CN1833386B - 无线发送装置以及无线发送方法 - Google Patents

无线发送装置以及无线发送方法 Download PDF

Info

Publication number
CN1833386B
CN1833386B CN2004800225194A CN200480022519A CN1833386B CN 1833386 B CN1833386 B CN 1833386B CN 2004800225194 A CN2004800225194 A CN 2004800225194A CN 200480022519 A CN200480022519 A CN 200480022519A CN 1833386 B CN1833386 B CN 1833386B
Authority
CN
China
Prior art keywords
data
subcarrier
frequency
chip
radio communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2004800225194A
Other languages
English (en)
Other versions
CN1833386A (zh
Inventor
松元淳志
三好宪一
西尾昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp of America
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003295614A external-priority patent/JP4295578B2/ja
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to CN201110026550.7A priority Critical patent/CN102142950B/zh
Publication of CN1833386A publication Critical patent/CN1833386A/zh
Application granted granted Critical
Publication of CN1833386B publication Critical patent/CN1833386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/692Hybrid techniques using combinations of two or more spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Abstract

一种无线发送装置,可以进行传输效率良好的通信。在该装置里,调制器(2802)将数据调制并输出到扩频器(2804)。与调制器(2802)相比,调制器(2803)使用由一个码元可以传输的信息的复用数高的调制方式,将数据调制并输出到扩频器(2805)。扩频器(2804)将数据扩频并输出到频率方向映射器(2807)。扩频器(2805)将数据扩频并输出到时间方向映射器(2808)。频率方向映射器(2807)将数据进行扩频而形成的码片按频率方向配置在副载波上,并将码片配置在副载波上后的数据输出到IFFT器(107)。时间方向映射器(2808)按时间方向将数据进行扩频而形成的码片配置在副载波上,并将码片配置在副载波上后的数据输出到IFFT器(107)。

Description

无线发送装置以及无线发送方法 
技术领域
本发明涉及无线发送装置以及无线发送方法。 
背景技术
近年来,作为高速传输大量数据的方法,OFDM(Orthogonal FrequencyDivision Multiple,正交频分多路复用)和CDMA相结合的系统被探讨研究。在OFDM和CDMA相结合的系统中,有将数据进行扩频而形成的码片按频率方向配置在副载波上的方式和按时间方向配置在副载波上的方式。 
在频率方向上扩频时,因为多路径环境会引起频率选择性衰落,使频率方向的传播路径发生剧烈变动,所以虽然能够得到解扩时的频率分集效果,但是扩频码之间的正交性受到破坏,接收特性恶化。 
在时间轴方向上扩频时,与频率方向相比,因为时间轴方向的传播路径的变动相对而言较为缓和,所以虽然不能得到频率分集的效果,但是能够确保扩频码之间的正交性。可是,由于被分配到衰减较大的副载波上的数据的接收SNR(信噪比)非常小,发生完全错误的可能性较高。 
特别是使用16QAM(正交振幅调制)等复用调制进行码分复用时,由于扩频码之间的正交性被破坏而加剧接收性能的恶化,所以与频率轴方向的扩频相比,时间轴方向的扩频特性较好。 
发明内容
在现有装置中,无论哪种方法都各有利弊,通过OFDM和CDMA相结合来提高传输效率是个难题。 
本发明的目的在于提供一种无线发送装置以及无线发送方法,该无线发送装置以及无线发送方法能够进行传输效率良好的通信。 
本发明的无线发送装置是一种发送由多个副载波组成的无线信号的无线发送装置,调制器,使用第一调制方式将发送数据调制而得到第一调制数据,同时使用比所述第一调制方式高的调制阶数的第二调制方式将发送数据调制 而得到第二调制数据;扩频器,将所述第一调制数据扩频而得到多个第一码片,同时将所述第二调制数据扩频而得到多个第二码片;以及映射器,将所述第一码片配置在频率方向上排列的多个第一副载波上,同时将所述第二码片配置在时间方向上排列的多个第二副载波上,所述映射器将传播路径质量不足于规定水平的副载波用作为所述第一副载波,和/或将传播路径质量为规定水平以上的副载波用作为所述第二副载波。 
本发明还提供一种发送由多个副载波组成的无线信号的无线发送方法,包括:调制步骤,使用第一调制方式将发送数据调制而得到第一调制数据,同时使用比所述第一调制方式高的调制阶数的第二调制方式将发送数据调制而得到第二调制数据;扩频步骤,将所述第一调制数据扩频而得到多个第一码片,同时将所述第二调制数据扩频而得到多个第二码片;以及配置步骤,将所述第一码片配置在频率方向上排列的多个第一副载波上,同时将所述第二码片配置在时间方向上排列的多个第二副载波上,在所述配置步骤中,将传播路径质量不足于规定水平的副载波用作为所述第一副载波,和/或将传播路径质量为规定水平以上的副载波用作为所述第二副载波。 
根据本发明,能够进行传输效率良好的通信。 
附图说明
图1表示根据本发明实施方式1的无线通信装置结构的方框图。 
图2表示一例频率方向的信道变动的图。 
图3表示一例时间轴上的信道变动的图。 
图4表示上述实施方式的无线通信装置的一例码片配置的图。 
图5表示上述实施方式的无线通信装置的一例映射器结构的方框图。 
图6表示一例扩频后的数据的图。 
图7表示一例将数据配置在副载波上的图。 
图8表示根据本发明实施方法1的无线通信装置的结构方框图。 
图9表示上述实施方式的无线通信装置的一例解调器结构的方框图。 
图10表示上述实施方式的无线通信装置的一例映射器结构的方框图。 
图11表示一例频率方向的信道变动的图。 
图12表示上述实施方式的无线通信装置的一例码片配置的图。 
图13表示上述实施方式的无线通信装置的一例解调器结构的方框图。 
图14表示根据本发明实施方式2的无线通信装置结构的方框图。 
图15表示一例扩频后的数据的图。 
图16表示一例将数据配置在副载波上的图。 
图17表示根据本发明实施方式2的无线通信装置结构的方框图。 
图18表示根据本发明实施方式3的无线通信装置结构的方框图。 
图19表示本实施方式的无线通信装置的一例映射器结构的方框图。 
图20表示一例扩频后的数据的图。 
图21表示一例将数据配置在副载波上的图。 
图22表示根据本发明实施方式3的无线通信装置结构的方框图。 
图23表示上述实施方式的无线通信装置的一例解映器结构的方框图。 
图24表示根据本发明实施方式4的无线通信装置结构的方框图。 
图25表示上述实施方式的无线通信装置的一例映射器结构的方框图。 
图26表示根据本发明实施方式4的无线通信装置结构的方框图。 
图27表示上述实施方式的无线通信装置的一例解映器结构的方框图。 
图28表示根据本发明实施方式5的无线通信装置结构的方框图。 
图29表示上述实施方式的无线通信装置的一例映射器结构的方框图。 
图30表示根据本发明实施方式5的无线通信装置结构的方框图。 
图31表示上述实施方式的无线通信装置的一例解映器结构的方框图。 
具体实施方式
下面关于本发明的实施方法参照图详细说明。 
(实施方式1) 
图1是表示根据本发明实施方式1的无线通信装置结构的方框图。图1的无线通信装置100,主要包括:编码器101、调制器102、扩频器103、无线接收器104、判定器105、映射器106、IFFT(反向快速傅立叶变换)器107、P/S(并行串行)转换器108、G.I(保护间隔)附加器109、无线发送器110。 
在图1中,编码器101将发送数据编码后输出到调制器102。调制器102将数据调制后输出到扩频器103。扩频器103将数据乘上扩频码后输出到映射器106。 
无线接收器104接收由通信对方发送的无线信号,对其进行放大、转换成基频、解调以及译码,从而获得各个副载波的传播路径质量的信息。然后, 无线接收器104将传播路径质量的信息输出到判定器105。判定器105分别对每个副载波的传播路径质量进行判定,判定其不小于规定水平还是不足于规定水平,并将判定结果输出到映射器106。 
映射器106将数据扩频而形成的码片配置在时间轴方向上。另外,映射器106将数据扩频而形成的码片按频率方向上配置在传播路径质量达不到规定水平的副载波上。然后,映射器106将被配置在各副载波上的数据(码片)输出到IFFT器107。 
IFFT器107将被配置在各副载波上的数据进行反向块速傅里叶转换,输出转换后的数据给P/S转换器108。P/S转换器108将IFFT处理后的数据进行并行-串行转换,并输出到G.I附加器109。 
G.I附加器109在数据中附加保护间隔,并输出到无线发送器110。无线发送器110将数据转换成无线频率后发送出去。 
接下来,说明根据本实施方式的无线通信装置的数据配置的操作。图2是表示频率方向的信道变动的一例的图。在图2中,纵轴表示接收电平,横轴表示频率。另外,f1~f12表示副载波的频率。在图2中,f2、f5、f8、f11的信号由于受频率选择性衰落的影响,其接收电平非常低。而且,每个频率之间的电平差非常大。例如,f10的信号和f11的信号的电平差,还有f11的信号和f12的信号的电平差就非常大。 
另一方面,各频率中的时间方向上的变化,比频率方向上的变化,电平差要小。图3是表示时间轴上的信道变动的一例的图。在图3中,纵轴表示接收电平、横轴表示时间。图3的接收电平和图2的接收电平用同样的比例尺来表示。 
图3表示的是图2的频率f10、f11以及f12的信号在时间方向的变动。与图2相比可知,各信号在时间方向上的变动的电平差较小。 
因此,本发明将数据扩频而形成的码片按时间方向配置在接收电平不小于规定电平的载波上并发送,将数据扩频而形成的码片按频率方向配置在接收电平不足于规定电平的载波上并发送。 
图4是表示本实施方式的无线通信装置的码片配置的一例的图。在图4中,纵轴表示时间,横轴表示频率。另外,图4的频率f1~f12与图2的频率f1~f12相对应。 
无线通信装置100将数据扩频而形成的码片按时间方向配置在接收电平 不小于规定电平的频率f1、f3、f4、f6、f7、f9、f10以及f12的副载波上。例如,将某个发送数据扩频而得到的码片配置在411、412、413以及414的位置上。 
另外,无线通装置100将数据扩频而形成的码片按频率方向配置在接收电平不足于规定水平的f2、f5、f8以及f11的副载波上。例如,将某个发送数据扩频而得到的码片配置在421、431、441以及451的位置上。 
接下来,关于映射器106详细说明。图5是表示本实施方式的无线通信装置的映射器结构的一例的方框图。图5的映射器106主要由映射控制器501、切换器502、时间方向映射器503、频率方向映射器504、切换器505构成。 
在图5中,映射控制器501基于判定器105输出的判定结果,控制切换器502和切换器505。 
映射控制器501,首先输出指示给切换器502,使数据从扩频器103输出到时间方向映射器503,该数据配置在传播路径质量不小于规定水平的副载波上的数据。接下来,映射控制器501输出指示给切换器502,使扩频器103输出数据给频率方向映射器504,该数据是配置在传播路径质量不足于规定水平的副载波上的数据。 
另外,映射控制器501将码片的传播路径质量不小于规定水平的副载波数输出到时间方向的映射器503;将码片的传播路径质量不足于规定水平的副载波数输出到频率方向的映射器504。另外,映射控制器501将传播路径质量不小于规定水平的副载波的频率和传播路径的质量不足于规定水平的副载波的频率输出到切换器505。 
切换器502按照映射控制器501的指示,将通过扩频器103扩频的码片输出到时间方向映射器503或频率方向映射器504。时间方向映射器503将码片按时间方向配置在各个副载波上,并输出到切换器505。频率方向映射器504将码片按频率方向配置在各个副载波上,从而输出到切换器505。 
切换器505将由时间方向映射器503输出的码片输出到传播路径质量不小于规定水平的副载波,并将由频率方向映射器504输出的码片输出到传播路径质量不足于规定水平的副载波。 
下面说明关于利用上述结构进行映射映射的一例。图6是表示一例扩频后的数据的图。图7是表示一例将数据配置在副载波上的图。图6的数据分别以扩频率为4进行扩频,1个数据被扩频到4个码片。另外,在图7中, 载波频率f1、f3、f6以及f7是传播路径质量不小于规定水平的,载波频率f2、f4、f5以及f8是传播路径质量不足于规定水平的。 
数据601被映射到图7的频率f1。接下来,数据602被图7的频率f3、数据603被图7的频率f6、数据604被图7的频率f7分别映射在时间轴方向上。 
数据在时间轴方向被映射到传播路径质量不小于规定水平的载波频率上以后,在频率方向被映射到传播路径质量不足于规定水平的载波频率上。 
数据605被映射到频率f2、f4、f5以及f8的701、702、703以及704的位置上。同样地,数据606、607以及608以各码片为单位被映射到频率f2、f4、f5以及f8上。 
根据以上动作,无线通信装置100在时间轴方向将数据映射到传播路径质量不小于规定水平的载波频率上,在频率方向将数据映射到传播路径质量不足于规定水平的载波频率上。 
接下来说明无线通信装置100进行发送的数据的接收的例子。图8是表示根据本发明实施方法1的无线通信装置结构的方框图。图8的无线通信装置800主要包括:无线接收器801、G.I删除器802、S/P转换器803、FFT器804、解映器805、信道估计器806、判定器807、无线发送器808、解扩器809、解调器810、译码器811。 
在图8中,无线接收器801接收由无线通信装置100发送来的无线信号,然后将该无线信号转换成基频,并将所得到的接收信号输出到G.I删除器802。G.I删除器802从接收信号中解除保护间隔,并输出到S/P转换器803。 
S/P转换器803进行数据的串行-并行转换,并输出到FFT器804。FFT器804将接收信号进行高速傅里叶转换,并将转换后的接收信号输出到解映器805。 
解映器805,按照判定器807的判定结果,对于传播路径质量不小于规定水平的副载波的接收信号,将配置在时间轴方向的码片汇总成一个数据;对于传播路径质量不足于规定水平的副载波的接收信号,将配置在频率方向上的码片汇总成另一个数据。 
然后,解映器805将重新排列的数据输出到解扩器809。另外,解映器805将各副载波的接收信号输出到信道估计器806。 
信道估计器806,估计每个副载波的传播路径环境,将估计结果输出到 判定器807和无线发送器808。例如,信道估计器806对被加插到每个副载波的导频信号的接收质量进行测定,从该接收质量估计每个副载波的传播路径的环境。 
判定器807在每个副载波判定传播路径质量是不小于规定水平还是不足于规定水平,并将判定结果输出到解映器805。因为判定器807使用和无线通信装置100的判定器105同样的标准进行判定,所以无线通信装置100的映射器106和无线通信装置800的解映器805,可以使在时间方向配置数据的码片成分的副载波和在频率方向配置数据的码片成分的副载波一样。 
无线发送器808将估计出来的传播路径质量的信息进行调制,并转换成无线频率,作为无线信号发送给无线通信装置100。解扩器809将重新排列的接收数据乘上扩频码,然后进行解扩,并输出到解调器810。解调器810将接收数据解调,并输出到译码器811。译码器811将接收数据进行译码。 
接下来,说明关于解映器805的细节。图9是说明本实施方式的无线通信装置的一例解映器结构的方框图。图9的解映器805主要包括:解映控制器901、切换器902、时间方向解映器903、频率方向解映器904、切换器905。 
解映控制器901基于由判定器807输出的判定结果,控制切换器902和切换器905。另外,解映控制器901将传播路径质量不小于规定水平的副载波的频率和传播路径质量不足于规定水平的副载波的频率输出到切换器902。 
解映控制器901将码片的传播路径质量不小于规定水平的副载波数输出到时间方向解映器903,并将码片的传播路径的质量不足于规定水平的副载波数输出到频率方向解映器904。 
切换器902将由传播路径质量不小于规定水平的副载波传送的接收信号输出到时间方向解映器903,并将由传播路径质量不足于规定水平的副载波传送的接收信号输出到频率方向解映器904。 
时间方向解映器903将按时间方向配置在各副载波上的码片汇总成一个数据,并输出到切换器905。频率方向解映器904将按频率方向配置在各副载波上的码片汇总成另一个数据,并输出到向切换器905。 
切换器905将由时间方向解映器903输出的接收数据输出到解扩器809,此后,将由频率方向解映器904输出的接收数据输出到解扩器809。 
如上所述,根据本实施方式的无线通信装置,在OFDM-CDMA通信中, 通过在时间轴方向将扩频发送数据而形成的码片配置在传播路径环境比规定水平好的副载波上,在频率方向将扩频发送数据而形成的码片配置在传播路径环境比规定水平差的副载波上,可以保证在时间方向扩频码片时的扩频码之间的正交性,同时可以得到在频率方向扩频码片时的频率分集效果。 
另外,上述实施方式中对于传播路径的环境差的副载波,虽然按频率方向配置数据被扩频的码片,但是该码片还可以同时按频率方向和时间轴方向进行二维配置。下面说明将码片进行二维配置的例子。 
图10是说明有关本实施方式的无线通信装置的一例映射器结构的方框图。但是,对于与图5相同的构成,使用和图5相同的编号,并省略详细说明。 
图10的映射器106具有二维映射器1001用来替代频率方向映射器504。 二维映射器1001对传播路环境差的副载波,将数据进行扩频而形成的码片在频率方向和时间轴方向上进行二维配置,并输出到切换器505。 
图11是表示一例频率方向信道变动的图。在图11中,纵轴表示接收电平、横轴表示频率。另外,f1~f12表示副载波的频率。在图11中,f2、f5、f8、f9、f10以及f11的信号,由于受频率选择性衰落的影响,接收电平都非常低。f1、f3、f4、f6、f7以及f12的信号,接收电平都比阈值1101要高。 
图12是表示本实施方式的无线通信装置的一例码片配置的图。在图12中,纵轴表示时间、横轴表示频率。另外,图12的频率f1~f12与图11的频率f1~f12相对应。 
无线通信装置100按时间方向将数据进行扩频而形成的码片配置在接收电平不小于规定电平的频率f1、f3、f4、f6、f7以及f12的副载波上。例如,将扩频某个发送数据而得到的码片配置在1211、1212、1213以及1214的位置上。 
然后,无线通信装置100按频率方向和时间轴方向将数据扩频而形成的码片二维配置在接收电平不足于规定水平的频率f2、f5、f8、f9、f10以及f11的副载波上。例如,将某个发送数据扩频而得到的码片分别配置在1221、1222、1223以及1224的位置上。 
图13是表示本实施方式的无线通信装置的一例解映器结构的方框图。但是,对于与图9相同的构成,使用和图9相同的编号,并省略详细说明。 
图13的解映器805具备二维解映器1301用来替代频率方向解映器904。二维解调器1301将从频率方向和时间轴方向被二维配置在传播路径的环境差的副载波上的码片汇总成一个数据,并输出到切换器905。 
如上所述,对传播路环境差的副载波,在频率方向和时间轴方向上将数据进行扩频而形成的码片进行二维配置。 
另外,在上述说明中,有关接收装置端的信道估计器806以及判定器807,虽然利用了在判定器输入值里的由相关帧的接收数据得到的信道估计值,但是比如在利用FDD方式(频分双工)时,也可以将相关帧以前的帧的信道估计值保存下来(该帧的发送端判定器的输入值),并基于此来构成解映器。 
另外,TDD方式(时分双工)的情况下,发送端和接收端的无线通信装置成为分别基于接收的信号进行信道估计的结构,即使是不向通信对方传送信道估计值的方法也是可行的。 
(实施方式2) 
图14是表示有关本发明实施方式2的无线通信装置结构的方框图。其中,对于与图1相同的结构,使用与图1相同的编号,并省略详细说明。 
图14的无线通信装置1400具备:编码器1401、调制器1402、调制器1403、扩频器1404、扩频器1405、映射器1406。对于编码后的数据的信息位,将码元按频率方向和时间方向二维配置在副载波上;对于奇偶检验位,按时间方向将码元配置在副载波上,这和图1有所不同。映射器1406由二维映射器1407和时间方向映射器1408构成。 
在图14中,编码器1401将要发送的数据进行编码,并将数据的信息位输出到调制器1402,将奇偶检验位输出到调制器1403。调制器1402将信息位进行调制,并输出到扩频器1404。调制器1403将奇偶检验位进行调制,并输出到扩频器1405。 
扩频器1404将信息位乘上扩频码,并输出到二维映射器1407。扩频器1405将奇偶检验位乘上扩频码,并输出到时间方向映射器1408。 
二维映射器1407将扩频信息位而形成的码片按频率方向和时间轴方向二维配置在副载波上,输出到IFFT器107。时间方向映射器1408将扩频奇偶检验位而形成的码片按时间方向配置在副载波上,并输出到IFFT器107。 
接下来说明有关本实施方式的无线通信装置1400的映射。图15是表示一例扩频后的数据的图。图15的数据分别以扩频率为4进行扩频,一个数据被扩频到4个码片。另外,在图15中,数据按编码率为1/2进行编码,信息位为1501~1504的4位、奇偶检验位为1505~1508的4位。 
图16是表示一例将数据配置在副载波的图。在图16中,纵轴表示频率、横轴表示时间。在图16中,无线通信装置1400按照频率方向两个码片、时间方向两个码片将信息位1501~1504进行二维配置。另外,无线通信装置1400按时间方向将奇偶检验位1505~1508配置。 
接下来,说明有关接收由无线通信装置1400发送的数据的无线通信装置。图17是表示有关本发明实施方式2的无线通信装置结构的方框图。其中,对于与图8相同的结构,使用与图8相同的编号,并省略详细说明。 
图17所示的无线通信装置1700具备:解映器1701、解扩器1702、解扩器1703、解调器1704、解调器1705、译码器1706。对于编码后的数据的信息位,将按频率方向和时间方向二维配置在副载波上的码片汇总成一个信息 位;对于奇偶检验位,将按时间方向配置在副载波上的码片汇总成一个检验位,这与图8的无线通信装置不同。解映器1701由二维解映器1707和时间方向解映器1708构成。 
FFT器804将接收信息进行快速傅立叶变换,并将转换后的接收信号输出到二维解映器1707和时间方向解映器1708。 
二维解映器1707将按频率方向和时间方向二维配置在各副载波上的码片汇总成一个信息位,输出到解扩器1702。时间方向解映器1708将按频率方向配置在各副载波的码片汇总成一个奇偶检验位,输出到解扩器1703。 
解扩器1702在重新排列的信息位上乘上扩频码进行解扩,并输出到解调器1704。解扩器1703在重新排列的奇偶检验位上乘上扩频码进行解扩,并输出到解调器1705。 
解调器1704将信息位解调,输出到译码器1706。解调器1705将奇偶检验位解调,输出到译码器1706。译码器1706根据信息位和奇偶检验位对数据进行译码。 
如上所述,根据本实施方式的无线通信装置,在OFDM-CDMA通信中,按频率方向和时间方向将扩频信息位而形成的码片二维配置在副载波上、按时间方向将扩频奇偶检验位而形成的码片配置在副载波上,这样既可以防止信息位的电位发生过度下降,而且因为可以保持奇偶检验位的正交性,所以可以发挥纠错时所需的各位的特性。 
另外,虽然在上述说明里,用于时间方向扩频的副载波和用于二维扩频的副载波是完全分开的,但是同时采用二种扩频方法的副载波也可以。 
(实施方式3) 
图18是表示根据本发明实施方式3的无线通信装置结构的方框图。其中,对于与图1相同的结构,使用与图1相同的编号,并省略详细说明。 
图18的无线通信装置1800具备:编码器1801、编码器1802、调制器1803、调制器1804、扩频器1805、扩频器1806、映射器1807。在发送由多个不同的编码率编码出来的数据时,对由高编码率编码的数据,按频率方向和时间方向将数据进行扩频而形成的码片二维配置在副载波上、对由低编码率编码的数据,按时间方向将数据进行扩频而形成的码片配置在副载波上,这与图1的无线通信装置不同。 
编码器1801将要发送的数据进行编码,并输出到调制器1803。编码器 1802用比编码器1801低的编码率将发送的数据进行编码,并输出到调制器1804。 
调制器1803将数据进行调制,并输出到扩频器1805。调制器1804将数据进行调制,并输出到扩频器1806。 
扩频器1805将数据乘上扩频码,并输出到映射器1807。扩频器1806将数据乘上扩频码,并输出到映射器1807。 
映射器1807对由扩频器1805输出的数据、即进行了高编码率的编码处理的数据,按频率方向和时间方向将数据进行扩频而形成的码片二维配置在副载波上。另外,映射器1807对由扩频部1806输出的数据,即由低编码率进行编码处理的数据,按时间方向将数据进行扩频而形成的码片配置在副载波上。然后,映射器1807将配置在副载波上的码片的数据输出到IFFT器107。 
接下来详细说明映射器1807。图19是表示本实施方式的无线通信装置的映射器结构的一例的方框图。 
图19的映射器1807主要由二维映射器1901、时间方向映射器1902和加法器1903构成。 
二维映射器1901对由高编码率编码的数据,将数据进行扩频而形成的码片按频率方向和时间轴方向二维配置在副载波上,并输出到加法器1903。时间方向映射器1902对由低编码率编码的数据,按时间方向将数据进行扩频而形成的码片配置在副载波上,并输出到加法器1903。 
加法器1903将由二维映射器1901输出的数据和由时间方向映射器1902输出的数据在每个副载波中相加,并输出到IFFT器107。 
图20是表示扩频后数据的一例的图。图20的数据是由用低编码率编码的数据2001和由比数据2001高的编码率编码的数据2002~2005组成的。图21是表示将数据配置在副载波上的一例的图。在图21中,纵轴表示码分复用数、横轴表示频率。另外,右斜方向的轴表示时间。 
低编码率的数据2001将码片按时间方向配置在副载波上,高编码率的数据2002~2005将码片按频率方向和时间方向二维配置在副载波上。 
接下来说明有关接收由无线通信装置1800发送的数据的无线通信装置。图22是表示根据本发明实施方式3的无线通信装置结构的方框图。但是,对于与图8相同的结构,使用与图8相同的编号,并省略详细说明。 
在图22中,无线通信装置2200具有解映器2201、解扩器2202、解扩器 2203、解调器2204、解调器2205、译码器2206、译码器2207。对由高编码率编码的数据,将按频率方向和时间方向二维配置在副载波上的码片汇总成一个信息位,对由低编码率编码的数据,将按时间方向配置在副载波的码片汇总成一个奇偶检验位,这与图8的无线通信装置不同。 
在图22中,FFT器804将接收信息进行快速傅立叶变换,并将转换后的接收信号输出到解映器2201。 
解映器2201将按频率方向和时间方向二维配置在各副载波上的码片汇总成一个信息位,并输出到解扩器2202,将按时间方向配置在各副载波上的码片汇总成一个奇偶检验位,并输出到解扩器2203。 
解扩器2202将重新排列的数据乘上扩频码进行解扩,并输出到解调器2204。解扩器2203将重新排列的数据乘上扩频码进行解扩,并输出到解调器2205。 
解调器2204将数据进行解调,并输出到译码器2206。解调器2205将数据进行解调,并输出到译码器2207。 
译码器2206以及译码器2207将数据进行译码。译码器2206处理的数据编码率与编码器1801相对应、译码器2207处理的数据编码率与编码器1802相对应。即译码器2206处理的数据的编码率比译码器2207处理的数据的编码率要高。 
接下来详细说明有关解映器2201。图23是表示本实施方式的无线通信装置的解映器结构的一例的方框图。 
图23的解映器2201主要由二维解调器2301、时间方向解调器2302构成。 
二维解调器2301对由高编码率编码的数据,将按频率方向和时间方向二维配置在各副载波上的码片汇总成一个信息位,并输出到向解扩器2202。时间方向解调器2302对由低编码率编码的数据,将按频率方向配置在各副载波上的码片汇总成一个奇偶检验位并输出到解扩器2203。 
如上所述,根据本实施方式的无线通信装置,在发送利用多个不同的编码率编码出来的数据时,对由高编码率编码的数据,将数据进行扩频而形成的码片按频率方向和时间方向二维配置在副载波上;对由低编码率编码的数据,将数据进行扩频而形成的码片按时间方向配置在副载波上,这样对由高编码率编码的数据,可以防止产生接收质量过度恶劣的位,并可以防止发生 因不能正确接收少量的奇偶检验位而使纠错不能正确进行的状态。 
另外,在上述说明中虽然使用了2种编码率,但3种以上的编码率混在一起使用也可以。例如,对使用不小于给定的编码率进行编码的数据,按频率方向和时间方向将数据进行扩频而形成的码片二维配置在副载波上;对使用不足于给定的扩频码率进行编码的数据,按时间方向将数据进行扩频而形成的码片配置在副载波上也可以。 
另外,在上述说明中,虽然以扩频率为4,每1位扩频到4个码片中,但是对扩频率没有限制,任何扩频率都可以使用。 
(实施方式4) 
图24是表示根据本实施方式4的无线通信装置的结构的方框图。其中,对于与图1相同的结构,使用与图1相同的编号,并省略详细说明。 
图24的无线通信装置2400具备:编码器2401、调制器2402、扩频器2403、扩频器2404、映射器2405。在向频率轴方向扩频码元时,利用比向时间轴方向扩频码元时高的扩频率进行扩频,这与图1的无线通信装置有所不同。另外,映射器2405主要由频率方向映射器2406和时间方向映射器2407构成。 
编码器2401将发送的数据编码,并输出到调制器2402。调制器2402将数据调制,并将调制后的数据的一部分输出到扩频器2403,另一部分输出到扩频器2404。 
扩频器2403将数据扩频,并输出到映射器2405里的频率方向映射器2606。扩频器2404使用比扩频器2403低的扩频率将数据扩频,并输出到映射器2405里的时间方向映射器2407。 
频率方向映射器2406按频率方向将数据进行扩频而形成的码片配置在副载波上,并将码片配置在副载波上后的数据输出到IFFT器107。时间方向映射器2407按时间方向将数据进行扩频而形成的码片配置在副载波上,并将码片配置在副载波上后的数据输出到IFFT器107。 
接下来说明有关映射器2405的细节。图25是表示本实施方式的无线通信装置的一例映射器结构的方框图。 
映射控制器2501将传播路径质量不小于规定水平的副载波数输出到时间方向映射器2407、将传播路径质量不足于规定水平的副载波数输出到频率方向映射器2406。另外,映射控制器2501将传播路径质量不小于规定水平 的副载波的频率和传播路径质量不足于规定水平的副载波的频率输出到切换器2502。 
频率方向映射器2406对由扩频器2403输出的数据,将数据进行扩频而形成的码片按频率方向配置在副载波上,并输出到切换器2502。时间方向映射器2407将利用低扩频率扩频的码片按时间方向配置在副载波上,并输出到切换器2502。 
切换器2502将由时间方向映射部2407输出码片输出到传播路径质量不小于规定水平的副载波,将由频率方向映射器2406输出的码片输出到传播路径质量不足于规定水平的副载波。 
通过以上的动作,无线通信装置2400按时间轴方向将数据映射到传播路径质量不小于规定水平的载波频率上,按频率方向将利用比按时间轴方向映射的数据高的扩频率扩频了的数据映射到传播路径质量不足于规定水平的载波频率上。 
接下来,说明接收由无线通信装置2400发送的数据的例子。图26是表示根据本实施方式的无线通信装置的结构的方框图。 
图26的无线通信装置2600具备:解映器2601、解扩器2602、解扩器2603、解调器2604、译码器2605。将在频率轴方向扩频的码元用比在时间方向扩频的码元更高的扩频率进行解扩,这与图8的无线通信装置有所不同。另外,解映器2601主要由频率方向解映器2606和时间方向解映器2607构成。 
解映器2601按照判定器807的判定结果,对传播路径质量不小于规定水平的副载波的接收信号,将在时间轴方向配置的码片汇总成一个数据;对传播路径质量不足于规定水平的副载波的接收信号,将在频率方向配置的码片汇总成一个数据。 
解扩器2602将重新排列的数据进行解扩,并输出到解调器2604。解扩器2603利用比解扩器2602低的扩频率将重新排列的数据进行解扩,并输出到解调器2604。解调器2604将接收数据解调,并输出到译码器2605。译码器2605将接收数据进行译码。 
接下来说明有关解映器2601的细节。图27是表示本实施方式的无线通信装置的一例解映器的结构的方框图。图27的解映器2601主要由解映控制器2701、切换器2702、频率方向解映器2606和时间方向解映器2607构成。 
解映控制器2701基于由判定器807输出的判定结果来控制切换器2702。另外,解映控制器2701将传播路径质量不小于规定水平的副载波频率和传播 路径质量不足于规定水平的副载波频率输出到切换器2702。 
解映控制器2701将传播路径质量不小于规定水平的副载波数输出到时间方向解映器2607;将传播路径质量不足于规定水平的副载波数输出到频率方向解映器2606。 
切换器2702将由传播路径质量不小于规定水平的副载波传送的接收信号输出到时间方向解映器2607;将由传播路径质量不足于规定水平的副载波传送的接收信号输出到频率方向解映器2606。 
时间方向解映器2607将按时间方向配置在各副载波上的码片汇总成一个数据,并输出到扩频器2603。频率方向解映器2606将按频率方向配置在各副载波上的码片汇总成一个数据,并输出到逆扩频器2602。 
如上所述,根据本实施方式的无线通信装置,在OFDM-CDMA通信中,通过将在频率轴方向扩频的码元用比在时间方向扩频的码元更高的扩频率进行解扩,将扩频发送数据而形成的码片,按时间轴方向配置在传播路径环境比规定水平好的副载波上,按频率方向配置在传播路径环境比规定水平差的副载波上,可以同时获得保证在时间方向扩频码片时的扩频码之间的正交性的效果,以及在频率方向扩频码片时的频率分集效果。 
(实施方式5) 
图28是根据本实施方式的无线通信装置的结构的方框图。其中,对于与图1相同的结构,使用与图1相同的编号,并省略详细说明。 
图28的无线通信装置2800具备:编码器2801、调制器2802、调制器2803、扩频器2804、扩频器2805和映射器2806。将向时间轴方向扩频的码元,比向频率轴扩频的码元,使用由一个码元可以传输的信息的复用数高的调制方式调制,这与图1的无线通信装置不同。另外,映射器2806主要由频率方向映射器2807和时间方向映射器2808构成。 
编码器2801将发送数据编码,并将编码后的数据的一部分输出到调制器2802,将其他部分输出到调制器2803。 
调制器2802将数据调制,并输出到扩频器2804。调制器2803使用比调制器2802由一个码元可以传输的信息的复用数高的调制方式调制数据,并输出到扩频器2805。例如,调制器2802利用BPSK或QPSK进行调制,调制器2803利用16QAM或64QAM进行调制。 
扩频器2804将数据扩频,并输出到映射器2806里的频率方向映射器2807。扩频器2805将数据扩频,并输出到映射器2806里的时间方向映射器 2808。 
频率方向映射器2807按频率方向将数据进行扩频而形成的码片配置在副载波上,并将码片配置在副载波上后的数据输出到IFFT器107。时间方向映射器2808按时间方向将数据进行扩频而形成的码片配置在副载波上,并将码片配置在副载波上后的数据输出到IFFT器107。 
接下来详细说明映射器2806。图29是表示本实施方式的无线通信装置的一例映射器结构的方框图。 
控制器2901将传播路径质量不小于规定水平的副载波数输出到时间方向映射器2808、将传播路径质量不足于规定水平的副载波数输出到频率方向映射器2807。另外,映射控制器2901将传播路径质量不小于规定水平的副载波的频率和传播路径质量不足于规定水平的副载波的频率输出到切换器2902。 
频率方向映射器2807对由扩频器2804输出的数据,将数据进行扩频而形成的码片按频率方向配置在副载波上,并输出到切换器2902。时间方向映射器2808对使用复用数高的调制方式调制的数据,将数据进行扩频而形成的码片按时间方向配置在副载波上,并输出到切换器2902。 
切换器2902将由时间方向映射器2808输出的码片输出到传播路径质量不小于规定水平的副载波,将由频率方向映射器2807输出的码片输出到传播路径质量不足于规定水平的副载波。 
通过上述动作,无线通信装置2800,按频率方向将数据映射到传播路径质量不足于规定水平的载波频率上,与向频率轴方向扩频的码元相比,将使用由一个码元可以传输的信息的复用数高的调制方式调制的数据,按时间轴方向将数据映射到传播路径质量不小于规定水平的载波频率上。 
接下来说明有关接收由无线通信装置2800发送的数据的例子。图30是表示根据本实施方式5的无线通信装置的结构的方框图。 
图30的无线通信装置3000具备:解映器3001、解扩器3002、解扩器3003、解调器3004、解调器3005和译码器3006。与在频率方向扩频的数据的解扩后的码元相比,将在时间轴方向扩频的数据的解扩后的码元用复用数高的解调方式解调,这与图8的无线通信装置有所不同。另外解映器3001主要由频率方向解映器3007和时间方向解映器3008构成。 
解映器3001依据判定器807的判定结果,对传播路径质量不小于规定水平的副载波的接收信号,将在时间轴方向配置的码片汇总成一个数据;对传 播路径质量不足于规定水平的副载波的接收信号,将在频率方向配置的码片汇总成一个数据。 
解扩器3002将重新排列的数据解扩,并输出到解调器3004。解扩器3003将重新排列的数据解扩,并输出到解调器3005。 
解调器3004将接收数据解调,并输出到译码器3006。解调器3005将接收数据用比解调器3004由一个码元可以传输的信息的复用数更高的调制方式调制,并输出到译码器3006。例如,解调器3004利用BPSK或QPSK解调,解调器3005利用16QAM或64QAM进行解调。译码器3006将接收数据译码。 
接下来说明有关解映器3001的细节。图31是表示本实施方式的无线通信装置的一例解映器结构的方框图。图31的解映器3001主要由解映控制器3101、切换器3102、频率方向解映器3007和时间方向解调器3008构成。 
解映控制器3101基于由判定器807输出的判定结果控制切换器3102。另外,解映控制器3101将传播路径质量不小于规定水平的副载波频率和传播路径质量不足于规定水平的副载波频率输出到切换器3102。 
解映控制器3101将传播路径质量不小于规定水平的副载波数输出到时间方向解调器3008,并将传播路径质量不足于规定水平的副载波数输出到频率方向解映器3007。 
切换器3102将由传播路径质量不小于规定水平的副载波传送的接收信号输出到时间方向解调器3008,将由传播路径质量不足于规定水平的副载波传送的接收信号输出到频率方向解映器3007。 
时间方向解调器3008将按时间方向配置在各副载波上的码片汇总成一个数据,并输出到解扩器3003。频率方向解映器3007将按频率方向配置在各副载波上的码片汇总成一个数据,并输出到解扩器3002。 
如上所述,根据本实施方式的无线通信装置,在OFDM-CDMA通信中,与在频率轴方向扩频的码元相比,通过将在时间轴方向扩频的码元用由一个码元可以传输的信息的复用数高的调制方式进行调制,将发送数据进行扩频而形成的码片,按时间轴方向配置在传播路环境比规定水平好的副载波,另一方面将利用复用数低的或不利用复用的调制方式调制的数据的扩频码片,按频率方向配置在传播路环境比规定水平差的副载波上,从而可以同时获得保证在时间方向扩频码片时的扩频码之间的正交性的效果,以及在频率方向扩频码片时的频率分集效果。 
另外,上述说明的频率方向的映射也可以使用时间轴和频率轴的二维映射。 
另外,上述说明的调制器以及解调器是利用BPSK或QPSK和16QAM或64QAM的组合,但是作为复用调制解调方式没有上述的限制。 
另外,在上述说明中,作为将数据叠加在多个副载波上的方法,使用快速逆傅立叶变换以及快速傅立叶变换,但是也可以使用离散余弦变换等的正交变换。 
另外,在本发明中,对在时间方向配置码片和在频率方向配置码片的先后没有任何限制,先在哪个方向上配置都可以。 
另外,用于上述各实施方式说明的各功能模块,典型地由集成电路LSI(大规模集成电路)来实现。这些既可以分别实行单芯片化,也可以包含其中一部分或者是全部而实行单芯片化。 
这里,虽然称做LSI,但根据集成度的不同也可以称为IC(集成电路)、系统LSI(系统大规模集成电路)、超LSI(超大规模集成电路)、极大LSI(极大规模集成电路)。 
另外,集成电路化的技术不只限于LSI,也可以使用专用电路或通用处理器来实现。制造LSI后,也可以利用LSI制造后能够编程的FPGA(FieldProgrammable Gate Array,现场可编程门阵列),或可以利用将LSI内部的电路块连接或设定重新配置的可重配置处理器(Reconfigurable Processor)。 
再有,如果随着半导体技术的进步或者其他技术的派生,出现了替换LSI集成电路的技术,当然也可以利用该技术来实现功能块的集成化。也有应用生物工程学技术等的可能性。 
本申请基于2002年8月19日申请的日本专利申请2002-238530号以及2003年8月19日申请的日本专利2003-295614号。其内容全部包含于此作为参考。 
工业实用性 
本发明适合用于将OFDM与CDMA相组合的无线通信装置、通信终端装置以及基站装置。 

Claims (3)

1.一种发送由多个副载波组成的无线信号的无线发送装置,包括:
调制器,使用第一调制方式将发送数据调制而得到第一调制数据,同时使用比所述第一调制方式高的调制阶数的第二调制方式将发送数据调制而得到第二调制数据;
扩频器,将所述第一调制数据扩频而得到多个第一码片,同时将所述第二调制数据扩频而得到多个第二码片;以及
映射器,将所述第一码片配置在频率方向上排列的多个第一副载波上,同时将所述第二码片配置在时间方向上排列的多个第二副载波上,
所述映射器将传播路径质量不足于规定水平的副载波用作为所述第一副载波,和/或将传播路径质量为规定水平以上的副载波用作为所述第二副载波。
2.如权利要求1所述的无线发送装置,所述映射器将所述第一码片配置在所述第一副载波以及所述第二副载波双方上。
3.一种发送由多个副载波组成的无线信号的无线发送方法,包括:
调制步骤,使用第一调制方式将发送数据调制而得到第一调制数据,同时使用比所述第一调制方式高的调制阶数的第二调制方式将发送数据调制而得到第二调制数据;
扩频步骤,将所述第一调制数据扩频而得到多个第一码片,同时将所述第二调制数据扩频而得到多个第二码片;以及
配置步骤,将所述第一码片配置在频率方向上排列的多个第一副载波上,同时将所述第二码片配置在时间方向上排列的多个第二副载波上,
在所述配置步骤中,将传播路径质量不足于规定水平的副载波用作为所述第一副载波,和/或将传播路径质量为规定水平以上的副载波用作为所述第二副载波。
CN2004800225194A 2003-08-19 2004-08-18 无线发送装置以及无线发送方法 Active CN1833386B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110026550.7A CN102142950B (zh) 2003-08-19 2004-08-18 通信装置以及通信方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003295614A JP4295578B2 (ja) 2002-08-19 2003-08-19 無線通信装置及び無線通信方法
JP295614/2003 2003-08-19
PCT/JP2004/011851 WO2005018126A1 (ja) 2003-08-19 2004-08-18 無線送信装置及び無線送信方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN2010101175240A Division CN101789847B (zh) 2003-08-19 2004-08-18 无线通信装置以及无线通信方法
CN201110026550.7A Division CN102142950B (zh) 2003-08-19 2004-08-18 通信装置以及通信方法

Publications (2)

Publication Number Publication Date
CN1833386A CN1833386A (zh) 2006-09-13
CN1833386B true CN1833386B (zh) 2011-04-06

Family

ID=34191118

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2010101175240A Active CN101789847B (zh) 2003-08-19 2004-08-18 无线通信装置以及无线通信方法
CN201110026550.7A Active CN102142950B (zh) 2003-08-19 2004-08-18 通信装置以及通信方法
CN2004800225194A Active CN1833386B (zh) 2003-08-19 2004-08-18 无线发送装置以及无线发送方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN2010101175240A Active CN101789847B (zh) 2003-08-19 2004-08-18 无线通信装置以及无线通信方法
CN201110026550.7A Active CN102142950B (zh) 2003-08-19 2004-08-18 通信装置以及通信方法

Country Status (4)

Country Link
US (4) US7580345B2 (zh)
EP (1) EP1667348B1 (zh)
CN (3) CN101789847B (zh)
WO (1) WO2005018126A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091340A (zh) 2004-12-28 2007-12-19 松下电器产业株式会社 无线通信装置和无线通信方法
CN103179072B (zh) 2005-03-30 2016-04-13 苹果公司 用于ofdm信道化的系统和方法
WO2008050745A1 (fr) * 2006-10-24 2008-05-02 Panasonic Corporation Dispositif de communication radio et procédé de communication radio
EP2151938A1 (en) * 2007-05-29 2010-02-10 Sharp Kabushiki Kaisha Radio reception device, radio communication system, and radio communication method
JP5366494B2 (ja) * 2007-10-10 2013-12-11 パナソニック株式会社 マルチキャリア送信装置
US9225453B2 (en) * 2013-04-09 2015-12-29 Futurewei Technologies, Inc. Optimizing optical systems using code division multiple access and/or orthogonal frequency-division multiplexing
EP3404833A1 (en) * 2017-05-17 2018-11-21 Vestel Elektronik Sanayi ve Ticaret A.S. Transmitter for a wireless communication network, receiver for a wireless communication network, network node for a wireless communication network and wireless communication network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324159A (zh) * 2000-02-23 2001-11-28 株式会社Ntt杜可莫 多载波码分多址无线电传输方法与装置
CN1364358A (zh) * 2000-03-17 2002-08-14 松下电器产业株式会社 无线通信装置和无线通信方法
CN1411179A (zh) * 2001-09-28 2003-04-16 株式会社东芝 Ofdm发送和接收设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3535344B2 (ja) * 1997-05-30 2004-06-07 松下電器産業株式会社 マルチキャリア伝送方法及びデータ送信装置並びに移動局装置及び基地局装置
EP1125398B1 (en) * 1998-10-30 2008-10-22 Broadcom Corporation Cable modem system
US6366601B1 (en) 1999-11-17 2002-04-02 Motorola, Inc. Variable rate spread spectrum communication method and apparatus
TW572534U (en) * 2001-04-16 2004-01-11 Interdigital Tech Corp A time division duplex/code division multiple access (FDD/CDMA) user equipment
JP2003032226A (ja) * 2001-07-17 2003-01-31 Matsushita Electric Ind Co Ltd 無線通信装置および無線通信方法
JP3628987B2 (ja) 2001-07-31 2005-03-16 松下電器産業株式会社 無線通信装置および無線通信方法
JP4171261B2 (ja) 2001-08-27 2008-10-22 松下電器産業株式会社 無線通信装置及び無線通信方法
HUP0401806A2 (en) * 2001-08-30 2004-11-29 Ntt Docomo Inc Radio transmission system and method and transmission station apparatus and reception station apparatus used in the radio transmission system
US7609608B2 (en) * 2001-09-26 2009-10-27 General Atomics Method and apparatus for data transfer using a time division multiple frequency scheme with additional modulation
US7197276B2 (en) * 2002-03-15 2007-03-27 Broadcom Corporation Downstream adaptive modulation in broadband communications systems
WO2004032347A1 (en) * 2002-08-28 2004-04-15 Agency For Science Technology And Research Receiver having a signal reconstructing section for noise reduction, system and method thereof
US7209513B2 (en) * 2003-05-14 2007-04-24 Texas Instruments Incorporated Phase, frequency and gain characterization and mitigation in SCDMA burst receiver using multi-pass processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324159A (zh) * 2000-02-23 2001-11-28 株式会社Ntt杜可莫 多载波码分多址无线电传输方法与装置
CN1364358A (zh) * 2000-03-17 2002-08-14 松下电器产业株式会社 无线通信装置和无线通信方法
CN1411179A (zh) * 2001-09-28 2003-04-16 株式会社东芝 Ofdm发送和接收设备

Also Published As

Publication number Publication date
US8300521B2 (en) 2012-10-30
US9065602B2 (en) 2015-06-23
CN102142950B (zh) 2016-04-27
EP1667348A4 (en) 2012-06-06
EP1667348A1 (en) 2006-06-07
CN101789847B (zh) 2012-01-04
WO2005018126A1 (ja) 2005-02-24
CN101789847A (zh) 2010-07-28
EP1667348B1 (en) 2017-07-26
US20060256755A1 (en) 2006-11-16
CN1833386A (zh) 2006-09-13
US20120039363A1 (en) 2012-02-16
US20090270052A1 (en) 2009-10-29
CN102142950A (zh) 2011-08-03
US20130022080A1 (en) 2013-01-24
US7580345B2 (en) 2009-08-25
US8077598B2 (en) 2011-12-13

Similar Documents

Publication Publication Date Title
US10103862B2 (en) Method, apparatus, and system for transmitting and receiving information of an uncoded channel in an orthogonal frequency division multiplexing system
CN102246446B (zh) 用于在无线通信系统中发送信号的方法和装置
CN1954573B (zh) 在正交频分多址通信系统中发送上行链路确认信息的方法和设备
CN101636995B (zh) 无线通信系统中的高效上行链路反馈
KR101243469B1 (ko) 무선 통신 시스템에서 정보 전송 방법 및 장치
CN101868031A (zh) 无线通信装置和副载波分配方法
CN102119497A (zh) 在无线通信系统中发送控制信号的方法和装置
US9065602B2 (en) Integrated circuit for controlling a process
JP4295578B2 (ja) 無線通信装置及び無線通信方法
CN101369836B (zh) 无线信号发送、接收方法与发送、接收装置
JP4887385B2 (ja) 無線通信装置及び無線通信方法
CN103297101A (zh) 一种多码多载波的cdma调制/解调方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MATSUSHITA ELECTRIC (AMERICA) INTELLECTUAL PROPERT

Free format text: FORMER OWNER: MATSUSHITA ELECTRIC INDUSTRIAL CO, LTD.

Effective date: 20140716

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140716

Address after: California, USA

Patentee after: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA

Address before: Osaka Japan

Patentee before: Matsushita Electric Industrial Co.,Ltd.