CN1836738A - 一种聚酯类生物可降解材料的表面改性方法 - Google Patents
一种聚酯类生物可降解材料的表面改性方法 Download PDFInfo
- Publication number
- CN1836738A CN1836738A CN 200610024751 CN200610024751A CN1836738A CN 1836738 A CN1836738 A CN 1836738A CN 200610024751 CN200610024751 CN 200610024751 CN 200610024751 A CN200610024751 A CN 200610024751A CN 1836738 A CN1836738 A CN 1836738A
- Authority
- CN
- China
- Prior art keywords
- film
- polyester
- aminolysis
- surface modifying
- pei
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Materials For Medical Uses (AREA)
Abstract
本发明属生物医用材料技术领域,是一种聚酯类生物材料表面改性方法,以便构建与细胞相容的生物材料表面和界面。聚酯类材料由于其强疏水性和表面活性基团太少而限制其应用。本发明首先制备聚酯类生物医用材料的平面膜,然后在膜表面胺解。本发明以多氨基物质——PEI聚乙烯亚胺为改性剂,在正丙醇溶液中对聚酯膜胺解。控制反应条件,使胺解对膜表面形貌和物理性能无较大影响,同时表面接枝上大量活性氨基。借助表面活性氨基进一步固定生物分子壳聚糖等,显著提高材料的生物相容性。
Description
技术领域
本发明属生物医用材料技术领域,具体涉及一种聚酯类生物医用体内植入材料表面改性的方法。
技术背景
聚乳酸(poly(lactic acid))属α-聚酯类,有三种异构体(PDLA、PLLA、PDLLA),在体内降解生成乳酸,是糖的代谢产物,可通过模塑、挤压、溶剂浇铸等技术加工成各种结构形状。因其降解产物无毒及良好的生物相容性,PLA已被美国食品与药品管理局(FDA)批准广泛用作医用缝线、暂时性支架和药物控释载体。但因聚乳酸结构中缺乏亲水性基团而使其材料表面产生了强疏水性,严重地影响了它与细胞的亲和性;同时,由于聚乳酸结构中缺乏可供共价引入多肽、胶原等生物活性分子的活性基团,使其不能成为真正的具有生物专一性(biospecificity)的生物活性(bioactive)材料;而且聚乳酸降解过程中局部酸性积累可导致聚乳酸植入部位出现非感染性炎症,甚至局部严重积水。因此,作为生物材料,其表面性能是影响材料在生物医学方面应用的重要原因,生物材料的表面改性对提高其生物相容性有重要意义。接枝、等离子体处理、表面截留和自组装单分子层生物表面改性等多种表面改性技术已被用于改进聚合物材料的细胞相容性。其中最有研究前景的方法是同时综合运用多种表面改性的手段,如先改变原材料表面的基团,使之具有某种活性官能团,然后再借此固定生物活性分子。利用聚合物本体材料中已存在的基团的反应或通过主链侧基上某些反应活性高的基团或原子的反应,可使聚合物表面产生小分子功能基团,如常用的聚烯烃材料PE、PP等,主链较稳定,通过表面氧化可在表面引入羟基等功能基团;又如含有易被水解的酯基的聚合物PMMA、PET、PLA和PLGA等可在碱溶液中部分水解使表面产生羧基,与二元胺反应可在表面引入氨基,与乙酸反应可引入羧基等,这些活性基团的引入,可适当提高材料的亲水性,从而改善材料的生物相容性。研究较多的方法,是在材料的表面进行胺解,氨基具有一定的正电性,并通过静电吸引层层(Layer-by-layer,LBL)自组装技术接枝或吸附一层具有生物相容性的、带有多种活性基团的物质,提高聚酯材料的亲水性、生物相容性,同时为进一步改性提供多个活性位点。材料表面引入生物活性分子可以促进细胞的粘附和生长,因此将生物活性分子固定材料表面是提高其细胞相容性的重要方法。蛋白质在聚合物表面的固定主要有物理吸附和化学固定二种。物理吸附,即通过静电吸附作用可将含有多个负电荷的生物活性分子固定于材料中带正电的部位。这是在材料表面引入活性分子中最简便的一种方法;化学固定,将生物活性分子中的些基团与基质表面的反应性基团通过化学键合使其牢固地固定于材料表面,可获得长期的组织相容性,这是用物理吸附方法所无法达到的。
目前,对生物材料表面改性的工作已经取得了一定的成果。浙江大学的竺亚斌等人[1,2,3],利用紫外光氧化、溶液法化学接枝的方法对聚酯类材料胺解及固定生物大分子,使材料的细胞相容性得到明显改善。吴刚等人[4]通过紫外照射,在PET膜表面引入丙烯酰胺,再通过霍夫曼反应将丙烯酰胺降级为伯胺,以提高自由氨基的活性,达到了在PET膜材料表面引入氨基酸接口的目的;然后将保护氨基酸同自由氨基反应,将氨基酸以共价键的方式引入到材料表面。
发明人在仔细分析和了解含酯基聚合物材料分子结构的基础上,将经典的-NH2与-COO-的反应运用到表面改性生物可降解的含酯基的聚合物材料,运用树枝状多氨基物质PEI(polyethyleneimine,聚乙烯亚胺)对聚乳酸(PLA)等含酯基聚合物进行胺解改性,并研究了改性前后材料表面的物理和化学性能的变化。采用反射红外光谱和胺基指示剂—茚三酮对引入到材料表面的胺基密度进行了定性分析和定量计算。
发明内容
本发明的目的是提供一种生物医用聚酯类材料表面改性的新方法。
本发明提供的生物医用聚酯类材料表面改性的方法,首先制备聚酯的空白和包药平面膜,膜的厚度均匀、表面光滑无明显气泡;其次,使膜在PEI(聚乙烯二胺,polyethylenemine)的正丙醇溶液中胺解,通过控制PEI的浓度、温度、胺解时间等条件,得到表面接枝了大量活性氨基的平面膜。具体步骤如下:
(1)制备包药平面膜:
配制聚酯的有机溶剂溶液,并加入药物;搅拌均匀,倾倒入模具内,挥发溶剂后成膜。
(2)表面胺解:
配制PEI的正丙醇溶液,放入事先精确测量尺寸及质量的包药平面膜。水浴加热60±2℃,取出,蒸馏水冲洗,直至洗脱液呈中性,除去表面吸附的游离PEI分子,氮气吹干后,称重,计算吸水率及通过茚三酮显色法测定表面氨基含量。
本发明中,制备平面膜时,聚酯在有机溶剂中的浓度为0.1-10%(mg/ml)。
本发明中,加入的药物需研磨成细粉末状,以显微镜下观察无较大颗粒为宜。药物在有机溶剂中的浓度为0.5-5%(mg/ml),并且混合溶液需要超声振荡15-30min形成均匀悬混液。
本发明中,表面胺解时,其中PEI的正丙醇溶液浓度为1-20μmol/ml,水浴加热至60±2℃,胺解时间1-100min,优选10-50min,可根据实际需要确定。
本发明还对表面胺解结果进行了检测。检测是针对经过表面胺解的空白膜进行的,即先制备空白膜(不加药物的膜),然后进行表面胺解,检测时,先将膜浸入茚三酮—乙醇溶液(2%mg/ml)中,90℃水浴加热10min,观察到膜表面变色。迅速冷却至室温,膜取出后,用蒸馏水冲洗,氮气吹干,再溶解在1,4-二氧六环溶液中,并用适量正丙醇稳定显色产物。最后用紫外分光光度仪测定混合溶液中的氨基含量。
本发明中,所述的表面胺解所使用的PEI,其分子量分别为300-50000g/mol为好。
本发明中,聚酯类材料,包括聚乳酸、乳酸—乙醇酸共聚物和聚己内酯等。
本发明中,加入的药物可以根据实际需要选择,可以运用于任何药物,例如:消炎药、杀菌药、抗肿瘤药物、降血脂药物等。
本发明通过胺解反应在材料表面引入的自由胺基,将静电吸引层层自组装(Layer-by-layer)的技术引入到生物可降解材料的表面改性中。具有操作简单、重复性好、表面修饰分子层可控、引入的生物分子能维持其原有生物活性等优点。
经过表面胺解的膜,其表面引入大量氨基,从而可在膜表面进一步固定生物活性分子,例如可通过戊二醛在胺解的材料表面固定明胶、壳聚糖、胶原、RGD等生物活性分子。其中使用戊二醛交联时,明胶、壳聚糖、胶原、RGD的浓度为1%-10%。
本发明中所述的固定生物分子的方法,其中使用戊二醛交联时,壳聚糖的浓度为1%-10%。
具体实施方式
实施例1:PLA溶解于CH2Cl2中,浓度为1%(mg/ml),搅拌均匀后,倒入模具内成膜。待溶剂挥发干净后,膜厚度为0.02mm。PEI423的正丙醇溶液中的浓度为4.25μmol/ml,经过精确测量尺寸和质量的膜浸入到溶液中水浴加热,温度60℃,胺解时间20min。所得膜的吸水率为2.79%,表面氨基量1.099mmol,表面氨基密度为0.06mmol/cm2。
实施例2:PLA溶解于CH2Cl2中,浓度为1%(mg/ml),搅拌均匀后,倒入模具内成膜。待溶剂挥发干净后,膜厚度为0.02mm。PEI423的正丙醇溶液中的浓度为13.5μmol/ml,经过精确测量尺寸和质量的膜浸入到溶液中水浴加热,温度62℃,胺解时间40min。所得膜的吸水率为4.07%,氨基量2.02mmol,表面氨基密度为0.25mmol/cm2。
实施例3:PLGA溶解于CH2Cl2中,浓度为2%(mg/ml),搅拌均匀后,倒入模具内成膜。待溶剂挥发干净后,膜厚度为0.02mm。PEI423的正丙醇溶液中的浓度为4.25μmol/ml,经过精确测量尺寸和质量的膜浸入到溶液中水浴加热,温度59℃,胺解时间60min。所得膜的吸水率为12.4%,氨基量12.88mmol,表面氨基密度为2.48mmol/cm2。
实施例4:PLGA溶解于CH2Cl2中,浓度为1%(mg/ml),药物浓度0.5%(mg/ml),为搅拌均匀后,倒入模具内成膜。待溶剂挥发干净后,膜厚度为0.10mm。PEI423的正丙醇溶液中的浓度为4.25μmol/ml,经过精确测量尺寸和质量的膜浸入到溶液中水浴加热,温度58℃,胺解时间40min。所得膜的吸水率为2.9%,氨基量2.75mmol,表面氨基密度为0.20mmol/cm2。
实施例5:PCL溶解于CH2Cl2中,浓度为1.5%(mg/ml),药物浓度1%(mg/ml),为搅拌均匀后,倒入模具内成膜。待溶剂挥发干净后,膜厚度为0.15mm。PEI423的正丙醇溶液中的浓度为13.5μmol/ml,经过精确测量尺寸和质量的膜浸入到溶液中水浴加热,温度59℃,胺解时间60min。所得膜的吸水率为19.8%,氨基量16.5mmol,表面氨基密度为1.75mmol/cm2。
实施例6:PCL溶解于CH2Cl2中,浓度为2%(mg/ml),药物浓度2%(mg/ml),为搅拌均匀后,倒入模具内成膜。待溶剂挥发干净后,膜厚度为0.10mm。PEI423的正丙醇溶液中的浓度为13.5μmol/ml,经过精确测量尺寸和质量的膜浸入到溶液中水浴加热,温度61℃,胺解时间80min。所得膜的吸水率为21.5%,氨基量10.99mmol,表面氨基密度为2.06mmol/cm2。
参考材料:
1、竺亚斌,张建军.聚己内酯的表面化学改性.宁波大学学报(理工版).2001,14(4):84-87。
2、竺亚斌,高长有,计剑.聚己内酯的表面光化学机制改性以及细胞相容性.材料研究学报,2002,16(3):233-237。
3、竺亚斌,高长有,刘云肖等.聚乳酸的层层自组装修饰及其内皮细胞相容性研究.高等学校化学学报,2004,25(7):1347-1350。
4、吴刚,万昌秀,赵强等.紫外辐照在PET膜表面接枝氨基酸的研究.四川大学学报(自然科学版),2000,37(4):568-571。
Claims (6)
1、一种生物医用聚酯类材料表面改性方法,其特征在于具体步骤如下:
(1)制备包药平面膜:
配制聚酯的有机溶剂溶液,并加入药物;搅拌均匀,倾倒入模具内,挥发溶剂后成膜。
(2)表面胺解:
配制PEI的正丙醇溶液,放入事先精确测量尺寸及质量的包药平面膜,水浴加热至60±2℃,取出,蒸馏水冲洗,直至洗脱液呈中性,除去表面吸附的游离PEI分子,氮气吹干后,称重,计算吸水率及通过茚三酮显色法测定表面氨基含量。
2、根据权利要求1所述的表面改性方法,其特征在于聚酯在有机溶剂中的浓度为1~10%(mg/ml)。
3、根据权利要求1所述的表面改性方法,其特征在于所述药物需研磨成细粉末状,药物在有机溶剂中的浓度为0.5~5%(mg/ml),并超声振荡15~30min形成均匀悬混液。
4、根据权利要求1中所述的表面改性方法,其特征在于所使用的PEI分子量为300~50000g/mol。
5、根据权利要求1中所述的表面改性方法,其特征在于PEI的正丙醇溶液浓度为1-20μmol/ml,水浴加热至60±2℃,胺解时间1-100min。
6、根据权利要求1中所述的表面改性方法,其特征在于所述的聚酯类材料为聚乳酸、乳酸—乙醇酸共聚物或聚己内酯。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200610024751 CN1836738A (zh) | 2006-03-16 | 2006-03-16 | 一种聚酯类生物可降解材料的表面改性方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200610024751 CN1836738A (zh) | 2006-03-16 | 2006-03-16 | 一种聚酯类生物可降解材料的表面改性方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1836738A true CN1836738A (zh) | 2006-09-27 |
Family
ID=37014332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200610024751 Pending CN1836738A (zh) | 2006-03-16 | 2006-03-16 | 一种聚酯类生物可降解材料的表面改性方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1836738A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105148319A (zh) * | 2015-08-20 | 2015-12-16 | 重庆科技学院 | 复合微球的制备方法 |
CN105860101A (zh) * | 2016-04-28 | 2016-08-17 | 中国科学院化学研究所 | 一种基于聚酯纳米粒子化学交联的杂化水凝胶及其制备方法与应用 |
CN111454479A (zh) * | 2020-04-27 | 2020-07-28 | 四川大学 | 一种用于su-8光刻胶表面修饰的涂层及其制备方法 |
-
2006
- 2006-03-16 CN CN 200610024751 patent/CN1836738A/zh active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105148319A (zh) * | 2015-08-20 | 2015-12-16 | 重庆科技学院 | 复合微球的制备方法 |
CN105860101A (zh) * | 2016-04-28 | 2016-08-17 | 中国科学院化学研究所 | 一种基于聚酯纳米粒子化学交联的杂化水凝胶及其制备方法与应用 |
CN105860101B (zh) * | 2016-04-28 | 2018-03-27 | 中国科学院化学研究所 | 一种基于聚酯纳米粒子化学交联的杂化水凝胶及其制备方法与应用 |
CN111454479A (zh) * | 2020-04-27 | 2020-07-28 | 四川大学 | 一种用于su-8光刻胶表面修饰的涂层及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Volodkin et al. | Composite multilayered biocompatible polyelectrolyte films with intact liposomes: stability and temperature triggered dye release | |
Yu et al. | Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications | |
Segura et al. | Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern | |
Grande et al. | Design of functionalized biodegradable PHA-based electrospun scaffolds meant for tissue engineering applications | |
Du et al. | Crosslinking induces high mineralization of apatite minerals on collagen fibers | |
Martins et al. | Crosslink effect and albumin adsorption onto chitosan/alginate multilayered systems: an in situ QCM‐D study | |
Zander et al. | Surface-modified nanofibrous biomaterial bridge for the enhancement and control of neurite outgrowth | |
Shin et al. | Surface modification of electrospun poly (L-lactide-co-ɛ-caprolactone) fibrous meshes with a RGD peptide for the control of adhesion, proliferation and differentiation of the preosteoblastic cells | |
Zhu et al. | In-depth study on aminolysis of poly (ɛ-caprolactone): Back to the fundamentals | |
De Giglio et al. | PHEMA-based thin hydrogel films for biomedical applications | |
Liu et al. | Surface engineering of nano-fibrous poly (L-lactic acid) scaffolds via self-assembly technique for bone tissue engineering | |
Li et al. | Enhanced cell adhesion on a bio-inspired hierarchically structured polyester modified with gelatin-methacrylate | |
CN102395357A (zh) | 使用聚合的脂蛋白体的纳米结构的膜 | |
Wang et al. | The roles of matrix polymer crystallinity and hydroxyapatite nanoparticles in modulating material properties of photo-crosslinked composites and bone marrow stromal cell responses | |
Choi et al. | RGD peptide-immobilized electrospun matrix of polyurethane for enhanced endothelial cell affinity | |
Landoulsi et al. | Self-assembled multilayers based on native or denatured collagen: mechanism and synthesis of size-controlled nanotubes | |
Kim et al. | Preparation of insulin-immobilized polyurethanes and their interaction with human fibroblasts | |
CN1836738A (zh) | 一种聚酯类生物可降解材料的表面改性方法 | |
Huang et al. | Nanostructured interfaces with RGD arrays to control cell–matrix interaction | |
Schamberger et al. | Surface chemical modifications of materials which influence animal cell adhesion—a review | |
KR101603602B1 (ko) | 방사선 조사를 이용한 폴리도파민 코팅 고분자 기질 및 이의 제조 방법 | |
Más et al. | Surface characterization and osteoblast-like Cells culture on collagen modified PLDLA scaffolds | |
Pei et al. | Cellulose-based hydrogels with excellent microstructural replication ability and cytocompatibility for microfluidic devices | |
Yang et al. | Bio-compatible n-HAPs/polymer monolithic composites templated from CO2-in-water high internal phase emulsions | |
Stendahl et al. | Modification of fibrous poly (L-lactic acid) scaffolds with self-assembling triblock molecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |