CN1769644A - 在钻孔中使用高频流体模式的井涌报警系统 - Google Patents

在钻孔中使用高频流体模式的井涌报警系统 Download PDF

Info

Publication number
CN1769644A
CN1769644A CNA2005100847748A CN200510084774A CN1769644A CN 1769644 A CN1769644 A CN 1769644A CN A2005100847748 A CNA2005100847748 A CN A2005100847748A CN 200510084774 A CN200510084774 A CN 200510084774A CN 1769644 A CN1769644 A CN 1769644A
Authority
CN
China
Prior art keywords
slowness
fluid mode
mud
fluid
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100847748A
Other languages
English (en)
Other versions
CN1769644B (zh
Inventor
P·T·邬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology BV
Schlumberger Overseas SA
Original Assignee
Schlumberger Overseas SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Overseas SA filed Critical Schlumberger Overseas SA
Publication of CN1769644A publication Critical patent/CN1769644A/zh
Application granted granted Critical
Publication of CN1769644B publication Critical patent/CN1769644B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/107Locating fluid leaks, intrusions or movements using acoustic means

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Fluid Mechanics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Emergency Alarm Devices (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

用于检测钻孔中的井涌的技术包括:在钻孔中采用声波工具获取一组测量结果;根据这组测量结果来确定钻孔泥浆慢度;和将该泥浆慢度与所选的标准进行比较,其中,确定泥浆慢度包括针对至少一种流体模式确定作为频率函数的流体模式慢度,并且根据该流体模式慢度确定泥浆慢度。

Description

在钻孔中使用高频流体模式的井涌报警系统
技术领域
本发明通常涉及钻孔中的井涌检测和监控。更特别地,本发明涉及用于基于泥浆慢度(slowness)检测井涌的方法和系统。
背景技术
井控是油气勘探的重要方面。当在油气勘探中钻井时,应当在适当位置提出各种措施以防止损伤与钻井活动相关联的人员和设备。例如,钻探流体(泥浆)应具有适当的重量以防止地层流体冲进井眼。尽管采用所有预防措施,在地层中意外的高压地带的穿透还是不可避免的。当这种情况发生时,高压流体通常流入井眼中,而该井被认为发生“井涌”。
与井涌相关的压力上升起因于地层流体(液体、气体或其组合)从高压地层流进井眼。高压井涌将从井眼中的进入点沿井孔向上扩散(即,从高压区域向低压区域扩散)。如果允许井涌到达地面,那么钻探泥浆、钻井工具和其他钻探构件都将被喷出井眼。这些“井喷”可能导致灾难性破坏钻探设备以及人员伤亡。
井涌是钻井者面对的最大的安全问题之一。每年,井涌/井喷事故给企业带来数百万美元的损失。虽然可用减少在井发生井涌后井喷的危险的各种措施(例如,防喷器;BOP),但是,如果存在一种方式来预测或检测即将发生的井涌和井喷,那么这是更有效的。较早的对初期井涌的检测可以警告钻井者,并提供有价值的时间以便计划措施来消除该井涌并避免灾难。另一方面,如果迟一些检测到井涌,则可能有必要卸下钻柱杆,以执行诸如令井涌气体流出的井涌控制措施,或者激活防喷器。所有这些措施花费高昂。更糟的是,如果井涌发现得太迟而未启动适当的措施,那么可能导致井喷,引发对设备和/或人员的灾难性的损害。因此,能够较早地监控和检测井涌的方法和系统是极有价值的。
大多数井涌检测方法基于监控钻探泥浆体积、流速或压力变化。例如,由Singh等人发表的美国专利No.6,371,204公开一种方法,用于通过仔细监控流体体积来检测井涌,该流体体积被泵送到钻柱杆并返回地面。通过比较或总计所计算的体积,有可能检测到井眼和地下地层之间的不希望的流体弯曲(flexes)。使用能够提供流体接口测量结果的声波或声响传感器,可以通过监控液面来确定流体体积。
也可以不同的方式使用声响传感器来检测井涌。例如,由Dorr等人发表的美国专利No.4,273,212公开一种方法,该方法使用声响传感器以便在钻探时监控从钻探平台到井眼的底部的距离。地面的声响传感器发送信号到泥浆柱中。该声响信号井下传播,并且从钻探组件的钻铤反射回钻井平台。钻井平台与底部钻具组合(BHA)之间的距离可被计算并用于监控钻探过程。如果存在任何地层流体(特别是气体)的流入,声响信号将被显著地改变。因此,地层流体的流入将产生信号传播时间(由此,所计算的距离)中的异常。任何这样的变化都可能发出井涌的信号。
由Grosso等人发表的美国专利No.4,733,233和Grosso发表的美国专利No.4,733,232公开一种方法,该方法使用井下的声源以产生声响信号,然后在地面使用两个压力传感器以感应返回泥浆流中的环行声波和以感应钻柱杆中的环行声波。环带信号的幅度相对于钻柱杆信号的幅度的变化被用于表明出现钻孔流体流入。
由Codazzi发表的美国专利No.5,154,078公开两种用于在钻探时检测井涌的方法。第一种方法基于由钻井平台泥浆泵的压力振荡产生的驻波图。这样的驻波图形成最大值和最小值的时间序列,该时间序列可被监控以求得该驻波的相位和周期。在环带和钻柱杆驻波之间的相位差中的连续增加可能表明井涌。在这项专利中提出的第二种方法使用来自井下接近钻孔底部的源的声响信号。如果存在气体流入井眼(环带),则声响信号在环带中以不同于在钻柱杆内部的传播速度传播。因此,当到达时间中的差超出标准时可以表示井涌。
另一种方法是监控泥浆柱中的压力变化。大多数危险的井涌起因于气体流入。一旦气体流入井眼,它将改变泥浆柱的液压。因此,压力传感器能够提供用于监控气体的流入的感应装置。这种方法的例子可参见由Weirich等人发表的美国专利No.6,176,323。
虽然存在各种井涌检测技术,还是继续需要改进的方法和系统,该方法和系统能够较早地提供井涌报警以进一步提高地下勘探和生产作业的安全。
发明内容
本发明的一个方面涉及用于检测钻孔中的井涌的方法。根据本发明的一个实施例的方法包括:在钻孔中采用声波工具获取一组测量结果;根据这组测量结果来确定钻孔泥浆慢度;和将该泥浆慢度与所选的标准进行比较,其中,确定泥浆慢度包括:针对至少一种流体模式(fluid mode)确定作为频率函数的流体模式慢度,并且根据该流体模式慢度确定泥浆慢度。
本发明的一个方面涉及用于检测钻孔中的井涌的系统。根据本发明的一个实施例的系统包括:配置来获取钻孔中的一组声波测量结果的声波传感器;配置来根据该组声波测量结果确定钻孔泥浆慢度并且将所确定的泥浆慢度与所选的标准进行比较的电路,其中根据来源于该组声波测量结果的流体模式慢度确定泥浆慢度;以及配置来当泥浆慢度超出所选标准时沿井孔向上发送报警信号的遥测线。
本发明的一个方面涉及用于检测钻孔中的井涌的系统。根据本发明的一个实施例的系统包括:配置来获取钻孔中的一组声波测量结果的声波传感器;适于根据该组声波测量结果确定钻孔泥浆慢度并且将所确定的泥浆慢度与所选的标准进行比较的处理器装置,其中根据来源于该组声波测量结果的流体模式慢度确定泥浆慢度;以及配置来当泥浆慢度超出所选标准时触发报警信号的处理器装置。
附图说明
从下面的说明和所附的权利要求中本发明的其他方面和优点将变得明显。
图1示出现有技术的声波测井系统。
图1a说明在钻孔中使用常规声波工具的声波测井。
图2示出根据本发明的一个实施例的井下声波工具。
图3示出根据本发明的一个实施例的一种用于确定泥浆慢度的方法。
图4示出根据本发明的一个实施例的一种用于确定泥浆慢度的方法。
图5(包括图5A、5B、5C)示出使用根据本发明的一个实施例的方法确定泥浆慢度的一个例子。
图6(包括图6A、6B、6C)示出使用根据本发明的一个实施例的方法确定泥浆慢度的另一个例子。
图7示出使用根据本发明的一个实施例的方法监控井涌的方法。
图8说明在各种地层-钻孔条件下根据本发明的一个实施例监控井涌的方法。
图9示出现有技术的计算机系统,该计算机系统可与本发明的实施例一起被使用。
具体实施方式
本发明的实施例涉及用于监控和检测钻孔中的井涌的系统和方法。根据本发明的实施例的方法依赖于钻孔中的泥浆慢度的测量结果以检测井涌。泥浆慢度可以从流体模式的慢度中导出,该流体模式常规地在声波波形中被观测,但是经常作为不希望的分量,并且通常在数据处理期间移除。
井涌是当钻探到过压地带中而没有适当的泥浆重量来平衡更高的孔隙压力时,由地层流体、特别是气体的流入引起的。通常,地层流体具有与钻探泥浆基本上不同的慢度(速度的倒数)。从地层渗出到井眼中的气体(甚至只是微量)将对泥浆慢度有显著的影响。因此,实时地监控井眼中的泥浆慢度可以提供较早的针对即将发生的井涌的警报。
存在数种可能的方式来测量泥浆慢度。一种显而易见的方式是设计BHA中的专用传感器子系统,以便直接测量井下泥浆慢度。这样一种子系统通常由与井眼中的泥浆直接接触的超声波脉冲-回波测量系统组成。由于恶劣的井下环境,设计钻铤外部的鲁棒传感器系统将是一个挑战。
对于专用测量系统的替代方案是根据通常在测井操作中获取的声波测井来估计泥浆慢度。本发明的发明人发现,可以从各种流体模式的高频渐近线中得到泥浆慢度,该流体模式通常在声波波形中可以观察到,但是通常被视为不希望的分量,并被处理掉。在2004年6月21日提交的共同未决的序列号为No.10/710,128的美国专利申请公开使用流体模式慢度估计泥浆慢度的方法。这个共同未决的申请被转让给本受让人,因此其整体内容包含在此作为参考。
本发明的方法可以采用声波工具来实施,这些声波工具装备有宽带高频源。这样的工具可以基于修改过的传统的工具设计。图1示出传统的在钻探时测井(LWD)的声波系统。如图所示,将声波工具5并入钻柱杆6,该钻柱杆6穿过钻孔1到地层8中。工具5被连接在钻头7之上的钻柱杆6内。钻柱杆6定义柱杆外表面17和泥浆通道9。声波工具5包括发送器10,该发送器10可以是单极的、双极的、四极的或更高阶的极的源。工具5也包括多个接收器11,该接收器11被隔开以形成接收器阵列12和接收器电子装置13。尽管图1图示出传统声波工具5的一种特别的配置,其中发送器10置于接收器阵列12之上,但是,本领域普通技术人员应当认识到声波(或声响)工具可以具有其他配置。例如,一些工具可以包括置于接收器阵列之下的发送器,而其他工具可以拥有两个对称地置于接收器阵列之上和之下的发送器,从而有利于钻孔补偿。因此,如图1所示的特定配置并不意味着限制本发明的范围。
地面工程14包括钻柱杆支持和驱动机构(未示出)。工具5中的电池或泥浆马达(未示出)提供电力给发送器10和接收器电子装置13。钻柱杆提供深度数据给深度记录器15。分散慢度时间相干性处理器16对来自工具的数字数据执行分散慢度时间相干性处理,并且使用所记录的时间数据以将深度数据与信号数据相关联。图1的声波工具5在由Hsu等人发表的且被转让给本受让人的美国专利No.6,631,327中更详细地被说明。
图1a说明双极发送器的功能。在图1a中,该双极发送器在活塞10a1的一侧产生正向压力波A,并且在该活塞的另一侧产生负向的压力波B。正向波A和负向波B沿地层传播到接收器10c。使用传统的遥测装置,接收器10c将双极波形传送到地面处理器16。可替换地,所测量的波形可以存储在工具5中用于井下处理或者用于以后的读出。由双极发送器产生的正向波A和负向波B中的每一个都可包括横波(S波)、压缩波(P波)和弯曲波。
根据本发明的实施例,声波工具(声波传感器)可以包括能够生成宽带高频信号的发送器和优化用于测量相对的高频波形的传感器(接收器)阵列。图2示出根据本发明的一个实施例的声波工具20。如图所示,声波工具20被置于钻入地层23的钻孔24中。声波工具20包括发送器21和包含8个接收器22a-22h的接收器阵列22。发送器和接收器可以是压电传感器或其他类型传感器。本领域技术人员应当理解的是,该阵列中接收器的数量仅仅是用于说明,并不意味着限制本发明的范围。
优选地,发送器21是宽带发送器,该宽度发送器工作在覆盖相对高的频率的相对宽的频率范围内。为了有效地激励用于确定泥浆慢度的流体模式,由本发明的发送器所提供的频率范围的高端(例如,30kHz或更高)通常高于在传统的声波工具中所使用的那些频率(典型地高达20kHz)。例如,本发明的一些实施例可以发送自0kHz至30kHz的信号,而本发明的其他实施例能够发送甚至更宽和更高频率范围、诸如自5kHz至500kHz的信号。本发明的优选实施例可以发送从10kHz到100kHz的信号。在本发明的一些实施例中,针对在调查研究中特殊类型的地层和钻孔,优化所用的频率,以便在频率范围内发送更多的能量,该频率范围能够有效激励在特定的地层-钻孔组合中的流体模式。发送器21可以是单极的、双极的、四极的或更高阶的极的源。类似地,阵列中的接收器(传感器)22优选地响应如发送器21的相对的高频率和宽的频率范围。接收器可以是单极的、双极的、四极的或更高阶的极的接收器。优选地,所述接收器类型匹配所述发送器类型。
发送器21和第一接收器22a之间的间距TR可以在宽的范围内变化,但是优选地自3英尺[0.9m]至20英尺[6.1m]变化。短于3英尺[0.9m]的TR可能不提供足够的空间以建立流体模式。长于20英尺[6.1m]的TR很可能需要很大的发送器功率,该很大的发送器功率经常受到井下条件的限制。
接收器之间的间距RR优选地与实际的一样小以减少混叠效应。因为声波工具20的发送器21被设计来发送相对高的频率信号,所以接收器之间的间距RR可以小于传统的声波工具上相应的间距。在本发明的一些实施例中,RR间距可以自几英寸[厘米]至1英尺[0.3m]、优选地自0.1英尺[3cm]至0.4英尺[12.2cm]变化。
阵列长度(AL)、即接收器阵列的长度也可以在宽范围内变化。优选地,AL在2-5英尺[0.6-1.5m]内变化。依照本发明实施例的优选的工具理想地具有大的AL和小的RR。然而,在这样一个理想工具上的接收器的数量将是很多的,这将是昂贵的并且可能提出设计问题。因此,接收器的数量和RR间距应如此选择,以致该工具有效地执行,而无需过多的花费。在本发明的一些实施例中,RR间距在从0.05英尺[1.5cm]到1英尺[0.3m]的范围中、优选地在从0.1英尺[3cm]到0.4英尺[12.2cm]的范围中,而阵列中接收器的数量从3个变化到100个、优选地从4个变化到30个。例如,发现具有0.4英尺[12.2cm]RR间距的8接收器阵列能够提供非常好的结果。
工具20还包括处理单元(电路)25,该处理单元25可包括处理器和存储器。处理单元25可以控制源21的发送以及由接收器阵列22所做的波形测量结果的采集。此外,处理单元25可以执行井下处理,以便求得泥浆慢度、存储所计算的作为时间函数或作为井深函数的泥浆慢度、将所计算的泥浆慢度与那些以前确定的泥浆慢度或预选的标准进行比较以看出是否检测到井涌、并且当检测到井涌状况时发送报警信号。注意,这些功能也可以由地面上的计算机(例如图1中的计算机16)来执行。工具20和地面计算机之间的通信链路可以通过泥浆脉冲遥测技术或现有技术中已知的任何其他方法来实现。
上述发送器和接收器系统不必是专用于泥浆慢度测量的系统。事实上,好的经济的设计是,将用于泥浆慢度测量的宽带传感器和数据采集系统合并到传统的工具中,以便同样的硬件系统既可用于0-20kHz范围内的常规的声波慢度测量(P&S慢度)又可用于更高的频率范围(例如,10-100kHz范围)内的泥浆慢度(通过流体模式)测量。本发明的一些实施例配有既能够测量常规慢度又能够测量泥浆慢度的源和接收器阵列。(具有宽带更高频率脉冲的)泥浆慢度测量可以在与常规P&S波测量相同或不同的焙烧循环内进行。
本发明的方法包括确定泥浆慢度,这可以使用配有宽带高频传感器的声波工具以便在钻孔中执行声波测井。宽带高频测井被设计来激励频率区域中的各种流体模式,在该频率区域中流体模式的慢度趋近泥浆的慢度。一旦测量数据(波形)是可用的,就标识测量数据中的流体模式。接着,根据高频区域中的各种流体模式的慢度来确定泥浆慢度。
本发明方法基于以下发现,即,在高频范围中,各种流体模式的慢度受泥浆慢度限制。因此,在高频区域中,各种流体模式的慢度分散曲线渐进地逼进限制值(泥浆慢度)。相应地,表示各种流体模式的慢度分散曲线的上限的慢度限制可被视为泥浆慢度。本领域技术人员认为,可提出各种方法以找到这个限制。例如,泥浆慢度提取算法可以基于找到波分量(流体模式)的慢度,该波分量在由[fmin fmax]定义的给定的频率范围内、在由[Smin Smax]定义的给定的泥浆慢度范围内具有最平坦的分散曲线。
图3示出根据本发明的一个实施例的用于确定泥浆慢度的方法的示意图。如图所示,方法30包括这样的步骤,即,使用能够宽带高频测量的工具来采集测量结果,如上面所述的一个步骤(步骤32)。该测量结果包括那些在足够高的频率处的测量结果,以便允许从流体模式渐近线中求得泥浆慢度。典型地,频率范围包括从大约5kHz到大约500kHz、优选地从大约10kHz到大约100kHz。接着,根据测量数据确定各种流体模式及其作为频率函数的慢度(步骤34)。在这种确定中所涉及的步骤将参照图4更详细地说明。这些流体模式可包括Stoneley波。这些结果可被绘制为慢度与频率的关系,以便示出作为激励频率函数的各种流体模式的慢度的变化。一旦确定这些参数,就可根据各种流体模式向极限值的渐进的逼进来找到泥浆慢度,这表示泥浆慢度(步骤36)。在一些实施例中,本方法可进一步包括步骤,以标记(或标识)将要用于确定泥浆慢度的流体模式(步骤35)。标记步骤防止误把Stoneley波认作流体模式,特别是在带有小钻孔的快的地层中。详细的讨论参见下面的图7。
图4示出用于根据测量数据确定各种流体模式的方法40(例如,图3中的步骤34)。如图所示,该过程以针对所有频率分量上的所有流体模式估计归一化的波数开始(步骤41)。该估计可使用现有技术中已知的任何方法,包括Prony方法。参见Parks等人所著的“Digital Filter Design”(第226到228页,Wiley&Sons,NewYork,1987年)。针对所有频率分量上的所有流体模式、以及针对用于测量的频率范围内的所有频率,估计归一化的波数。因为阵列中的接收器被设计来提供针对最高频率分量的至少两个波形测量,所以波数的最大值通常不超过接收器(或所测的波形)的数量的一半。例如,针对在集中于频率fi的所有频率分量上的所有流体模式j=1,...,n估计波数Kj(fi),其中,n(阵列波形数)/2且fmin<fi<fmax(fmin和fmax可以是在测量中使用的最小频率和最大频率)。
由此检查所估计的归一化的波数Kj(fi),并且可除去任何零值点以简化分析(步骤42)。尽管零值点的除去会简化后续过程,但这个步骤是可选的。
为了阻止混叠效应,归一化的波数可能需要解开(unwrapped)数次,以便获得与波数相关的正确的慢度。在步骤43中,基于最大期望的泥浆慢度Smax和在测量中使用的最大频率fmax,计算需要解开归一化波数的包(wrap)的数量Kj(fi)。所需的包的最大数量(m_max)由下式给出:
m_max=ceil(fmax×RR×Smax-1)           (1)
其中,ceil表示将值舍入为下一个较高的整数,而RR是接收器之间的间距(参见图2)。接着,归一化的波数被解开以便计算相应的慢度Sjm(fi)。
一旦归一化的波数被“解开”,就可以计算各种波分量的慢度(步骤44)。这通过以下方式来完成,即根据在频率分量fi处的归一化的波数Kj(fi)依照下式计算针对每个包m的在每个频率fi处的针对每个波分量的慢度Sjm(fi):
Sjm(fi)=((Kj(fi)+m)/RR)/fi,           (2)
其中j=1,...,n;且m=0,1,...,m_max。
接着,本发明可包括计算针对所有fi、j和m的Sjm(fi)的直方图(步骤45)。如上面所提到的,各种流体模式慢度渐进地逼进受泥浆慢度限制的值。因此,在分布函数最大处的慢度(根据直方图)可被输出为泥浆慢度。分布函数自身也可被输出用于品质控制的目的,类似于根据慢度时间相干(STC)处理的S/T投影。
由于噪声、混叠或Stoneley波的干扰,可能的是,在分布的最大值处的慢度不是泥浆慢度。对于快的地层和小的钻孔条件,这是特别真实的。随着分布函数作为品质控制,可能的是,在很可能遇到这种情况时辨认出来。如果怀疑遇到这种情况,可能的是,使用(要么来自于邻近深度要么来自于已知的外部限制的)附加的信息来“重新标记”(选择)另一个流体模式的慢度(在分布函数的次峰值处)以得到泥浆慢度。
在图5和图6中说明如上所述的用于确定泥浆慢度的方法的应用,这两幅图示出来自两种极其不同情形的结果。图5示出针对穿入快的地层(DTc=70us/f,DTs=150us/f)的小钻孔(HD=8.62英寸[21.9cm],DTm=200us/f)中的6.75英寸[17cm]钻铤上的声波工具的情形的结果。图6示出针对穿入更慢的地层(DTc=100us/f,DTs=300us/f)的大的钻孔(HD=12.5英寸[31.7cm],DTm=200us/f)中的6.75英寸[17cm]钻铤上的声波工具情形的结果。在两幅图中,上方的图(A)示出由接收器阵列所记录的模型波形,中间的图(B)是慢度-时间平面,该慢度-时间平面示出通过相似处理所检测的各种波分量的慢度和时间(参见Kimball等人,Geophysics,第49卷,第264-281页,1984年),下方的图(C)是依照本发明的一个方法(例如,图4中的方法40)使用Prony的方法从模型波形中提取的分散曲线。
图5C示出,Stoneley波(曲线51)和两个流体模式(曲线52和曲线53)被显著激励。此外,根据该图还辨认出数个其他的流体模式。根据这个图,明显的是,大多数流体模式直到源频率相对高时才被激励。例如,最低阶(order)流体模式(曲线52)受10kHz和更高的频率所激励,而另一流体模式(曲线53)不受低于50kHz的频率所激励。因此,使用传统的声波工具,这些流体模式中的一些未被检测出。
图5C还示出,最低阶流体模式(曲线52)的慢度在大约10kHz处以大约150us/f(在这种情况下是剪切慢度)开始,并随着频率的增加而逐渐增加。该流体模式慢度逐渐增加并在80-100kHz范围内渐进地逼进极限值(泥浆慢度)。这个最大值可通过各种方法加以标识,例如,通过曲线拟合分散曲线52或使用直方图来标识(例如,图4中的步骤44)。
类似地,其他流体模式(例如,曲线53)也可以用于确定泥浆慢度。然而,在大多数情况下,最低阶流体模式(曲线52)是优选的,因为它最显著地被激励,在相对较低的频率下受到激励,并且在相对较低的频率处逼进泥浆慢度。
注意,图5C示出,曲线52和曲线53流体模式的泥浆慢度在上方受Stoneley波慢度(曲线51)限制。在大多数声波测井操作中,Stoneley波被显著激励。因此,即使未辨认出其他流体模式,Stoneley波分散曲线也总是能够用来提供泥浆慢度的上限。
图5C中所示的结果是针对快的地层和小的钻孔,并且针对的是这样的情况,该情况需要更高的激励频率以揭示流体模式对泥浆慢度的渐进的逼进。与之相对,图6C示出的结果是针对慢的地层和大的钻孔,并且针对的是这样的情况,在该情况下经由泥浆柱发送更多的声波能量。如图6C中所示,最低阶的流体模式分散曲线(曲线61)在10kHz范围内到达泥浆慢度,远低于在图5C中所示情况而需要的条件。这是因为当地层慢且钻孔相对大时声波源更有效地激励各种流体模式。图5C和图6C中所示的结果代表在声波测井操作中可能遇到的两种极端。大多数井可能处于这两种情况之间。
注意,上述的声波测量结果和数据处理可在井下执行或在地面上执行。一旦能够准确确定泥浆慢度,就可能监控井眼中的泥浆属性中的变化。例如,泥浆慢度可被用于监控或检测地层流体流入泥浆柱(即井涌)。在监控井涌时,作为时间函数或作为井深函数(在钻探时)的泥浆慢度的趋势被设为基线。正常地,泥浆慢度将是极其缓慢变化的变量。泥浆慢度中的任何突然变化可能意味着地层流体可能的流入,并因此将触发报警信号。当钻头穿入过压地带时,几乎立即发生地层流体的流入。因此,这个来自泥浆慢度的报警信号将比其他许多其他实时的石油物理测量结果更早地出现,这些石油物理测量结果诸如压缩Δ-t和电阻率,其中,通常在钻头之后许多英尺获取测量点。压缩Δ-t和电阻率属于传统的实时测量结果,这些传统的实时测量结果被用于通过相关来检测过压地带。
图7说明用于检测井眼中的井涌的依照本发明的一个实施例的方法。如图所示,方法70以获取声波测量结果开始,该声波测量结果优选地采用具有宽带高频源的工具加以采集(步骤72)。一旦声波测量结果是可用的,就根据流体模式的慢度来确定泥浆慢度,诸如通过将该流体模式渐进地逼进极限值,即泥浆慢度(步骤74)。上面参考图3和图4详细说明了一种用于这种确定的方法。因此记录所确定的泥浆慢度,和/或将其与先前记录的泥浆慢度进行比较(步骤76)。如果泥浆慢度超出触发电平(预选标准),那么就沿井孔向上发送报警信号给钻探者或工程师(步骤78)。在钻探时或在运行的其他阶段(例如,用于在开采井中监控井),可使用如图7中所示的方法。
图8示出用于在钻探井时监控井涌的本发明的一个实施例。依照这个实施例,作为深度函数的泥浆慢度可用于检测泥浆慢度中的任何异常变化。图8示出泥浆慢度的曲线图(曲线1),该泥浆慢度作为具有典型的油基泥浆的被钻探的井中的深度的函数。曲线1示出深度函数的逐渐变化。这是因为温度和压力随深度而改变。这种改变是逐渐的并且是可预测的。因此,有可能对正常趋势的偏差设置限制,超出该限制时,就认为发生某个意外的事件(例如,地层流体的流入)。
来自过压地带的地层流体的流入将使得泥浆慢度(DTm)离开正常趋势。对于气体的流入,DTm将剧烈增长。对于水的流入,DTm将基本降低。依照本发明实施例的早期报警系统将捕捉初期的流入,并且给钻探者一些宝贵的时间间隔以作出反应。钻探者的行动可将损害减到最小,乃至阻止井涌完全形成。
触发电平可相对于DTm的期望值或相对于变化率加以设定。如果相对于所期望的DTm值加以设定,触发电平可以是高于或低于期望值的某个百分比(或某个慢度值)。可替换地,触发电平可相对于多个所期望的DTm值的标准偏差加以设定。此外,触发电平可相对DTm值的所期望的变化率(即,缓慢降低)加以设定。
在图8中,曲线2模拟在大于7500英尺[2286m]的深度处水的流入。水的流入剧烈地改变这个区域中的DTm值。可以将一个更低的界限2A设为针对水流入井眼的触发电平。一旦DTm值落入这个触发电平,则传感器就可发送警报,以便钻探者意识到水的流入并能够采取适当措施。
类似地,图8中的曲线3模拟假定的地层流体(例如,气体)流入井眼中。气体的流入显著地增加这个区域中的DTm值。可以设定上触发电平3A以发出这样一种流入的信号。注意,必要时,可以针对水的流入和针对气体流入发送不同的报警信号。
图8说明具有油基泥浆的正被钻探的井。本发明的实施例也可以用于监控钻探后的井眼(例如,监控完整的井)。在这种情况下,可在井眼的不同深度处放置一个或多个声波传感器以提供声波测量结果。声波测量结果被用于如上所述地求得泥浆慢度。将该泥浆慢度数据与那些先前记录的泥浆慢度数据进行比较,即,泥浆慢度随着时间的流逝被监控。改变泥浆慢度的井眼中的任何变化(例如,井涌)都可触发警报,以便通知现场工程师潜在的问题。该报警系统可通过在现有技术中已知的任何合适的方法加以实现。
本发明的一些实施例涉及这样的系统,该系统用于基于从声波测井中求得的泥浆慢度来检测和监控井涌。依照本发明的实施例的系统可包括声波传感器(例如,图2中的工具20)、处理器单元(图2中的25)或地面计算机(图1中的16)和遥测线(例如,图1中的泥浆通道9)。地面计算机16或井下处理器单元25通常可称为是“电路”。图9示出普通的计算机,该计算机可被用作地面计算机16。井下处理单元25可拥有类似的部件。如图所示,地面计算机除了输入设备(例如,键盘94和鼠标95)和输出设备(例如,CRT显示器96)以外可包括处理器(图9中的91)、存储介质92(例如,硬盘驱动器)和随机存取存储器93。存储器92存储程序,该程序具有用于执行上述本发明方法的指令。此外,本发明的一些实施例涉及这样的记录介质,该记录介质存储包括用于执行本发明方法的指令的程序。该记录介质可以是任何已知或以后研制的装置。
本发明的技术提供有利的优点。本发明的实施例提供一种便捷和有效的途径以检测井眼中的井涌。当被运用于正在钻探的应用时,所公开的技术可以在非常接近钻头的地方测量泥浆慢度,从而较早地提供初期井涌的警报。本发明的实施例可通过传统的声波工具、修改或不加修改而得到实施。此外,本发明的实施例可在钻探时或者钻探后(例如,监控开采井)使用。

Claims (10)

1.一种用于检测钻孔中的井涌的方法,其包括:
在所述钻孔中采用声波工具采集一组测量结果;
根据该组测量结果确定钻孔泥浆慢度;和
将该泥浆慢度与所选标准进行比较,
其中,确定所述泥浆慢度包括针对至少一种流体模式确定作为频率函数的流体模式慢度,并根据该流体模式慢度来确定所述泥浆慢度。
2.按照权利要求1的方法,其中,确定作为频率函数的流体模式慢度包括:
估计针对至少一种流体模式的归一化的波数;
解开所述归一化的波数以计算针对所有频率处的至少一种流体模式的流体模式慢度;和
生成针对至少一种流体模式的流体模式慢度与频率的直方图。
3.按照权利要求2的方法,其中,通过根据所述直方图标识最大流体模式慢度来确定所述泥浆慢度。
4.按照权利要求1的方法,其中,确定所述泥浆慢度包括根据所述作为频率函数的流体模式慢度在高频率区域上渐进的逼进来确定最大慢度。
5.按照权利要求1的方法,还包括如果所述泥浆慢度超出所选标准则沿井孔向上发送报警信号。
6.一种用于检测钻孔中的井涌的系统,其包括:
配置来在该钻孔中采集一组声波测量结果的声波传感器;和
电路,该电路被配置来根据该组声波测量结果确定钻孔泥浆慢度并用于将所确定的泥浆慢度与所选标准进行比较,其中根据得自于该组声波测量结果的流体模式慢度来确定泥浆慢度。
7.按照权利要求6的系统,其中,根据所述流体模式慢度向极限值的渐进的逼进来确定所述泥浆慢度。
8.按照权利要求6的系统,其中,通过以下方式来确定所述流体模式慢度:
估计针对一种流体模式的归一化的波数;
解开所述归一化的波数以计算针对所有频率处的该流体模式的流体模式慢度;和
生成针对该流体模式的流体模式慢度与频率的直方图。
9.按照权利要求8的系统,其中,通过根据所述直方图标识最大流体模式慢度来确定所述泥浆慢度。
10.按照权利要求6的系统,还包括遥测线,该遥测线被配置来当所述泥浆慢度超出所选标准时沿井孔向上发送报警信号。
CN2005100847748A 2004-07-21 2005-07-21 在钻孔中使用高频流体模式的井涌报警系统 Expired - Fee Related CN1769644B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/710,569 US7334651B2 (en) 2004-07-21 2004-07-21 Kick warning system using high frequency fluid mode in a borehole
US10/710569 2004-07-21

Publications (2)

Publication Number Publication Date
CN1769644A true CN1769644A (zh) 2006-05-10
CN1769644B CN1769644B (zh) 2010-12-15

Family

ID=34860662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005100847748A Expired - Fee Related CN1769644B (zh) 2004-07-21 2005-07-21 在钻孔中使用高频流体模式的井涌报警系统

Country Status (7)

Country Link
US (1) US7334651B2 (zh)
CN (1) CN1769644B (zh)
CA (1) CA2511280C (zh)
GB (1) GB2416397B (zh)
MX (1) MXPA05007306A (zh)
NO (1) NO20053553L (zh)
RU (1) RU2374443C2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226377A (zh) * 2011-05-26 2011-10-26 西南石油大学 一种安装有井下防喷器的钻柱及其工作方法
CN104695947A (zh) * 2013-12-06 2015-06-10 通用电气公司 井涌检测系统和方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109433B2 (en) 2005-08-01 2015-08-18 Baker Hughes Incorporated Early kick detection in an oil and gas well
US8794062B2 (en) * 2005-08-01 2014-08-05 Baker Hughes Incorporated Early kick detection in an oil and gas well
US20080047337A1 (en) * 2006-08-23 2008-02-28 Baker Hughes Incorporated Early Kick Detection in an Oil and Gas Well
US7814782B2 (en) * 2007-08-13 2010-10-19 Baker Hughes Incorporated Downhole gas detection in drilling muds
US8547789B2 (en) * 2007-12-27 2013-10-01 Schlumberger Technology Corporation Method for gas zone detection using sonic wave attributes
US8009509B2 (en) * 2008-04-09 2011-08-30 Schlumberger Technology Corporation Automated mud slowness estimation
US8146415B2 (en) * 2008-05-27 2012-04-03 Baker Hughes Incorporated Downhole gas chromatograph
US8451688B2 (en) * 2009-09-08 2013-05-28 Schlumberger Technology Corporation Methods and apparatus to combine monopole and multipole acoustic logging measurements to determine shear slowness
US8235143B2 (en) * 2010-07-06 2012-08-07 Simon Tseytlin Methods and devices for determination of gas-kick parametrs and prevention of well explosion
US8689904B2 (en) * 2011-05-26 2014-04-08 Schlumberger Technology Corporation Detection of gas influx into a wellbore
US9033064B2 (en) 2011-12-12 2015-05-19 National Oilwell, Varco, L.P. Method and system for monitoring a well for unwanted formation fluid influx
US9366133B2 (en) 2012-02-21 2016-06-14 Baker Hughes Incorporated Acoustic standoff and mud velocity using a stepped transmitter
GB2501741B (en) 2012-05-03 2019-02-13 Managed Pressure Operations Method of drilling a subterranean borehole
US9784100B2 (en) * 2012-06-01 2017-10-10 Baker Hughes Incorporated Smart flowback alarm to detect kicks and losses
US9309747B2 (en) * 2012-09-14 2016-04-12 Baker Hughes Incorporated System and method for generating profile-based alerts/alarms
US9581716B2 (en) * 2013-01-21 2017-02-28 Schlumberger Technology Corporation Methods and apparatus for estimating borehole mud slownesses
US10577915B2 (en) * 2014-01-16 2020-03-03 Schlumberger Technology Corporation Sonic logging for assessing well integrity
GB2526255B (en) 2014-04-15 2021-04-14 Managed Pressure Operations Drilling system and method of operating a drilling system
US10151159B2 (en) * 2014-06-12 2018-12-11 Cameron International Corporation Kick detection systems and methods
CN105332689B (zh) 2014-06-13 2018-10-12 通用电气公司 钻探流体参数监测系统和方法
SG11201702619WA (en) * 2014-12-18 2017-04-27 Halliburton Energy Services Inc Blowout rate correction methods and systems
US10526886B2 (en) * 2015-06-19 2020-01-07 Halliburton Energy Services, Inc. Systems and methods employing an acoustic caliper tool with tool inclination correction
US10830038B2 (en) 2018-05-29 2020-11-10 Baker Hughes, A Ge Company, Llc Borehole communication using vibration frequency
BR112020023947A2 (pt) * 2018-06-22 2021-02-23 Hydril USA Distribution LLC método e aparelho para detecção precoce de kicks
WO2020131723A1 (en) 2018-12-18 2020-06-25 Saudi Arabian Oil Company Downhole tool for gas kick detection using coaxial resonators
US10865640B2 (en) 2019-04-10 2020-12-15 Saudi Arabian Oil Company Downhole tool with CATR
CN112443319B (zh) * 2019-09-05 2024-01-30 中国石油化工股份有限公司 一种井涌监测方法
US11366071B2 (en) 2020-03-04 2022-06-21 Saudi Arabian Oil Company Performing microwave measurements on samples under confining pressure using coaxial resonators
US11268380B2 (en) 2020-04-22 2022-03-08 Saudi Arabian Oil Company Kick detection using logging while drilling
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
CN112360447B (zh) * 2020-11-20 2024-05-28 中国石油天然气集团有限公司 一种评价储层射孔效果的方法
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065747A (en) 1975-11-28 1977-12-27 Bunker Ramo Corporation Acoustical underwater communication system for command control and data
US4208906A (en) * 1978-05-08 1980-06-24 Interstate Electronics Corp. Mud gas ratio and mud flow velocity sensor
US4273212A (en) 1979-01-26 1981-06-16 Westinghouse Electric Corp. Oil and gas well kick detector
US4733232A (en) 1983-06-23 1988-03-22 Teleco Oilfield Services Inc. Method and apparatus for borehole fluid influx detection
US4733233A (en) 1983-06-23 1988-03-22 Teleco Oilfield Services Inc. Method and apparatus for borehole fluid influx detection
US4698793A (en) 1984-05-23 1987-10-06 Schlumberger Technology Corporation Methods for processing sonic data
US4628725A (en) * 1985-03-29 1986-12-16 Schlumberger Technology Corporation Apparatus and method for analyzing a fluid that includes a liquid phase, contained in a tubular conduit
US4813028A (en) 1987-07-07 1989-03-14 Schlumberger Technology Corporation Acoustic well logging method and apparatus
CN1007744B (zh) * 1988-10-07 1990-04-25 四川石油管理局钻采工艺研究所 起下钻泥浆自动灌注的方法和系统
US5006845A (en) 1989-06-13 1991-04-09 Honeywell Inc. Gas kick detector
US5275040A (en) 1990-06-29 1994-01-04 Anadrill, Inc. Method of and apparatus for detecting an influx into a well while drilling
US5154078A (en) 1990-06-29 1992-10-13 Anadrill, Inc. Kick detection during drilling
US5163029A (en) 1991-02-08 1992-11-10 Teleco Oilfield Services Inc. Method for detection of influx gas into a marine riser of an oil or gas rig
US5205166A (en) 1991-08-07 1993-04-27 Schlumberger Technology Corporation Method of detecting fluid influxes
US5278805A (en) 1992-10-26 1994-01-11 Schlumberger Technology Corporation Sonic well logging methods and apparatus utilizing dispersive wave processing
US5715890A (en) 1995-12-13 1998-02-10 Nolen; Kenneth B. Determing fluid levels in wells with flow induced pressure pulses
GB9621871D0 (en) 1996-10-21 1996-12-11 Anadrill Int Sa Alarm system for wellbore site
US5890549A (en) 1996-12-23 1999-04-06 Sprehe; Paul Robert Well drilling system with closed circulation of gas drilling fluid and fire suppression apparatus
WO1999000575A2 (en) 1997-06-27 1999-01-07 Baker Hughes Incorporated Drilling system with sensors for determining properties of drilling fluid downhole
US6366531B1 (en) 1998-09-22 2002-04-02 Dresser Industries, Inc. Method and apparatus for acoustic logging
US6257354B1 (en) 1998-11-20 2001-07-10 Baker Hughes Incorporated Drilling fluid flow monitoring system
DE60000114T2 (de) 1999-01-22 2002-11-28 Konica Corp., Tokio/Tokyo Optische Abtastvorrichtung und Verfahren zur Informationsaufzeichnung und Informationswiedergabe
US6371204B1 (en) 2000-01-05 2002-04-16 Union Oil Company Of California Underground well kick detector
US6585044B2 (en) * 2000-09-20 2003-07-01 Halliburton Energy Services, Inc. Method, system and tool for reservoir evaluation and well testing during drilling operations
GB2372322B (en) 2000-10-16 2003-04-16 Schlumberger Holdings Method for determining formation slowness particularly adapted for measurement while drilling applications
US6394195B1 (en) 2000-12-06 2002-05-28 The Texas A&M University System Methods for the dynamic shut-in of a subsea mudlift drilling system
US6618322B1 (en) 2001-08-08 2003-09-09 Baker Hughes Incorporated Method and apparatus for measuring acoustic mud velocity and acoustic caliper
US6631327B2 (en) 2001-09-21 2003-10-07 Schlumberger Technology Corporation Quadrupole acoustic shear wave logging while drilling
US6768106B2 (en) 2001-09-21 2004-07-27 Schlumberger Technology Corporation Method of kick detection and cuttings bed buildup detection using a drilling tool
CA2485974A1 (en) * 2002-05-15 2003-11-27 Halliburton Energy Services, Inc. Acoustic doppler downhole fluid flow measurement
US20040095847A1 (en) 2002-11-18 2004-05-20 Baker Hughes Incorporated Acoustic devices to measure ultrasound velocity in drilling mud
US6868920B2 (en) * 2002-12-31 2005-03-22 Schlumberger Technology Corporation Methods and systems for averting or mitigating undesirable drilling events
US6957572B1 (en) * 2004-06-21 2005-10-25 Schlumberger Technology Corporation Apparatus and methods for measuring mud slowness in a borehole

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226377A (zh) * 2011-05-26 2011-10-26 西南石油大学 一种安装有井下防喷器的钻柱及其工作方法
CN102226377B (zh) * 2011-05-26 2013-06-19 西南石油大学 一种安装有井下防喷器的钻柱及其工作方法
CN104695947A (zh) * 2013-12-06 2015-06-10 通用电气公司 井涌检测系统和方法

Also Published As

Publication number Publication date
RU2005123136A (ru) 2007-02-10
CA2511280A1 (en) 2006-01-21
GB2416397A (en) 2006-01-25
GB2416397B (en) 2006-09-27
MXPA05007306A (es) 2006-01-26
US20060016592A1 (en) 2006-01-26
CA2511280C (en) 2008-11-18
NO20053553D0 (no) 2005-07-20
CN1769644B (zh) 2010-12-15
NO20053553L (no) 2006-01-23
GB0512772D0 (en) 2005-07-27
US7334651B2 (en) 2008-02-26
RU2374443C2 (ru) 2009-11-27

Similar Documents

Publication Publication Date Title
CN1769644B (zh) 在钻孔中使用高频流体模式的井涌报警系统
CA2541291C (en) Pump-off measurements for quality control and wellbore stability prediction
US7516015B2 (en) System and method for detection of near-wellbore alteration using acoustic data
US7639563B2 (en) Method for sonic indication of voids in casing cement
US7404456B2 (en) Apparatus and method of identifying rock properties while drilling
US5154078A (en) Kick detection during drilling
US20040059512A1 (en) Method for borehole measurement of formation properties
WO2021119300A1 (en) Spectral analysis, machine learning, and frac score assignment to acoustic signatures of fracking events
US20140003190A1 (en) Method for Gas Zone Detection Using Sonic Wave Attributes
EP0568643A1 (en) MANUFACTURE OF FINE FILMS FROM POLYESTER.
US11231512B2 (en) Apparatus and methods of evaluating rock properties while drilling using acoustic sensors installed in the drilling fluid circulation system of a drilling rig
US20210048548A1 (en) Downhole acoustic measurement
US11566517B2 (en) Quantifying cement bonding quality of cased-hole wells using a quality index based on frequency spectra
US20030026167A1 (en) System and methods for detecting pressure signals generated by a downhole actuator
US5272680A (en) Method of decoding MWD signals using annular pressure signals
CN108533256A (zh) 一种井下和地面多传感器阵列采集系统
US20210372266A1 (en) Gravel pack quality measurement
AU2004283342B2 (en) Method and system for assessing pore fluid pressure behaviour in a subsurface formation
CA1166148A (en) Apparatus for and a method of acoustic well logging
EP0089431B1 (en) Apparatus for and a method of acoustic well logging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101215

Termination date: 20140721

EXPY Termination of patent right or utility model