CN1804921A - 分布式网络化数据采集装置 - Google Patents

分布式网络化数据采集装置 Download PDF

Info

Publication number
CN1804921A
CN1804921A CNA2006100456908A CN200610045690A CN1804921A CN 1804921 A CN1804921 A CN 1804921A CN A2006100456908 A CNA2006100456908 A CN A2006100456908A CN 200610045690 A CN200610045690 A CN 200610045690A CN 1804921 A CN1804921 A CN 1804921A
Authority
CN
China
Prior art keywords
chip
embedded microcontroller
data
signal
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100456908A
Other languages
English (en)
Other versions
CN100437655C (zh
Inventor
张化光
冯健
杨东升
孙秋野
宋崇辉
刘金海
刘秀翀
王智良
孙凯
任河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CNB2006100456908A priority Critical patent/CN100437655C/zh
Publication of CN1804921A publication Critical patent/CN1804921A/zh
Priority to US11/567,732 priority patent/US7953828B2/en
Application granted granted Critical
Publication of CN100437655C publication Critical patent/CN100437655C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • G01D4/004Remote reading of utility meters to a fixed location
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading

Abstract

一种分布式网络化数据采集装置,基于嵌入式Linux开发平台、以ARM920T为内核的ARM9CPU作为中央处理器,采用多个数据采集装置与主控机组成系统,主控机实现采集数据的动态显示和多个采集装置的协调控制,数据采集装置通过传输介质与主控机或其它设备相连,采用分布式数据采集网络,多卡组网操作,用集线器组网,采用若干根双绞线连接各个分布点的数据采集装置,每台数据采集装置连接多路不同类型的传感器,传感器采集各种不同类型的连续信号,整个装置在主控机的各种控制下,实现多个数据采集装置同时工作的多点数据采集。本发明装置实现多点实时高速数据采集,采集的数据更加准确,精度更高,适合各种场合,各种协议下的网络通信,具有良好的可扩充性。

Description

分布式网络化数据采集装置
技术领域
本发明属于信息技术领域,特别涉及一种分布式网络化数据采集装置。
技术背景
由于现场应用环境的复杂多样,致使对数据采集装置的要求也不尽相同,综观已知技术领域中的数据采集装置,普遍存在着信号处理速度有限,集成化水平低,不能实现分布式数据采集和远程数据综合处理,不能满足复杂工况要求,数据吞吐量有限等问题。例如:名称为“数据采集传感器”,涉及一种新型的水表、电表、气表等仪表数据采集及传输领域内的无源远传数据采集器传感器,主要适用于目前流行的各类计数直读式仪表数据的采集、存储和传输。该数据传感器只能与直读式仪表连接。又如名称为“远程数据采集传输系统”,该远程数据采集传输系统包括一个数据采集终端,通过RS232串口/通用串行总线接口连接主处理器,该处理器连接、接收并对数据采集终端采集的数据进行压缩处理,然后将处理的数据发送给传输模块。其特点是实现数据的无线传输。但无线传输成本高,且因天气等因素影响,数据传输稳定性差。该专利产品有一个数据采集终端,所以不能实现长距离内的多点数据采集。综上所述,现有相关数据采集装置的不足之处主要表现在:
1)采集信号种类单一,只能采集离散信号,不能处理连续信号,导致装置通用性不强,应用领域有限。
2)采集点单一,无法满足要求长距离多点数据采集、同步分析处理的复杂工况要求,对复杂工况的适应能力不强,且处理速度不高,可扩展性不强。
3)通信能力不强。由于单片机采用串行接口通过通讯发射装备实现数据远传,所以难以保证高速实时数据的传输,更难以实现网络通信,或是现有系统对数据采集装置及与通讯设备连接是“绑定的”,当现场环境改变或外部设备需要更新时,就必须调整接口设备并修改控制系统的源程序,从而导致系统维护相对困难。
4)数据处理速度有待提高。由于指令处理的复杂度和CPU与存储器等外设通信时的速度瓶颈等原因导致系统的数据处理速度不高,不能适应如图像处理等对数据处理速度要求很高的场合。
发明内容
针对现有技术存在的问题,本发明提供一种分布式网络化数据采集装置。
本发明涉及一种基于嵌入式Linux开发平台、以ARM920T为内核的ARM9CPU作为中央处理器的分布式网络化数据采集装置,适于在复杂的工业监控中需要实时采集多点信号的领域推广应用。
本发明的技术解决方案采用多个数据采集装置与主控机组成系统,图1为其连接示意图。主控机可通过数据采集软件来实现采集数据的动态显示和多个采集装置的协调控制。数据采集装置通过传输介质(如:双绞线、光纤等)与主控机或其它设备相连,采用分布式数据采集网络,多卡组网操作,用集线器(HUB)组网(通道扩展16×卡数);实现多个数据采集装置同时工作的多点数据采集,采用若干根双绞线(或光纤)连接各个分布点的数据采集装置,每台数据采集装置又可连接多路不同类型的传感器(每个传感器可以采集各种不同类型的连续信号)。数据采集装置个数(即采集点数)视具体工况而定。主控机对数据采集装置的控制包括:系统启动后,主控机通过一个选通信号决定具体选通哪路数据采集装置采集数据,主控机等待数据采集装置返回的成功启动信号。数据采集装置接收到选通信号后,系统启动,由嵌入式系统程序完成数据采集装置的初始化工作,并向主控机发回一个数据采集装置成功启动的信号。主控机若未接收到数据采集装置返回的信号,则发出警告,指出有可能出现故障的数据采集装置编号,工作人员可到现场勘查,进而排除故障。主控机同时完成采集数据的实时显示。
本发明的数据采集装置,如图2所示,包括基于ARM9内核的嵌入式微控制器1,基于ARM9内核的ARM芯片内部的串行口2,GPS接收芯片9,复位芯片10,时钟芯片11,ARM芯片内部的IIC接口12,电源芯片13,Flash芯片14,SDRAM芯片21,LCD显示器15,小型键盘16,,以太网控制器20,芯片内部USB接口18,USB/串口转换器19,高性能A/D转换器3,集成化数字/模拟信号滤波电路6,ARM芯片内部的计数器7,嵌入式操作系统调试接口电路JTAG接口8。
其连接是嵌入式微控制器S3C2410通过XCLK引脚连接时钟晶振芯片OSC,时钟晶振芯片OSC的VCC引脚外挂3.3V电源芯片LD1117525;复位芯片MAX811通过nRSET引脚连接到嵌入式微控制器S3C2410,并将VCC引脚外挂3.3V电源芯片LD1117525;Flash存储器SST39LF160映射在嵌入式微控制器S3C2410的Bank0区域内,并将嵌入式微控制器S3C2410的地址线“左移”一位,即嵌入式微控制器S3C2410的ADDR1连接Flash存储器SST39LF160的A0,SDRAM存储芯片IS42S16400的地址映射在嵌入式微控制器S3C2410的Bank6内;A/D转换器AC1568通过USB/串口转换器连接到嵌入式微控制器S3C2410的USB接口;集成化数字/模拟滤波电路(如图5(b))通过40PIN插槽连接A/D转换器AC1568;集成化数字/模拟滤波电路通过数据线连接不同种类的传感器,处理各种连续或离散信号;嵌入式微控制器S3C2410通过IIC口连接矩阵式键盘;嵌入式微控制器S3C2410通过IIC接口连接LCD显示器SMG240128A,通过UART口(串口2)连接GPS接收芯片GSU-4的XDATA28和XDATA29管脚。集成化数字/模拟信号滤波电路送出的方波信号通过ARM芯片的EINT引脚线连接到ARM芯片内部的外部中断源,实现对数字信号的计数,如图5(a)所示。
中央处理器采用基于ARM 920T的SOC高性能低功耗片上系统应用32位处理器,具有16K指令和16K数据的Cache,存贮器管理MMU,AHB总线接口和Thumb16指令系统,芯片处理速度为1.1MIPS/MHZ,时钟频率达200MHZ。
本发明装置采用嵌入式Linux操作系统,采用汇编和C语言混合编程,汇编语言完成系统初始化、堆栈设置、中断向量设置、开中断等底层操作,C语言完成具体的过程代码编写。可提高程序处理速度,利于今后扩展时的程序修改。
嵌入式微控制器通过USB接口连接USB/串行口转换器,将一个USB口扩展成两个RS232串口和两个RS485接口,RS232接口再与A/D转换器连接,完成采集信号的模数转换。这种连接方式在扩充了装置的接口数量的同时,在硬件方面充分利用了USB接口在速度和稳定性方面的优势,在用户角度仍然使用应用最为熟悉的串行口进行通信。嵌入式微控制器可通过串行接口与GPS接收芯片相连,完成数据采集装置系统时钟的初始化和各个采集装置时钟的统一校时功能。A/D转换接口电路是数据采集装置数据采集系统前向通道的重要环节,可完成一个或多个模拟信号转化为数字信号,以便系统作进一步处理。本系统采用16位A/D板AC1568,提供32路单端输入和16路双向差分输入,范围10伏(-5伏~+5伏),输入通道建立速度10微秒(放大倍率为4、8时为20微秒),精度16位。AC1568可广范应用于各种模拟量的测量,仪表的计算机接口及多路模拟信号的测量。嵌入式微控制器通过IIC 12接口电路与LCD显示器和小型键盘相连,可在数据采集装置上安装LCD,实时显示采集到的数据值,可通过小型键盘完成必要的输入。嵌入式微控制器通过串行口与GPS接收芯片相连,完成GPS接收系统对数据采集装置的初始化和采集系统时间的校正,并设置中断向量,循环等待GPS中断。嵌入式微控制器连接复位芯片(看门狗),设置适当计数值,从而保证嵌入式微控制器正常运行。嵌入式微控制器自带以太网控制器,可提供10M/100M以太网接口,支持媒体独立接口和带缓冲DMA接口,可在半双工和全双工模式下提供以太网接入。嵌入式微控制器外接16M Flash芯片SST39LF160和64M SDRAMIS42S16400,可满足相对较复杂的工况要求。嵌入式微控制器通过内部总线与集成化数字/模拟信号滤波电路相连,集成化数字/模拟信号滤波电路采用12路阻容滤波电路和6路光电隔离电路集成到一块电路板上,从而提高了系统的可靠性和可扩展性,离散数据采用光电隔离技术,使离散信号与嵌入式微控制器完全隔离,具有较高的输入阻抗和共模抑制比;连续信号采用一阶低通阻容滤波电路及软件的自适应滤波,滤除高频成分,提高信噪比。多路离散输入信号和多路连续输入信号接受来自工业现场传感器的检测信号或其他符合工业标准的输入信号,该输入信号不局限于传感器的类型及检测信号的种类,只要是标准电器信号即可。
数据采集装置软件的执行过程:(软件流程图见图3)
步骤一、开始;
步骤二、读取装置的配置文件INI;
步骤三、定义程序的出口地址;
步骤四、设置异常向量,设置中断向量地址,开中断;
步骤五、初始化存贮系统,为采样数据分配内存;
步骤六、网络协议初始化及配置;
步骤七、初始化I/O设备及看门狗电路;
步骤八、启动看门狗,读取GPS校正系统时间;
步骤九、设置采样间隔及使能采样通道;
步骤十、等待中断;
步骤十一、若为采集连续信号中断,则进行连续信号采集操作;
若为采集离散信号中断,则进行离散信号采集操作;
若为看门狗中断,则重新启动采样,回到步骤二;
若为GPS中断,则校时重新设置时间,回到步骤二;
若无中断,则回到步骤十;
步骤十二、将采集的数据信号进行软件滤波;
步骤十三、数据打包,发送数据报文并发送数据到下位机LCD;
步骤十四、回到步骤十,继续等待。
软件滤波执行过程:(自适应滤波原理框图见图4)
步骤一:开始;
步骤二:产生估值信号,即滤波后信号Y(n);
步骤三:计算滤波前后差值信号X(n)-Y(n)=e(n);
步骤四:利用差值信号修正估值信号;
步骤五:输出滤波后采样信号Y(n)。
本发明装置的优点:
1)网络化数据采集,可实现多点实时高速数据采集,特别适用于要求长距离多点采集数据的工业控制场合和复杂工程项目的数据收集。
2)由于本发明装置中嵌入式微控制器采用具有RISC架构的ARM微处理器,从而构成一种嵌入式的、优化的计算机控制系统;特点是:1体积小、低功耗、低成本、高性能;2支持Thumb(16位)/ARM(32位)双指令集;3大量使用寄存器,指令执行速度更快;4大多数数据操作都在寄存器中完成;5寻址方式灵活简单,执行效率高;6指令长度固定。
3)由于采用多路的光电隔离电路和阻容滤波电路,从而可以直接接收现场的各种离散和连续的信号,不受现场传感器型号的限制。离散信号通过光电隔离通道进行数据处理,使信号与嵌入式微控制器完全隔离。阻容滤波电路及软件的二次自适应滤波可以去除高频干扰信号成分,使采集的数据更加准确,精度更高。
4)装置采用GPS系统,可以保证多点采集的同步性,为数据的高精度处理提供了可靠的保证。
5)装置可通过以太网连接起来完成多点的数据采集,同时可通过网络完成数据的上传处理;
另外,装置据有多协议的修改和加载功能,适合各种场合,各种协议下的网络通信。
6)装置具有良好的可扩充性,通过扩展相应的模板,不仅可以扩充通道数,而且可以增加采集点数。单个采集点可实现最高32路的模拟信号/数字信号转换。可满足复杂工况的要求。
附图说明
图1本发明装置连接示意图;
图2本发明装置组成结构框图;
图3数据采集装置软件流程图;
图4自适应滤波原理框图;
图5(a)为数据采集装置电路原理图,(b)为集成化数字/模拟滤波电路原理图;
图6污水处理加料控制与浊度监控系统简图。
具体实施方式
实施例1本发明应用于油田输油管道泄漏故障诊断与定位系统的数据采集装置
该系统应用本装置从管道两端传感器采集得到的压力、温度和流量信号,通过主控机软件实现泄漏的检测与定位。本发明的高速性、实时性和采集的同步性,可以为系统提高泄漏检测的快速性及定位的准确性提供可靠保障。
其电路连接是嵌入式微控制器S3C2410通过XCLK引脚连接时钟晶振芯片OSC,时钟晶振芯片OSC的VCC引脚外挂3.3V电源芯片LD1117525;复位芯片MAX811通过nRSET引脚连接到嵌入式微控制器S3C2410,并将VCC引脚外挂3.3V电源芯片LD1117525;Flash存储器SST39LF160映射在嵌入式微控制器S3C2410的Bank0区域内,SDRAM存储芯片IS42S16400的地址映射在嵌入式微控制器S3C2410的Bank6内;A/D转换器AC1568通过USB/串口转换器连接到嵌入式微控制器S3C2410的USB接口;集成化数字/模拟滤波电路通过40PIN插槽连接A/D转换器AC1568;集成化数字/模拟滤波电路通过数据线连接压力、温度传感器,处理采集的压力、温度信号;采集流量信号的流量传感器送出的方波信号连接到微控制器S3C2410的EINT端口;嵌入式微控制器S3C2410通过IIC口连接矩阵式键盘;通过UART口(串口2)连接GPS接收芯片GSU-4的XDATA28和XDATA29管脚。嵌入式微控制器控制整个采样装置的工作状态,嵌入式微控制器通过串行接口与GPS接收系统相连,嵌入式微控制器通过网卡与其它装置实现通信。
系统运行过程:
在本应用实例当中,中央处理器采用基于ARM 920T的SOC高性能低功耗片上系统应用32位处理器,具有16K指令和16K数据的Cache,存贮器管理MMU,AHB总线接口和Thumb16指令系统,芯片处理速度为1.1MIPS/MHZ,时钟频率达200MHZ。现场采用压力、温度传感器采集6路压力、6路温度模拟信号(最多可为32路,因数模转换可以转换32路),以标准信号通过接口送入本发明装置内部的集成化数字/模拟信号滤波电路中进行低通滤波,去除高频成分,再通过A/D板AC1568转换为数字信号,6路流量脉冲信号通过接口送到光电隔离电路中进行降噪滤波,在经过嵌入式微控制器内部的计数板产生数字信号,3种类型的数字信号进行数据打包后,利用网卡通过以太网传送到装置主控机的数据库中,以备分析。同时,嵌入式微控制器通过串口接收GPS来的信息,确保主机接收到的管道两端的装置上传来的数据是同一时刻采样的,从而保证准确的泄漏检测和高精度定位。
嵌入式微控制器可连接键盘和显示器进行程序调试或修改。存储介质中存储操作系统、开发工具系统、网络通信协议等内容。该检测定位系统能对最长100千米的流体输送管线进行检测,可以在100秒内采样到30L/min左右的泄漏量的报警,定位精度为全管长的2%。
实施例2本发明应用于污水处理加料控制与浊度监控系统的数据采集装置
如图6所示,该系统通过本发明采样得到的浊度信号,通过上位PLC控制加料系统的给料的增减,同时,通过采样装置采集的配料溶液浓度信号,保证配料溶液浓度的恒定。本发明的高速性、实时性和同步性同样可以为处理过程的快速性、稳定性提供保证。
其电路连接是嵌入式微控制器S3C2410通过XCLK引脚连接时钟晶振芯片OSC,时钟晶振芯片OSC的VCC引脚外挂3.3V电源芯片LD1117525;复位芯片MAX811通过nRSET引脚连接到嵌入式微控制器S3C2410,并将VCC引脚外挂3.3V电源芯片LD1117525;Flash存储器SST39LF160映射在嵌入式微控制器S3C2410的Bank0区域内,SDRAM存储芯片IS42S16400的地址映射在嵌入式微控制器S3C2410的Bank6内;A/D转换器AC1568通过USB/串口转换器连接到嵌入式微控制器S3C2410的USB接口;集成化数字/模拟滤波电路通过40PIN插槽连接A/D转换器AC1568;集成化数字/模拟滤波电路通过数据线连接流量、液位传感器,嵌入式微控制器S3C2410通过双绞线连接PLC,PLC控制整个系统的正常工作,将各个采样点的采样数据进行处理完成整个污水处理的加料控制,保证处理过程的正常进行。采样装置内部由嵌入式微控制器控制,完成对浊度、液位等信号的采集、滤波处理。整个装置的高速高效、智能和实时性,充分保证了污水处理过程的稳定进行。
系统运行过程:
在本应用实例当中,现场的流量计和液位计采集的6路流量、6路液位模拟信号通过数据采集装置的标准接口送入装置内部的集成化数字/模拟信号滤波电路6,进行阻容滤波,滤掉干扰信号,再通过A/D板AC1568,将模拟信号转换为数字信号,WT-OT2在线浊度仪反馈处理后的水池的浊度信号,多路信号通过数据总线送入嵌入式微处理器1进行数据打包,利用网卡通过网线上传到主控机PLC当中,由主控机PLC进行处理,主控机利用软件分析反馈的浊度信号,根据需要进行加料溶液的流量增减,完成加料控制。同时,主控机根据现场采样的液位信号保证加料溶液的充足和处理水池的液位。采样装置中的GPS完成采样装置的系统校时,保证采样的同时性,从而确保处理过程的高精度和可靠性。
采样装置还可以连接键盘、显示器等输入输出设备,进行程序的调试和修改,存储在存储介质当中,存储介质中还存储操作系统、开发工具系统、网络通信协议等内容,装置可根据通信的实际需要,更改通信的网络协议。
实施例3本发明应用于粮库温度湿度监控系统的数据采集装置
该系统采用主从式结构,主控机负责数据的处理与系统的控制;本装置应用于数据采集装置各采样点的数据采集和上传。由于粮库温度测量的特殊性,需要多点的采样测量。本装置的网络互联性恰好适合于这种应用场合,装置的高速性、网络互联性和实时性,充分保证粮库温度湿度监控系统的稳定运行。
连接方式为嵌入式微控制器S3C2410通过XCLK引脚连接时钟晶振芯片OSC,时钟晶振OSC芯片的VCC引脚外挂3.3V电源芯片LD1117525;复位芯片MAX811通过nRSET引脚连接到嵌入式微控制器S3C2410,并将VCC引脚外挂3.3V电源芯片LD1117525;Flash存储器SST39LF160映射在嵌入式微控制器S3C2410的Bank0区域内,SDRAM存储芯片IS42S16400的地址映射在嵌入式微控制器S3C2410的Bank6内;A/D转换器AC1568通过USB/串口转换器连接到嵌入式微控制器S3C2410的USB接口;集成化数字/模拟滤波电路通过40PIN插槽连接A/D转换器AC1568;集成化数字/模拟滤波电路通过数据线连接温度、湿度传感器,嵌入式微控制器通过IIC口连接矩阵式键盘;嵌入式微控制器S3C2410通过IIC接口连接LCD显示器SMG240128A,通过UART口(串口)连接GPS接收芯片GSU-4的XDATA28和XDATA29管脚。
系统运行过程:
在本应用实例当中,每个装置首先把采样点的温度、湿度传感器采集的温度信号、湿度信号送入内部集成化数字/模拟信号滤波电路进行滤波处理,再通过数据采集装置的A/D板AC1568将信号进行模/数转换,各采样点转换的数字信号经过数据打包通过网络上传到主控机当中,通过主控机的软件进行分析、处理,完成整个系统的监控。采样装置中的GPS可以保证各个采样点的采集同步,从而保证采集数据的准确性和下一步监控动作的正确性。
系统可连接键盘、显示器等输入输出设备进行系统程序的修改和调试,系统中的存储介质可以存储操作系统、开发工具系统、网络通信协议等,本发明的网络通用性在很大程度上表现出其优势,其通信协议的修改和加载功能非常好的满足了实际当中对于网络方面的要求,充分的显示了装置于本例当中的优势。

Claims (7)

1、一种分布式网络化数据采集装置,其特征在于基于嵌入式Linux开发平台、以ARM920T为内核的ARM9CPU作为中央处理器,采用多个数据采集装置与主控机组成系统,主控机实现采集数据的动态显示和多个采集装置的协调控制,数据采集装置通过传输介质与主控机或其它设备相连,采用分布式数据采集网络,多卡组网操作,用集线器组网,采用若干根双绞线或光纤连接各个分布点的数据采集装置,每台数据采集装置连接多路不同类型的传感器,传感器采集各种不同类型的连续信号,整个装置在主控机的控制下,实现多个数据采集装置同时工作的多点数据采集。
2、如权利要求1所述的分布式网络化数据采集装置,其特征在于所述数据采集装置包括基于ARM9内核的嵌入式微控制器1,基于ARM9内核的ARM芯片内部的串行口2,GPS接收芯片9,复位芯片10,时钟芯片11,ARM芯片内部的IIC接口12,电源芯片13,Flash芯片14,SDRAM芯片21,LCD显示器15,小型键盘16,,以太网控制器20,芯片内部USB接口18,USB/串口转换器19,高性能A/D转换器3,集成化数字/模拟信号滤波电路6,ARM芯片内部的计数器7,嵌入式操作系统调试接口电路JTAG接口8;其连接是嵌入式微控制器S3C2410通过XCLK引脚连接时钟晶振芯片OSC,时钟晶振芯片OSC的VCC引脚外挂3.3V电源芯片LD1117525;复位芯片MAX811通过nRSET引脚连接到嵌入式微控制器S3C2410,并将VCC引脚外挂3.3V电源芯片LD1117525;Flash存储器SST39LF160映射在嵌入式微控制器S3C2410的Bank0区域内,并将嵌入式微控制器S3C2410的地址线“左移”一位,即嵌入式微控制器S3C2410的ADDR1连接Flash存储器SST39LF160的A0,SDRAM存储芯片IS42S16400的地址映射在嵌入式微控制器S3C2410的Bank6内;A/D转换器AC1568通过USB/串口转换器连接到嵌入式微控制器S3C2410的USB接口;集成化数字/模拟滤波电路通过40PIN插槽连接A/D转换器AC1568;集成化数字/模拟滤波电路通过数据线连接不同种类的传感器,处理各种连续或离散信号;嵌入式微控制器S3C2410通过IIC口连接矩阵式键盘;嵌入式微控制器S3C2410通过IIC接口连接LCD显示器SMG240128A,通过UART口(串口2)连接GPS接收芯片GSU-4的XDATA28和XDATA29管脚,集成化数字/模拟信号滤波电路送出的方波信号通过ARM芯片的EINT引脚线连接到ARM芯片内部的外部中断源,实现对数字信号的计数。
3、如权利要求1所述的分布式网络化数据采集装置,其特征在于应用于油田输油管道泄漏故障诊断与定位系统时,其电路连接是嵌入式微控制器S3C2410通过XCLK引脚连接时钟晶振芯片OSC,时钟晶振芯片OSC的VCC引脚外挂3.3V电源芯片LD1117525;复位芯片MAX811通过nRSET引脚连接到嵌入式微控制器S3C2410,并将VCC引脚外挂3.3V电源芯片LD1117525;Flash存储器SST39LF160映射在嵌入式微控制器S3C2410的Bank0区域内,SDRAM存储芯片IS42S16400的地址映射在嵌入式微控制器S3C2410的Bank6内;A/D转换器AC1568通过USB/串口转换器连接到嵌入式微控制器S3C2410的USB接口;集成化数字/模拟滤波电路通过40PIN插槽连接A/D转换器AC1568;集成化数字/模拟滤波电路通过数据线连接压力、温度传感器,处理采集的压力、温度信号;采集流量信号的流量传感器送出的方波信号连接到微控制器S3C2410的EINT端口;嵌入式微控制器S3C2410通过IIC口连接矩阵式键盘;通过UART口(串口2)连接GPS接收芯片GSU-4的XDATA28和XDATA29管脚,嵌入式微控制器控制整个采样装置的工作状态,嵌入式微控制器通过串行接口与GPS接收系统相连,嵌入式微控制器通过网卡与其它装置实现通信。
4、如权利要求1所述的分布式网络化数据采集装置,其特征在于应用于污水处理加料控制与浊度监控时,其电路连接是嵌入式微控制器S3C2410通过XCLK引脚连接时钟晶振芯片OSC,时钟晶振芯片OSC的VCC引脚外挂3.3V电源芯片LD1117525;复位芯片MAX811通过nRSET引脚连接到嵌入式微控制器S3C2410,并将VCC引脚外挂3.3V电源芯片LD1117525;Flash存储器SST39LF160映射在嵌入式微控制器S3C2410的Bank0区域内,SDRAM存储芯片IS42S16400的地址映射在嵌入式微控制器S3C2410的Bank6内;A/D转换器AC1568通过USB/串口转换器连接到嵌入式微控制器S3C2410的USB接口;集成化数字/模拟滤波电路通过40PIN插槽连接A/D转换器AC1568;集成化数字/模拟滤波电路通过数据线连接流量、液位传感器,嵌入式微控制器S3C2410通过双绞线连接PLC,PLC控制整个系统的正常工作,将各个采样点的采样数据进行处理完成整个污水处理的加料控制,保证处理过程的正常进行,采样装置内部由嵌入式微控制器控制,完成对浊度、液位等信号的采集、滤波处理,整个装置的高速高效、智能和实时性,充分保证了污水处理过程的稳定进行。
5、如权利要求1所述的分布式网络化数据采集装置,其特征在于应用于大型的粮库温度湿度监控系统中,其电路连接是嵌入式微控制器S3C2410通过XCLK引脚连接时钟晶振芯片OSC,时钟晶振芯片OSC的VCC引脚外挂3.3V电源芯片LD1117525;复位芯片MAX811通过nRSET引脚连接到嵌入式微控制器S3C2410,并将VCC引脚外挂3.3V电源芯片LD1117525;Flash存储器SST39LF160映射在嵌入式微控制器S3C2410的Bank0区域内,SDRAM存储芯片IS42S16400的地址映射在嵌入式微控制器S3C2410的Bank6内;A/D转换器AC1568通过USB/串口转换器连接到嵌入式微控制器S3C2410的USB接口;集成化数字/模拟滤波电路通过40PIN插槽连接A/D转换器AC1568;集成化数字/模拟滤波电路通过数据线连接温度、湿度传感器,嵌入式微控制器通过IIC口连接矩阵式键盘;嵌入式微控制器S3C2410通过IIC接口连接LCD显示器SMG240128A,通过UART口(串口)连接GPS接收芯片GSU-4的XDATA28和XDATA29管脚。
6、权利要求1所述的分布式网络化数据采集装置,其特征在于其采集数据的过程包括以下步骤:
步骤一、开始;
步骤二、读取装置的配置文件INI;
步骤三、定义程序的出口地址;
步骤四、设置异常向量,设置中断向量地址,开中断;
步骤五、初始化存贮系统,为采样数据分配内存;
步骤六、网络协议初始化及配置;
步骤七、初始化I/O设备及看门狗电路;
步骤八、启动看门狗,读取GPS校正系统时间;
步骤九、设置采样间隔及使能采样通道;
步骤十、等待中断;
步骤十一、若为采集连续信号中断,则进行连续信号采集操作;
          若为采集离散信号中断,则进行离散信号采集操作;
          若为看门狗中断,则重新启动采样,回到步骤二;
          若为GPS中断,则校时重新设置时间,回到步骤二;
          若无中断,则回到步骤十;
步骤十二、将采集的数据信号进行软件滤波;
步骤十三、数据打包,发送数据报文并发送数据到下位机LCD;
步骤十四、回到步骤十,继续等待。
7、权利要求6所述的采集数据的过程,其特征在于步骤十二中的软件滤波包括以下步骤;
步骤一:开始;
步骤二:产生估值信号,即滤波后信号Y(n);
步骤三:计算滤波前后差值信号X(n)-Y(n)=e(n);
步骤四:利用差值信号修正估值信号;
步骤五:输出滤波后采样信号Y(n)。
CNB2006100456908A 2006-01-20 2006-01-20 分布式网络化数据采集装置 Expired - Fee Related CN100437655C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2006100456908A CN100437655C (zh) 2006-01-20 2006-01-20 分布式网络化数据采集装置
US11/567,732 US7953828B2 (en) 2006-01-20 2006-12-06 Distributed networked data acquisition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100456908A CN100437655C (zh) 2006-01-20 2006-01-20 分布式网络化数据采集装置

Publications (2)

Publication Number Publication Date
CN1804921A true CN1804921A (zh) 2006-07-19
CN100437655C CN100437655C (zh) 2008-11-26

Family

ID=36866923

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100456908A Expired - Fee Related CN100437655C (zh) 2006-01-20 2006-01-20 分布式网络化数据采集装置

Country Status (2)

Country Link
US (1) US7953828B2 (zh)
CN (1) CN100437655C (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505058B (zh) * 2009-03-19 2011-01-19 东北大学 一种基于双网络的双递归神经元灵敏负荷网络建模装置及方法
CN102026227A (zh) * 2010-12-14 2011-04-20 广州市香港科大霍英东研究院 面向大规模无线传感器网络测试与调试的分布式部署方法
CN102176210A (zh) * 2010-11-30 2011-09-07 邯郸市康创电气有限公司 一种通用的数据采集系统
CN102176253A (zh) * 2011-01-13 2011-09-07 北华大学 嵌入式用能优化器
CN102306003A (zh) * 2011-05-20 2012-01-04 烟台正信电气有限公司 一种嵌入式通用标准化平台
CN101661276B (zh) * 2009-09-18 2012-05-09 东北大学 一种通用数据采集装置
CN102540993A (zh) * 2010-12-23 2012-07-04 北京时代凌宇科技有限公司 一种水文数据监控系统
CN103106784A (zh) * 2013-01-31 2013-05-15 蓝标 一种水利多参数采集变送装置及方法
CN103180693A (zh) * 2010-08-10 2013-06-26 胜赛斯美国公司 包括负载识别数据处理器的电力公用事业电表
CN103403692A (zh) * 2011-02-16 2013-11-20 三菱电机株式会社 数据传输装置
CN103595693A (zh) * 2012-08-14 2014-02-19 成都思迈科技发展有限责任公司 基于半双工工作模式的rs-485转以太网协议转换器
CN103883882A (zh) * 2014-03-18 2014-06-25 华保科技有限责任公司 油气管道数据接入系统
CN104319902A (zh) * 2014-11-17 2015-01-28 国家电网公司 厂站采集终端定时重启动装置
CN104464254A (zh) * 2014-12-08 2015-03-25 中北大学 一种分布式数据同步采集装置及方法
CN104503325A (zh) * 2014-12-19 2015-04-08 北京国电软通江苏科技有限公司 一种分布式智能主控单元
CN104764519A (zh) * 2015-04-03 2015-07-08 中国人民解放军91388部队 一种潜标式水声信号采集与存储系统
CN104881989A (zh) * 2015-06-04 2015-09-02 成都胜英测控技术有限公司 一种时钟同步数字化传感系统及其信号处理方法
CN105656575A (zh) * 2016-03-24 2016-06-08 西安航天恒星科技实业(集团)公司 基于gpu的多客户端实时频谱监控系统及其方法
CN105757465A (zh) * 2016-04-25 2016-07-13 华东交通大学 一种阀门内泄漏无线联网实时检测装置
CN105894784A (zh) * 2014-10-21 2016-08-24 李江成 基于以太网的微型动态应变调理采集模块
CN106850115A (zh) * 2017-03-07 2017-06-13 中国地质大学(武汉) 一种多通道数据采集同步系统及方法
CN107807889A (zh) * 2017-11-16 2018-03-16 杭州楷知科技有限公司 一种usb设备及usb设备驱动初始化的方法
CN108197068A (zh) * 2017-12-27 2018-06-22 中国科学院微电子研究所 嵌入式实时数据采集和存储系统及其方法
CN109257045A (zh) * 2018-10-17 2019-01-22 天津电气科学研究院有限公司 一种组网式多通道同步隔离数据采集仪
CN110763210A (zh) * 2019-11-13 2020-02-07 闽江学院 一种浮标数据采集装置进行远程传输数据的方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070255868A1 (en) * 2006-04-26 2007-11-01 Cisco Technology, Inc. (A California Corporation) Method and system for managing a network device using a slave USB interface
ES2332967B1 (es) * 2007-08-21 2010-09-27 Universidade Da Coruña Modulo de adquisicion de datos de bajo consumo polivalente.
CN102565522A (zh) * 2011-12-30 2012-07-11 北京工业大学 一种焊接电流采集与同步装置
CN102665292B (zh) * 2012-04-17 2014-10-22 南京拓诺传感网络科技有限公司 一种无线传感器网络传感节点装置及其运行方法
WO2014129966A1 (en) * 2013-02-25 2014-08-28 Biomachines Pte Ltd Data logger and sentinel platform for sensor network
DE102014003554A1 (de) * 2013-10-09 2015-04-09 Seba-Dynatronic Mess- Und Ortungstechnik Gmbh Verfahren zur Synchronisation der Datenaufzeichnung in Rohrleitungsnetzen
EP3126808A1 (en) 2014-04-04 2017-02-08 Exxonmobil Upstream Research Company Real-time monitoring of a metal surface
KR20150141053A (ko) * 2014-06-09 2015-12-17 엘에스산전 주식회사 보호계전시스템 및 이의 데이터 수집방법
CN104461986A (zh) * 2015-01-10 2015-03-25 广东省农业机械试验鉴定站 一种通用型农机检测接口的信号处理系统
CN105608879A (zh) * 2015-10-15 2016-05-25 长春理工大学 瞬态场信号同步采集系统
CN105374200B (zh) * 2015-10-16 2019-01-11 北京精密机电控制设备研究所 一种高速可靠的远程数据采集存储系统
CN107015496A (zh) * 2016-01-28 2017-08-04 苏州襄行智能科技有限公司 一种智能数据采集系统及装置
CN105739384A (zh) * 2016-02-22 2016-07-06 武汉大学 一种基于微处理器的分布式数据采集装置
CN105897894A (zh) * 2016-04-12 2016-08-24 北京大道信通科技股份有限公司 一种物联网通用采集设备集成器
CN107426526B (zh) * 2016-05-23 2024-03-05 中国科学院沈阳自动化研究所 基于f800重量配料控制器的物料数据采集传输装置
CN105913646A (zh) * 2016-06-24 2016-08-31 付韶明 一种基于无线传输的远程数据采集装置
CN107171917B (zh) * 2017-04-07 2020-11-03 惠州市天泽盈丰物联网科技股份有限公司 一种基于rs485总线扩容的网络
CN110505565A (zh) * 2018-05-16 2019-11-26 杨代春 一种具有定位功能的移动式环境检测装置
CN108540956B (zh) * 2018-06-07 2023-11-24 中国农业科学院农田灌溉研究所 一种物联网数据采集器及其组网方法
CN109283875B (zh) * 2018-11-07 2023-11-21 国网辽宁省电力有限公司经济技术研究院 基于arm9架构的高性能热电联产机组运行数据采集终端
CN109782672A (zh) * 2019-03-11 2019-05-21 杭州优嘉智能科技有限公司 多功能交互式数据采集分析上报工业模块
CN110474118B (zh) * 2019-07-09 2023-01-10 福建星云电子股份有限公司 一种能量回馈型电芯串联化成、分容测试系统及方法
CN110532221B (zh) * 2019-08-03 2022-12-09 国营芜湖机械厂 一种工具管理设备的控制模块
CN110658749B (zh) * 2019-09-12 2022-09-16 中国科学院声学研究所北海研究站 一种座底式声学潜标的低功耗数据采集存储系统及方法
US11818210B2 (en) * 2019-10-07 2023-11-14 Advanced Measurement Technology, Inc. Systems and methods of direct data storage for measurement instrumentation
CN112684762A (zh) * 2019-10-18 2021-04-20 深圳市简睿科技有限公司 一种基于图像识别的设备数据采集方法
CN111142450A (zh) * 2020-01-15 2020-05-12 大连理工大学 基于双单片机的水质数据采集存储系统及方法
CN111504528A (zh) * 2020-05-11 2020-08-07 苏州博广远智能科技有限公司 多路测力模块
CN111698267B (zh) * 2020-07-02 2022-07-26 厦门力含信息技术服务有限公司 一种工业控制系统信息安全测试系统及方法
CN112653744A (zh) * 2020-12-16 2021-04-13 科大智能电气技术有限公司 一种基于配电终端多接口可复用的规约转换装置
CN114764111A (zh) * 2021-01-14 2022-07-19 广州中国科学院先进技术研究所 一种非接入式的机器故障预测系统
CN114764112B (zh) * 2021-01-14 2024-03-22 广州中国科学院先进技术研究所 一种非接入式的机器故障预测方法
CN113055765B (zh) * 2021-03-04 2022-10-28 中国航空工业集团公司西安航空计算技术研究所 一种基于全光交换网络的分布式处理系统
CN113438619B (zh) * 2021-06-29 2023-03-03 中车青岛四方车辆研究所有限公司 一种基于物联网多数据源信息采集系统及其方法
CN113794747B (zh) * 2021-08-02 2023-06-16 中国长江电力股份有限公司 一种调度自动化分布式多通道集群延伸通信系统及方法
CN114828472B (zh) * 2022-03-25 2023-12-08 中国航空工业集团公司金城南京机电液压工程研究中心 一种小型化液压泵无线通讯介入装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687391A (en) * 1992-12-11 1997-11-11 Vibrametrics, Inc. Fault tolerant multipoint control and data collection system
CN1091839A (zh) * 1993-03-05 1994-09-07 陈宇弘 多点数据采集系统
US6032154A (en) * 1996-05-09 2000-02-29 Coleman; Robby A. Data storage and management system for use with a multiple protocol management system in a data acquisition system
US20020026321A1 (en) * 1999-02-26 2002-02-28 Sadeg M. Faris Internet-based system and method for fairly and securely enabling timed-constrained competition using globally time-sychronized client subsystems and information servers having microsecond client-event resolution
US7705747B2 (en) * 2005-08-18 2010-04-27 Terahop Networks, Inc. Sensor networks for monitoring pipelines and power lines
ATE450026T1 (de) * 2003-04-14 2009-12-15 American Power Conv Corp Erweiterbare sensorüberwachung, warnungsverarbeitungs- und benachrichtigungssystem und verfahren
WO2004092909A2 (en) * 2003-04-14 2004-10-28 Netbotz, Inc. Method and system for journaling and accessing sensor and configuration data
US7148796B2 (en) * 2003-04-14 2006-12-12 American Power Conversion Corporation Environmental monitoring device
US7008538B2 (en) * 2003-08-20 2006-03-07 Kasparian Kaspar A Single vessel multi-zone wastewater bio-treatment system
JP4046698B2 (ja) * 2004-02-04 2008-02-13 シャープ株式会社 データ提供システム及びデータ提供装置
US6970808B2 (en) * 2004-04-29 2005-11-29 Kingsley E. Abhulimen Realtime computer assisted leak detection/location reporting and inventory loss monitoring system of pipeline network systems
US7319523B2 (en) * 2005-09-26 2008-01-15 Jetalon Solutions, Inc. Apparatus for a liquid chemical concentration analysis system
US20070118253A1 (en) * 2005-11-21 2007-05-24 General Electric Company Distributed and adaptive data acquisition system and method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505058B (zh) * 2009-03-19 2011-01-19 东北大学 一种基于双网络的双递归神经元灵敏负荷网络建模装置及方法
CN101661276B (zh) * 2009-09-18 2012-05-09 东北大学 一种通用数据采集装置
CN103180693A (zh) * 2010-08-10 2013-06-26 胜赛斯美国公司 包括负载识别数据处理器的电力公用事业电表
CN102176210B (zh) * 2010-11-30 2013-05-01 邯郸市康创电气有限公司 一种通用的数据采集系统
CN102176210A (zh) * 2010-11-30 2011-09-07 邯郸市康创电气有限公司 一种通用的数据采集系统
CN102026227A (zh) * 2010-12-14 2011-04-20 广州市香港科大霍英东研究院 面向大规模无线传感器网络测试与调试的分布式部署方法
CN102540993A (zh) * 2010-12-23 2012-07-04 北京时代凌宇科技有限公司 一种水文数据监控系统
CN102176253A (zh) * 2011-01-13 2011-09-07 北华大学 嵌入式用能优化器
CN103403692B (zh) * 2011-02-16 2016-04-20 三菱电机株式会社 数据传输装置
CN103403692A (zh) * 2011-02-16 2013-11-20 三菱电机株式会社 数据传输装置
CN102306003A (zh) * 2011-05-20 2012-01-04 烟台正信电气有限公司 一种嵌入式通用标准化平台
CN103595693A (zh) * 2012-08-14 2014-02-19 成都思迈科技发展有限责任公司 基于半双工工作模式的rs-485转以太网协议转换器
CN103106784A (zh) * 2013-01-31 2013-05-15 蓝标 一种水利多参数采集变送装置及方法
CN103883882A (zh) * 2014-03-18 2014-06-25 华保科技有限责任公司 油气管道数据接入系统
CN105894784A (zh) * 2014-10-21 2016-08-24 李江成 基于以太网的微型动态应变调理采集模块
CN104319902A (zh) * 2014-11-17 2015-01-28 国家电网公司 厂站采集终端定时重启动装置
CN104464254A (zh) * 2014-12-08 2015-03-25 中北大学 一种分布式数据同步采集装置及方法
CN104503325A (zh) * 2014-12-19 2015-04-08 北京国电软通江苏科技有限公司 一种分布式智能主控单元
CN104764519A (zh) * 2015-04-03 2015-07-08 中国人民解放军91388部队 一种潜标式水声信号采集与存储系统
CN104881989A (zh) * 2015-06-04 2015-09-02 成都胜英测控技术有限公司 一种时钟同步数字化传感系统及其信号处理方法
CN105656575A (zh) * 2016-03-24 2016-06-08 西安航天恒星科技实业(集团)公司 基于gpu的多客户端实时频谱监控系统及其方法
CN105656575B (zh) * 2016-03-24 2018-06-08 西安航天恒星科技实业(集团)公司 基于gpu的多客户端实时频谱监控系统及其方法
CN105757465A (zh) * 2016-04-25 2016-07-13 华东交通大学 一种阀门内泄漏无线联网实时检测装置
CN106850115A (zh) * 2017-03-07 2017-06-13 中国地质大学(武汉) 一种多通道数据采集同步系统及方法
CN106850115B (zh) * 2017-03-07 2019-02-05 中国地质大学(武汉) 一种多通道数据采集同步系统及方法
CN107807889A (zh) * 2017-11-16 2018-03-16 杭州楷知科技有限公司 一种usb设备及usb设备驱动初始化的方法
CN108197068A (zh) * 2017-12-27 2018-06-22 中国科学院微电子研究所 嵌入式实时数据采集和存储系统及其方法
CN109257045A (zh) * 2018-10-17 2019-01-22 天津电气科学研究院有限公司 一种组网式多通道同步隔离数据采集仪
CN110763210A (zh) * 2019-11-13 2020-02-07 闽江学院 一种浮标数据采集装置进行远程传输数据的方法

Also Published As

Publication number Publication date
US20070174451A1 (en) 2007-07-26
US7953828B2 (en) 2011-05-31
CN100437655C (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
CN1804921A (zh) 分布式网络化数据采集装置
CN101819432B (zh) 基于无线传感器网络和td-scdma的抽油机远程监测方法及系统
CN101464671B (zh) 一种六氟化硫气体及其衍生气体监测监控的装置
CN101135579A (zh) 一种高精度低成本的角度传感器检测方法和装置
CN101965807A (zh) 蛋鸡生产性能个体记录与鸡舍环境自动监测系统
CN102967326A (zh) 一种基于Nios II处理器的编码器接口测试装置
CN102665292B (zh) 一种无线传感器网络传感节点装置及其运行方法
CN202119386U (zh) 智能型顶板位移传感器
CN104459068A (zh) 一种基于zigbee应用的水质监测系统
CN201909662U (zh) 混凝土搅拌站嵌入式称重仪
CN101739016A (zh) 基于dcs平台的嵌入式dsp智能优化控制方法及装置
CN104481653A (zh) 一种尿素计量喷射泵自动标定系统及其标定方法
CN209372822U (zh) 烟气分析仪及系统
CN207487782U (zh) 智能水表检测装置
CN203741236U (zh) 一种好氧堆肥反应器氧浓度实时监测系统
CN204086903U (zh) 一种用于便携式氨逃逸分析仪的控制系统
CN203117761U (zh) 基于arm单片机的多参数水质监测测控系统
CN205028112U (zh) 一种基于硬件复位的机器人数据采集系统
CN100437404C (zh) 自动化测量控制器
CN201429650Y (zh) 基于嵌入式电力系统谐波分析仪
CN1667569A (zh) 嵌入式智能湿热室控制器
CN108197068A (zh) 嵌入式实时数据采集和存储系统及其方法
CN2689176Y (zh) 直读式数字计数表控制装置
CN107064679A (zh) 新型电能质量监测装置及监测方法
CN207965548U (zh) 基于fpga的cms信号采集处理系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081126

Termination date: 20110120