高压采油井口

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0520860D0 (en) * 2005-10-14 2005-11-23 Weatherford Lamb Tubing expansion
BRPI0810116A2 (pt) * 2007-04-18 2014-10-21 Dynamic Tubular Systems Inc Tubular expansível para ser usado em estruturas geológicas, e, métodos para expandir um elemento de forma tubular e para fabricar um tubular expansível para ser usado em estruturas geológicas.
GB0712345D0 (en) * 2007-06-26 2007-08-01 Metcalfe Paul D Downhole apparatus
US8162067B2 (en) * 2009-04-24 2012-04-24 Weatherford/Lamb, Inc. System and method to expand tubulars below restrictions
US8789595B2 (en) 2011-01-14 2014-07-29 Schlumberger Technology Corporation Apparatus and method for sand consolidation
US9017501B2 (en) 2011-02-17 2015-04-28 Baker Hughes Incorporated Polymeric component and method of making
US8684075B2 (en) 2011-02-17 2014-04-01 Baker Hughes Incorporated Sand screen, expandable screen and method of making
US8664318B2 (en) 2011-02-17 2014-03-04 Baker Hughes Incorporated Conformable screen, shape memory structure and method of making the same
US9044914B2 (en) 2011-06-28 2015-06-02 Baker Hughes Incorporated Permeable material compacting method and apparatus
US8721958B2 (en) 2011-08-05 2014-05-13 Baker Hughes Incorporated Permeable material compacting method and apparatus
US8720590B2 (en) 2011-08-05 2014-05-13 Baker Hughes Incorporated Permeable material compacting method and apparatus
DE102011117628B4 (de) 2011-11-04 2015-10-22 Martin Christ Gefriertrocknungsanlagen Gmbh Gefriertrockungsanlage mit einer Be- und Entladevorrichtung
RU2479711C1 (ru) * 2011-11-28 2013-04-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ крепления продуктивных пластов при тепловых методах добычи нефти и расширяемый фильтр для его осуществления
EP2631423A1 (en) 2012-02-23 2013-08-28 Services Pétroliers Schlumberger Screen apparatus and method
CA3076393C (en) * 2012-03-07 2023-03-28 Halliburton Manufacturing And Services Limited Downhole apparatus
US9000296B2 (en) 2013-06-21 2015-04-07 Baker Hughes Incorporated Electronics frame with shape memory seal elements
US11078749B2 (en) 2019-10-21 2021-08-03 Saudi Arabian Oil Company Tubular wire mesh for loss circulation and wellbore stability
US11441399B2 (en) * 2020-07-29 2022-09-13 Baker Hughes Oilfield Operations Llc Downhole conformable screen system and method of making a conformable screen for downhole use

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2583316A (en) * 1947-12-09 1952-01-22 Clyde E Bannister Method and apparatus for setting a casing structure in a well hole or the like
US3067819A (en) * 1958-06-02 1962-12-11 George L Gore Casing interliner
US3099318A (en) * 1961-01-23 1963-07-30 Montgomery K Miller Well screening device
GB2053326B (en) * 1979-07-06 1983-05-18 Iball E K Methods and arrangements for casing a borehole
US6089316A (en) 1997-08-01 2000-07-18 Spray; Jeffery A. Wire-wrapped well screen
US6245103B1 (en) * 1997-08-01 2001-06-12 Schneider (Usa) Inc Bioabsorbable self-expanding stent
US5785122A (en) * 1997-08-01 1998-07-28 Spray; Jeffrey A. Wire-wrapped well screen
GB9723031D0 (en) * 1997-11-01 1998-01-07 Petroline Wellsystems Ltd Downhole tubing location method
US6503270B1 (en) * 1998-12-03 2003-01-07 Medinol Ltd. Serpentine coiled ladder stent
US6375676B1 (en) * 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
NO335594B1 (no) * 2001-01-16 2015-01-12 Halliburton Energy Serv Inc Ekspanderbare anordninger og fremgangsmåte for disse
US6585753B2 (en) * 2001-03-28 2003-07-01 Scimed Life Systems, Inc. Expandable coil stent
US7172027B2 (en) * 2001-05-15 2007-02-06 Weatherford/Lamb, Inc. Expanding tubing
US6820690B2 (en) * 2001-10-22 2004-11-23 Schlumberger Technology Corp. Technique utilizing an insertion guide within a wellbore
US6722427B2 (en) * 2001-10-23 2004-04-20 Halliburton Energy Services, Inc. Wear-resistant, variable diameter expansion tool and expansion methods
US6719064B2 (en) * 2001-11-13 2004-04-13 Schlumberger Technology Corporation Expandable completion system and method
US7048048B2 (en) * 2003-06-26 2006-05-23 Halliburton Energy Services, Inc. Expandable sand control screen and method for use of same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852414A (zh) * 2020-07-23 2020-10-30 中国石油大学(华东) 一种吞吐生产油井活动滤网式防砂筛管及其应用
CN117514125A (zh) * 2024-01-08 2024-02-06 江苏雄越石油机械设备制造有限公司 一种可防砂除砂的高压采油井口
CN117514125B (zh) * 2024-01-08 2024-04-02 江苏雄越石油机械设备制造有限公司 一种可防砂除砂的高压采油井口

Also Published As

Publication number Publication date
EA008205B1 (ru) 2007-04-27
BRPI0413886A (pt) 2006-11-21
EP1658416B1 (en) 2006-12-27
EA200600283A1 (ru) 2006-06-30
EP1658416A1 (en) 2006-05-24
CN1842635B (zh) 2010-06-23
US20050109517A1 (en) 2005-05-26
DE602004003962D1 (de) 2007-02-08
AU2004268229A1 (en) 2005-03-10
CA2533640C (en) 2012-04-24
DE602004003962T2 (de) 2007-10-18
AU2004268229B2 (en) 2009-11-19
ATE349598T1 (de) 2007-01-15
WO2005021931A1 (en) 2005-03-10
US7677321B2 (en) 2010-03-16
CA2533640A1 (en) 2005-03-10

Similar Documents

Publication Publication Date Title
CN1842635B (zh) 在地质结构中使用的可扩张管、扩张管的方法以及制造可扩张管的方法
US8555961B2 (en) Swellable packer with composite material end rings
CA2466859C (en) Packer with metal sealing element
US6923261B2 (en) Apparatus and method for expanding a tubular
US7845402B2 (en) Expandable packer system
AU2009225334B2 (en) Compliant expansion swage
CA2577645C (en) Energizing seal for expandable connections
CN101316981B (zh) 在井筒内使用的封隔器皮碗
US7549469B2 (en) Adjustable swage
US20080018099A1 (en) Protective compression and tension sleeves for threaded connections for radially expandable tubular members
AU2007296271B2 (en) Method of expanding a tubular element
US20080277933A1 (en) Thread form for tubular connections
US20100257913A1 (en) Resilient Anchor
WO2006079072B1 (en) Method and apparatus for expanding a tubular member
CN1860284A (zh) 可膨胀的井筒组件
CN101432499B (zh) 气密管状接头或连接件
US11802455B2 (en) Expandable metal packer with anchoring system
GB2436931A (en) Threaded expandable connection with stress concentrator
EP4377550A1 (en) System and methodology for utilizing anchoring element with expandable tubular
MXPA06002190A (en) Expandable tubulars for use in geologic structures, methods for expanding tubulars, and methods of manufacturing expandable tubulars
WO2009088502A2 (en) Swellable packer with composite material end rings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100623

Termination date: 20130825