CN1792802A - Process for extracting aluminium hydroxide from flyash - Google Patents

Process for extracting aluminium hydroxide from flyash Download PDF

Info

Publication number
CN1792802A
CN1792802A CN 200510048274 CN200510048274A CN1792802A CN 1792802 A CN1792802 A CN 1792802A CN 200510048274 CN200510048274 CN 200510048274 CN 200510048274 A CN200510048274 A CN 200510048274A CN 1792802 A CN1792802 A CN 1792802A
Authority
CN
China
Prior art keywords
flyash
extracting
aluminium
filter residue
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510048274
Other languages
Chinese (zh)
Other versions
CN1329301C (en
Inventor
秦晋国
翟玉春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHUOZHOU CITY PEOPLE'S GOVERMENT
Original Assignee
SHUOZHOU CITY PEOPLE'S GOVERMENT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHUOZHOU CITY PEOPLE'S GOVERMENT filed Critical SHUOZHOU CITY PEOPLE'S GOVERMENT
Priority to CNB2005100482749A priority Critical patent/CN1329301C/en
Publication of CN1792802A publication Critical patent/CN1792802A/en
Application granted granted Critical
Publication of CN1329301C publication Critical patent/CN1329301C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

A process for extracting aluminum oxide from powdered coal ash includes such steps as grinding, calcining, mixing with H2SO4 solution, heating while reaction for extracting aluminum oxide, boiling in water, concentrating, cooling while educing out aluminum sulfate crystals, heating for dewatering, heating for decomposing to obtain gamma-Al2O3, and further preparing metallurgy-class aluminum oxide.

Description

A kind of method of alumina of from flyash, extracting
Affiliated technical field
The invention belongs to the comprehensive utilization that becomes more meticulous of flyash, specifically relate to a kind of method of alumina of from flyash, extracting.
Background technology
A large amount of flyash of coal-burning power plant's discharging have caused serious pollution to agricultural production and living environment on every side, and comprehensive regulation flyash has become the environmental problem that an exigence solves.In China, the flyash amount of the annual discharging in coal-burning power plant is up to more than one hundred million tons, and volume of cargo in storage is very big.Al in the flyash 2O 3Content is higher, is about 20~40%, because volume of cargo in storage is big, is one and has the resource treasure-house that the comprehensive development and utilization that becomes more meticulous is worth.
From flyash, extract Al both at home and abroad 2O 3Method can be divided into alkaline process and acid system two big classes.In the sixties in last century, Poland just utilizes soda lime sintering process to extract Al in flyash 2O 3, built up and produced 5000 tons of Al per year 2O 3And the pilot plant of 350,000 tons of cement.China Anhui Province Institute of Metallurgical Technology and Hefei cement research institute have declared with limestone sintering, sodium carbonate stripping in the eighties and extracted Al in flyash 2O 3, residue is for the production of the achievement of cement, in March nineteen eighty-two by expert appraisal.The soda lime sintering process of building materials research institute of Ningxia autonomous region research extracts Al in flyash 2O 3, residue produce cement industry in September, 1987 by the Ningxia State Scientific and Technological Commission of autonomous region tissue characterization.In December, 2004, Inner Mongolia Autonomous Region Science and Technology Department has held " flyash extracts the aluminum and coproducing cement industrialization technology " the project appraisal of scientific and technological achievements meeting of covering the research and development of western new and high technology Group Co.,Ltd, and this group has independently finished nearly 5000 tonnes pilot scale.Although extract Al about alkaline process 2O 3Report a lot, adopt above-mentioned process half industrialization and industrialization quantity-produced report but have not yet to see.Its reason is to handle the numerous length of technology that this high silicon contains the aluminium powder coal ash with alkaline process, the inventory of running is big, facility investment is also big, the energy consumption height, the cost height, and also the level of residue that produces is the several times of flyash amount, limited with a large amount of cement market goods locallies that residue is made, overall economic efficiency is poor, and level of comprehensive utilization is low, thereby has hindered the application of alkaline process aspect comprehensive utilization flyash.
Compare with alkaline process, come treated coal ash just to have obvious advantage with acid system.Acid system when the aluminum oxide that effectively extracts in the flyash, silica all can be refused outside liquid, can not produce new solid material in process of production, level of residue is little, thereby the inventory of running is little, equipment investment is little, energy consumption is low, product cost is also low.But the shortcoming of acid system is in leaching during aluminum oxide, has also brought into solution such as the many leachable impurity in the flyash such as iron, titanium, magnesium, must increase the postorder treatment process; The conversion unit manufacturing of Shi Yonging has certain degree of difficulty besides.But compare with alkaline process, use still the most promising method of acid treatment fly ash, therefore, the research of carrying out this respect both at home and abroad is more.
Extract aluminium oxide with acid treatment flyash and mostly adopt sulfuric acid or saline and alkaline technology.Because flyash is the tiny grit that forms through after high temperature (1500 ℃) burning, the glassy phase in the grit accounts for more than 90%, has had a strong impact on the activity of flyash and acid reaction, therefore, need to improve the reactivity of flyash and acid to improve Al 2O 3Dissolution rate.The more practice of data report is to add cosolvent NH in the acidleach negate is answered 4F and CaF 2, by the complexing Si oxide, make Al thereby reach 2O 3The purpose of stripping.Adopt said method in flyash, to reclaim Al 2O 3, Al 2O 3Dissolution rate all lower, generally only have 35~45%, resource utilization is low, and because having added the fluorine element that environment is had pollution, has brought secondary pollution, has hindered the development and use that become more meticulous of flyash.
Summary of the invention
The purpose of this invention is to provide a kind of method of extracting aluminium oxide from flyash, this method adopts sulfuric acid high temperature to leach aluminium oxide under normal pressure, does not add any cosolvent, the rate of recovery height of aluminium oxide.
The present invention extracts aluminum oxide from flyash concrete grammar comprises:
Flyash is ground to 200~400 orders, in 300~760 ℃ of calcination activations 1~1.5 hour;
Flyash after the roasting and 60%~98% H 2SO 4Weight ratio according to 1: 1~6 is mixed, and is heated to 160~330 ℃ of reactions 1~1.5 hour, filters spent acid is separated with the filter residue that contains reactant;
The water that adds 2.5~5 times of amounts in the filter residue boiled under 65~90 ℃ molten 30~45 minutes, and the stripping reactant removes by filter residue, and filtrate concentrates postcooling, separates out the Tai-Ace S 150 crystallization;
Tai-Ace S 150 heats up to dewater and obtains anhydrous slufuric acid aluminium;
Continue to heat up and make the decomposition of anhydrous slufuric acid aluminium obtain γ-Al 2O 3, and reclaim SO 3Flue gas.
Filtration temperature when wherein, spent acid being separated with the filter residue that contains reactant is selected 100~180 ℃.
The present invention carries out the processing of distinct methods to concentrating the aluminum sulfate crystallization of separating out after the cooling, can produce aluminium salt and the aluminum oxide of many kinds, specifically:
The Tai-Ace S 150 crystallization being no more than dehydration fully under 400 ℃ the temperature, is generated anhydrous slufuric acid aluminium.
In calcining below 900 ℃, aluminum sulfate is decomposed fully in anhydrous slufuric acid aluminium, all generate active strong γ-Al 2O 3
γ-the Al for preparing 2O 3Boil moltenly at 120~190 ℃ of lower NaOH solution with 150g/L~200g/L, make sodium aluminate solution.Owing to the impurity such as iron contained in the aluminium oxide, calcium, magnesium can not be dissolved by alkali, be present in the solid phase, can remove by filter, after the Separation of Solid and Liquid, form the high sodium aluminate solution of purity.Add aluminium hydroxide crystal seed in solution, the sodium aluminate in the solution is separated out with the form crystallization of aluminium hydroxide, the crystalline aluminum hydroxide that obtains can obtain metallurgical-grade aluminum oxide at 1100 ℃ of temperature lower calcinations.
Anhydrous slufuric acid aluminium decomposes preparation γ-Al 2O 3The time SO that produces 3Flue gas directly passes in the spent acid that filters to isolate and produces sulfuric acid, produces the leaching that the sulfuric acid that obtains is used further to aluminium oxide in the flyash, realizes recycling of sulfate system.
The present invention adopts new flyash activating technology, does not use any cosolvent at normal pressure, with sulfuric acid the aluminium oxide in the flyash is effectively leached, and the dissolution rate of aluminium oxide can reach more than 85%.
Any waste water, waste liquid, waste residue and obnoxious flavour are not discharged in all effectively recycles such as the spent acid that produces in the technical process of the present invention, waste water in the whole process.
The present invention adopts different processing methods, the alumina preparation that leaches from flyash can be become aluminium salt and the aluminum oxide of many kinds.
Technological process of the present invention is simple, invests for a short time, and cost is low, and the added value of product height is a flyash that has the prospect comprehensive utilization industrialization method that becomes more meticulous.
Embodiment
Embodiment 1
Get salic 40% flyash 1t, grind to form 300 purpose fine powders, behind the iron removal by magnetic separation,, obtain activatory flyash in 400 ℃ of following roasting 1.5h.
The H of adding 72% in activating fly ash 2SO 44t is warming up to 300 ℃ and leaches reaction 1h, and aluminum oxide is fully leached, and reacting rear material is used further to after the spent acid that filters out reclaims leach operation next time 150 ℃ of solid-liquid separation, recycles.
Add 4t water in solid slag, be warming up to 80 ℃ and boil molten 40min, filter, filter residue washes with water 2 times, the reverse use of washing lotion.
With the filtrate evaporation concentration, return the stripping operation behind the water vapor condensation that steams, separate out the Tai-Ace S 150 crystallization after the concentrated solution cooling, filter, collect solid crystal 2200Kg.The filtrate evaporation concentration is returned the stripping operation behind the water vapor condensation, concentrated solution returns and leaches the use that is mixed of operation and concentrated acid.
The Tai-Ace S 150 solid crystal that obtains is warming up to 350 ℃ of dehydrations gradually, obtains 1500Kg anhydrous slufuric acid aluminium, returns the stripping operation behind the water vapor condensation of generation.
Anhydrous slufuric acid aluminium continues to be warming up to 453 ℃ and begins to decompose, heating direct to 870 ℃ again, and calcining 6h decomposes anhydrous slufuric acid aluminium fully, generates 350Kg γ-Al 2O 3, the SO that calcining produces 3Flue gas is passed in the spent acid for the production of H 2SO 4
γ-Al 2O 3Join in the NaOH solution of 150g/L, be warming up to 150 ℃ and boil moltenly, remove by filter residue, add a small amount of aluminium hydroxide crystal seed in the filtrate, the sodium aluminate in the filtrate is separated out with the form of crystalline aluminum hydroxide, filter, filtrate cycle is used.
The crystalline aluminum hydroxide that obtains is warming up to 1100 ℃ of calcinings obtains the 350Kg metallurgical-grade aluminum oxide.
Embodiment 2
Get salic 40% flyash 1t, grind to form 200 purpose fine powders, behind the iron removal by magnetic separation,, obtain activatory flyash in 600 ℃ of following roasting 1h.
The H of adding 98% in activating fly ash 2SO 42t is warming up to 250 ℃ and leaches reaction 1.5h, and aluminum oxide is fully leached, and reacting rear material is used further to after the spent acid that filters out reclaims leach operation next time 180 ℃ of solid-liquid separation, recycles.
Add 6t water in solid slag, be warming up to 75 ℃ and boil molten 45min, filter, filter residue washes with water 2 times, the reverse use of washing lotion.
With the filtrate evaporation concentration, return the stripping operation behind the water vapor condensation that steams, separate out the Tai-Ace S 150 crystallization after the concentrated solution cooling, filter, collect solid crystal 2200Kg.The filtrate evaporation concentration is returned the stripping operation behind the water vapor condensation, concentrated solution returns and leaches the use that is mixed of operation and concentrated acid.
The Tai-Ace S 150 solid crystal that obtains is warming up to 400 ℃ of dehydrations gradually, obtains 1480Kg anhydrous slufuric acid aluminium, returns the stripping operation behind the water vapor condensation of generation.
Anhydrous slufuric acid aluminium continues to be warming up to 850 ℃, and calcining 8h decomposes anhydrous slufuric acid aluminium fully, generates 350Kg γ-Al 2O 3, the SO that calcining produces 3Flue gas is passed in the spent acid for the production of H 2SO 4
γ-Al 2O 3Join in the NaOH solution of 150g/L, be warming up to 150 ℃ and boil moltenly, remove by filter residue, add a small amount of aluminium hydroxide crystal seed in the filtrate, the sodium aluminate in the filtrate is separated out with the form of crystalline aluminum hydroxide, filter, filtrate cycle is used.
The crystalline aluminum hydroxide that obtains is warming up to 1100 ℃ of calcinings obtains the 350Kg metallurgical-grade aluminum oxide.

Claims (6)

1, a kind of method of alumina of extracting from flyash comprises:
Flyash is ground to 200~400 orders, in 300~760 ℃ of calcination activations 1~1.5 hour;
Flyash after the roasting and 60%~98% H 2SO 4Weight ratio according to 1: 1~6 is mixed, and is heated to 160~330 ℃ of reactions 1~1.5 hour, filters spent acid is separated with the filter residue that contains reactant;
The water that adds 2.5~5 times of amounts in the filter residue boiled under 65~90 ℃ molten 30~45 minutes, and the stripping reactant removes by filter residue, and filtrate evaporation concentration postcooling is separated out the Tai-Ace S 150 crystallization;
The Tai-Ace S 150 crystallization heats up to dewater and obtains anhydrous slufuric acid aluminium;
Continue to heat up and make the decomposition of anhydrous slufuric acid aluminium obtain γ-Al 2O 3, and reclaim SO 3Flue gas.
2, according to the described method of alumina of from flyash, extracting of claim 1, it is characterized in that, spent acid is separated with the filter residue that contains reactant 100~180 ℃ of filtrations.
3, the method for alumina of extracting from flyash according to claim 1 is characterized in that dehydration generates anhydrous slufuric acid aluminium under 400 ℃ the temperature being no more than with the Tai-Ace S 150 crystallization.
4, the method for extracting aluminium oxide from flyash according to claim 1 is characterized in that anhydrous slufuric acid aluminium is prepared γ-Al at the temperature lower calcination that is no more than 900 ℃ 2O 3
5, the method for alumina of extracting from flyash according to claim 1 is characterized in that the SO that reclaims 3Flue gas is produced the vitriol oil with sulfuric acid absorption.
6, the method for extracting aluminium oxide from flyash according to claim 1 is characterized in that the γ-Al for preparing 2O 3Can also boil at 120~190 ℃ of lower NaOH solution with 150g/L~200g/L moltenly, make sodium aluminate solution, remove by filter residue after, the adding aluminium hydroxide crystal seed makes solution separate out crystalline aluminum hydroxide, prepares metallurgical-grade aluminum oxide at 1100 ℃ of temperature lower calcinations.
CNB2005100482749A 2005-12-31 2005-12-31 Process for extracting aluminium hydroxide from flyash Expired - Fee Related CN1329301C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100482749A CN1329301C (en) 2005-12-31 2005-12-31 Process for extracting aluminium hydroxide from flyash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100482749A CN1329301C (en) 2005-12-31 2005-12-31 Process for extracting aluminium hydroxide from flyash

Publications (2)

Publication Number Publication Date
CN1792802A true CN1792802A (en) 2006-06-28
CN1329301C CN1329301C (en) 2007-08-01

Family

ID=36804475

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100482749A Expired - Fee Related CN1329301C (en) 2005-12-31 2005-12-31 Process for extracting aluminium hydroxide from flyash

Country Status (1)

Country Link
CN (1) CN1329301C (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100404423C (en) * 2006-09-15 2008-07-23 平朔煤炭工业公司 Method of preparing aluminum oxide from fly ash
CN100410174C (en) * 2006-08-29 2008-08-13 神华准格尔能源有限责任公司 Preparation method of alumina
CN100413981C (en) * 2006-09-14 2008-08-27 北京矿冶研究总院 Method for extracting aluminum from high-silicon aluminum-containing mineral raw material by acid process
CN101254933B (en) * 2008-04-02 2010-06-23 潘爱芳 Method for extracting high-purity alumina and silica gel from coal ash
CN101306826B (en) * 2008-06-20 2011-05-25 北京世纪地和科技有限公司 Process for extracting metallurgy-level aluminum oxide from fly ash or slag
CN102557091A (en) * 2011-12-30 2012-07-11 西安航天科技工业公司 Method for subsequent treatment of aluminum sulfate generated in technical process of extracting alumina from fly ash
CN101327944B (en) * 2008-07-16 2012-11-28 孙志昂 Production process for preparing superfine crystal alpha-aluminum oxide by directly using aluminum sulfate
DE112011101459T5 (en) 2010-04-27 2013-03-07 China Shenhua Energy Company Limited A method of providing metallurgical grade aluminum using fluid bed ash
CN103042160A (en) * 2012-12-25 2013-04-17 马鞍山市万鑫铸造有限公司 Zircon sand contained moulding sand and preparation method thereof
CN103042156A (en) * 2012-12-25 2013-04-17 马鞍山市万鑫铸造有限公司 Bauxite contained moulding sand and preparation method thereof
CN103042158A (en) * 2012-12-25 2013-04-17 马鞍山市万鑫铸造有限公司 High crush-resistance moulding sand and preparation method thereof
CN103305686A (en) * 2013-05-30 2013-09-18 华东理工大学 Method for realizing separation of aluminium, iron and calcium by activating coal gasification ash
CN103738972A (en) * 2013-12-27 2014-04-23 中国神华能源股份有限公司 Method for preparing silicon micropowder by using pulverized fuel ash aluminum extraction residues
CN104445308A (en) * 2013-09-16 2015-03-25 贵阳铝镁设计研究院有限公司 Method for extracting alumina from fly ash in circulating fluidized bed
CN104591239A (en) * 2014-12-23 2015-05-06 贵州师范大学 Method for extracting high-purity aluminum oxide from bauxite
CN104591244A (en) * 2014-12-23 2015-05-06 贵州师范大学 Method for extracting high-purity aluminum oxide by adsorbing impurities with molecular sieve
CN104591245A (en) * 2014-12-23 2015-05-06 贵州师范大学 Method for extracting high-purity alumina by adsorbing impurities with activated carbon
CN104831074A (en) * 2015-05-19 2015-08-12 河北工程大学 Method for extracting aluminum from fly ash
US9517965B2 (en) 2012-11-27 2016-12-13 National Institute Of Clean-And-Low-Carbon Energy Method for preparing a soda-lime-silica glass basic formulation and a method for extracting aluminum from coal ash for co-production of glass
CN106348330A (en) * 2016-08-31 2017-01-25 贵州师范大学 Method for extracting high-purity aluminum sulfate from DDTC (Diethyldithiocarbamate) precipitate impurity
CN106673042A (en) * 2016-12-30 2017-05-17 华东理工常熟研究院有限公司 Method for preparing anhydrous aluminum sulfate from crystal aluminum sulfate
CN114162843A (en) * 2021-12-27 2022-03-11 鄂尔多斯市环保投资有限公司 Device for preparing building material additive by using high-alumina fly ash

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607259B (en) * 2009-07-17 2012-01-25 华东理工大学 Method for activating fly ash at low temperature and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546014A (en) * 1977-06-16 1979-01-17 Babcock Hitachi Kk Treatment of fly ash
CN1003277B (en) * 1986-12-29 1989-02-15 陕西省农垦科技教育中心 Three-line crossbreeding and cultivation technique for cabbage-type rape
WO1989004811A1 (en) * 1987-11-24 1989-06-01 Northern States Power Company Method for the processing of fly ash, scrubber sludge and the like; and products recovered therefrom
CN1015537B (en) * 1987-12-04 1992-02-19 淮南发电总厂 Process for extraction of alumina from powder coal ash with formation of gelmaterial b-c25
CN1059880C (en) * 1995-10-24 2000-12-27 何志强 Treatment of flyash
CN1296280C (en) * 2004-11-12 2007-01-24 内蒙古蒙西高新技术集团有限公司 Method for combination producing alumina and cement from chalk and flyash
JP4631741B2 (en) * 2006-02-24 2011-02-16 村田機械株式会社 Transport vehicle

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410174C (en) * 2006-08-29 2008-08-13 神华准格尔能源有限责任公司 Preparation method of alumina
CN100413981C (en) * 2006-09-14 2008-08-27 北京矿冶研究总院 Method for extracting aluminum from high-silicon aluminum-containing mineral raw material by acid process
CN100404423C (en) * 2006-09-15 2008-07-23 平朔煤炭工业公司 Method of preparing aluminum oxide from fly ash
CN101254933B (en) * 2008-04-02 2010-06-23 潘爱芳 Method for extracting high-purity alumina and silica gel from coal ash
CN101306826B (en) * 2008-06-20 2011-05-25 北京世纪地和科技有限公司 Process for extracting metallurgy-level aluminum oxide from fly ash or slag
CN101327944B (en) * 2008-07-16 2012-11-28 孙志昂 Production process for preparing superfine crystal alpha-aluminum oxide by directly using aluminum sulfate
US8568671B2 (en) 2010-04-27 2013-10-29 China Shenhua Energy Company Limited Method for preparing metallurgical-grade alumina by using fluidized bed fly ash
DE112011101459T5 (en) 2010-04-27 2013-03-07 China Shenhua Energy Company Limited A method of providing metallurgical grade aluminum using fluid bed ash
CN102557091A (en) * 2011-12-30 2012-07-11 西安航天科技工业公司 Method for subsequent treatment of aluminum sulfate generated in technical process of extracting alumina from fly ash
US9517965B2 (en) 2012-11-27 2016-12-13 National Institute Of Clean-And-Low-Carbon Energy Method for preparing a soda-lime-silica glass basic formulation and a method for extracting aluminum from coal ash for co-production of glass
CN103042158B (en) * 2012-12-25 2015-02-11 马鞍山市万鑫铸造有限公司 High crush-resistance moulding sand and preparation method thereof
CN103042160B (en) * 2012-12-25 2015-02-11 马鞍山市万鑫铸造有限公司 Zircon sand contained moulding sand and preparation method thereof
CN103042158A (en) * 2012-12-25 2013-04-17 马鞍山市万鑫铸造有限公司 High crush-resistance moulding sand and preparation method thereof
CN103042160A (en) * 2012-12-25 2013-04-17 马鞍山市万鑫铸造有限公司 Zircon sand contained moulding sand and preparation method thereof
CN103042156A (en) * 2012-12-25 2013-04-17 马鞍山市万鑫铸造有限公司 Bauxite contained moulding sand and preparation method thereof
CN103042156B (en) * 2012-12-25 2015-02-11 马鞍山市万鑫铸造有限公司 Bauxite contained moulding sand and preparation method thereof
CN103305686B (en) * 2013-05-30 2016-05-25 华东理工大学 Activated coal gasification lime-ash is realized the method that ferro-aluminum calcium separates
CN103305686A (en) * 2013-05-30 2013-09-18 华东理工大学 Method for realizing separation of aluminium, iron and calcium by activating coal gasification ash
CN104445308A (en) * 2013-09-16 2015-03-25 贵阳铝镁设计研究院有限公司 Method for extracting alumina from fly ash in circulating fluidized bed
CN103738972A (en) * 2013-12-27 2014-04-23 中国神华能源股份有限公司 Method for preparing silicon micropowder by using pulverized fuel ash aluminum extraction residues
CN103738972B (en) * 2013-12-27 2015-12-02 中国神华能源股份有限公司 A kind of residue of aluminum-extracted pulverized fuel ash prepares the method for silicon powder
CN104591245A (en) * 2014-12-23 2015-05-06 贵州师范大学 Method for extracting high-purity alumina by adsorbing impurities with activated carbon
CN104591244A (en) * 2014-12-23 2015-05-06 贵州师范大学 Method for extracting high-purity aluminum oxide by adsorbing impurities with molecular sieve
CN104591245B (en) * 2014-12-23 2016-07-06 贵州师范大学 Activated carbon adsorption impurity extracts the method for high purity aluminium oxide
CN104591244B (en) * 2014-12-23 2016-11-30 贵州师范大学 Molecular sieve adsorption impurity extracts the method for high purity aluminium oxide
CN104591239A (en) * 2014-12-23 2015-05-06 贵州师范大学 Method for extracting high-purity aluminum oxide from bauxite
CN104831074A (en) * 2015-05-19 2015-08-12 河北工程大学 Method for extracting aluminum from fly ash
CN106348330A (en) * 2016-08-31 2017-01-25 贵州师范大学 Method for extracting high-purity aluminum sulfate from DDTC (Diethyldithiocarbamate) precipitate impurity
CN106673042A (en) * 2016-12-30 2017-05-17 华东理工常熟研究院有限公司 Method for preparing anhydrous aluminum sulfate from crystal aluminum sulfate
CN114162843A (en) * 2021-12-27 2022-03-11 鄂尔多斯市环保投资有限公司 Device for preparing building material additive by using high-alumina fly ash

Also Published As

Publication number Publication date
CN1329301C (en) 2007-08-01

Similar Documents

Publication Publication Date Title
CN1329301C (en) Process for extracting aluminium hydroxide from flyash
CN100404423C (en) Method of preparing aluminum oxide from fly ash
CN101244843B (en) Method for recycling zirconium oxide and yttrium oxide from yttrium oxide steady zirconium oxide solid fused mass waste matter
CN100584764C (en) Method for reclaiming ferric oxide from coal ash and coal gangue
CN110217810B (en) Method for efficiently recovering valuable elements in aluminum ash
CN105695751B (en) A kind of purification technique of electrolytic manganese anode mud
CN109930174A (en) The method that aluminium electrolyte takes off lithium purification and recycling lithium
CN102295303B (en) Extraction method of lithium carbonate
CN112142353B (en) Method for efficiently and harmlessly treating aluminum ash
CN103553138A (en) Comprehensive utilization method for separating, concentrating and purifying manganese sulfate, magnesium sulfate and calcium sulfate in high-salt waste water
CN103349994B (en) A kind of catalyst that reclaims from coal ash is also separated the method obtaining aluminum contained compound
CN101125667A (en) Method for preparing battery-stage anhydrous lithium chloride
CN114031099B (en) Acidification roasting method for efficiently treating aluminum electrolysis solid waste
CN1940096A (en) Extraction of vanadium and molybdenum compound from refused materials containing vanadium and molybdenum etc. multiple elements
CN107758714A (en) A kind of method of aluminium silicon lithium gallium combination method collaboration extraction in flyash
CN110510642A (en) A kind of method that low-grade α spodumene economy mentions lithium
CN109911909B (en) Recovery processing method of waste sagger in preparation process of lithium cobaltate positive electrode material
CN103351014B (en) Method for extraction and preparation of alumina from coal ash
CN110479207A (en) A kind of method that the alkali fusion activation of electrolytic manganese residues microwave prepares high adsorption value fluorite
CN109913652B (en) Comprehensive treatment method for waste refractory material in preparation process of ternary cathode material
CN103014316A (en) Novel method for processing lepidolite material
CN110229964B (en) Method for extracting rubidium from fly ash
CN115818675A (en) Method for comprehensively utilizing waste electrolyte containing lithium and aluminum
CN105668597A (en) Method of acid-alkali combined extraction of aluminum-based products and silicon-based products from fly ash
CN101880772A (en) Method for recycling magnesium from magnesium-containing waste solution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee