CN1767199A - Dynamic random access memory unit, array thereof, and method for manufacturing the array - Google Patents

Dynamic random access memory unit, array thereof, and method for manufacturing the array Download PDF

Info

Publication number
CN1767199A
CN1767199A CN200410089997.9A CN200410089997A CN1767199A CN 1767199 A CN1767199 A CN 1767199A CN 200410089997 A CN200410089997 A CN 200410089997A CN 1767199 A CN1767199 A CN 1767199A
Authority
CN
China
Prior art keywords
plate
layer
semiconductor
forming
random access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200410089997.9A
Other languages
Chinese (zh)
Other versions
CN100373623C (en
Inventor
王廷熏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Promos Technologies Inc
Original Assignee
Promos Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promos Technologies Inc filed Critical Promos Technologies Inc
Priority to CNB2004100899979A priority Critical patent/CN100373623C/en
Publication of CN1767199A publication Critical patent/CN1767199A/en
Application granted granted Critical
Publication of CN100373623C publication Critical patent/CN100373623C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

本发明涉及动态随机存取存储单元和其阵列、及该阵列的制造方法。该动态随机存取存储单元,包括基底上的半导体柱、半导体柱的侧壁下部分的电容器以及半导体柱的侧壁上部分的垂直晶体管。其中,电容器包括在半导体柱的侧壁下部分的第一平板、在第一平板周围且当作上电极的第二平板、在第二平板周围的第三平板以及将第二平板与第一及第三平板分离的介电层。其中,上述的第三平板电连接第一平板以形成下电极。此外,本发明基于动态随机存取存储单元,另提出动态随机存取存储器阵列及其制造方法。

Figure 200410089997

The present invention relates to a dynamic random access memory cell and its array, and a method for manufacturing the array. The dynamic random access memory cell comprises a semiconductor column on a substrate, a capacitor at the lower part of the side wall of the semiconductor column, and a vertical transistor at the upper part of the side wall of the semiconductor column. The capacitor comprises a first plate at the lower part of the side wall of the semiconductor column, a second plate around the first plate and serving as an upper electrode, a third plate around the second plate, and a dielectric layer separating the second plate from the first and third plates. The third plate is electrically connected to the first plate to form a lower electrode. In addition, based on the dynamic random access memory cell, the present invention further proposes a dynamic random access memory array and a method for manufacturing the array.

Figure 200410089997

Description

动态随机存取存储单元和其阵列、及该阵列的制造方法Dynamic random access memory unit, array thereof, and method for manufacturing the array

技术领域technical field

本发明有关于一种半导体元件,且特别是有关于一种动态随机存取存储器的存储单元及阵列结构,以及动态随机存取存储器阵列的制造过程。动态随机存取存储单元以具有高电容的电容器为特色。The present invention relates to a semiconductor device, and in particular to a storage unit and an array structure of a DRAM, and a manufacturing process of the DRAM array. DRAM cells feature capacitors with high capacitance.

背景技术Background technique

在半导体工业中,动态随机存取存储器是很重要的集成电路之一,故其激发了持续的研究与发展。增加储存容量,改善写入及读取的速度,以及减少动态随机存取存储单元的元件面积大小为现在持续努力的目标。一般来说,动态随机存取存储单元包括晶体管以及由晶体管操作的电容器。传统上,动态随机存取存储单元的设计可被区分为三种型态,即平面式、堆叠电容器式与沟渠式。在平面式的设计上,存储单元的晶体管和电容器以平面的构件制造而成。在堆叠电容器式的设计上,存储单元的电容器置放于晶体管的上方。而在沟渠式的设计上,晶体管置放于基底的表面,且电容器置放在形成于基底中的沟渠内。In the semiconductor industry, DRAM is one of the most important integrated circuits, so it stimulates continuous research and development. Increasing the storage capacity, improving the writing and reading speed, and reducing the device area size of the DRAM cell are the goals of continuous efforts. In general, a DRAM cell includes a transistor and a capacitor operated by the transistor. Traditionally, the design of DRAM cells can be divided into three types, namely planar, stacked capacitor and trench. In a planar design, the transistors and capacitors of the memory cell are fabricated with planar components. In a stacked capacitor design, the capacitor of the memory cell is placed above the transistor. In a trench design, the transistors are placed on the surface of the substrate, and the capacitors are placed in trenches formed in the substrate.

然而,在形成沟渠的工艺中,掩模的操作需要很精确的对准。对深次微米的半导体元件而言,深沟渠可能具有长度与直径的比为40∶1的高宽比。而典型地形成电容器的方法是先藉由沉积介电层于深且窄的沟渠侧壁,再以掺杂多晶硅层填满此沟渠。随着高宽比逐渐变大,例如大于20∶1,要填满沟渠也变得更加困难。However, in the process of forming the trench, the operation of the mask requires very precise alignment. For deep sub-micron semiconductor devices, deep trenches may have an aspect ratio of 40:1 in length to diameter. Capacitors are typically formed by first depositing a dielectric layer on the sidewalls of a deep and narrow trench, and then filling the trench with a doped polysilicon layer. As the aspect ratio becomes larger, for example greater than 20:1, it becomes more difficult to fill the trench.

发明内容Contents of the invention

有鉴于此,本发明的目的就是在提供一种动态随机存取存储单元,其具有形成于半导体柱的侧壁上的电容器,以解决现有的填满沟渠的问题,以及增加电容器的表面面积。In view of this, the object of the present invention is to provide a dynamic random access memory unit, which has a capacitor formed on the sidewall of the semiconductor pillar, to solve the existing problem of filling the trench, and to increase the surface area of the capacitor .

本发明的再一目的是提供一种以本发明的动态随机存取存储单元结构为基础的动态随机存取存储器阵列。因为形成垂直晶体管作为存储单元,使得动态随机存取存储器阵列能具有较高的集成度。Another object of the present invention is to provide a DRAM array based on the DRAM cell structure of the present invention. Since the vertical transistors are formed as memory cells, the DRAM array can have a higher degree of integration.

本发明的又一目的是提供一种动态随机存取存储器阵列的制作方法,以解决现有的填满沟渠的问题,以及增加电容器的电容,并增加动态随机存取存储器元件的整合。Another object of the present invention is to provide a method for fabricating a DRAM array, so as to solve the existing problem of filling trenches, increase the capacitance of capacitors, and increase the integration of DRAM elements.

本发明的动态随机存取存储单元包括基底上形成的半导体柱、半导体柱的侧壁下部分形成的电容器以及半导体柱的侧壁上部分形成的垂直晶体管。电容器包括第一平板、第二平板、第三平板与介电层。其中,第一平板配置于半导体柱的侧壁的下部分,第二平板配置于第一平板的周围,且当作上电极。第三平板配置于第二平板的周围,且与第一平板电连接而一起成为下电极。介电层将第二平板分离于第一平板及第三平板。垂直晶体管系以电性耦接到电容器。The dynamic random access memory unit of the present invention includes a semiconductor pillar formed on a substrate, a capacitor formed on the lower part of the sidewall of the semiconductor pillar, and a vertical transistor formed on the upper part of the sidewall of the semiconductor pillar. The capacitor includes a first plate, a second plate, a third plate and a dielectric layer. Wherein, the first flat plate is arranged on the lower part of the sidewall of the semiconductor column, and the second flat plate is arranged around the first flat plate and serves as an upper electrode. The third plate is arranged around the second plate, and is electrically connected with the first plate to form a lower electrode together. The dielectric layer separates the second plate from the first plate and the third plate. The vertical transistor is electrically coupled to the capacitor.

根据本发明的优选实施例,第一平板与第三平板藉由设计而彼此电连接,其中第一平板更延伸至半导体柱旁的基底中,且第三平板与半导体柱旁的基底接触。然而,第一平板与第三平板也可以选择藉由其他的连接设计电连接。According to a preferred embodiment of the present invention, the first plate and the third plate are electrically connected to each other by design, wherein the first plate further extends into the substrate next to the semiconductor pillar, and the third plate is in contact with the substrate next to the semiconductor pillar. However, the first plate and the third plate can also be electrically connected through other connection designs.

本发明的动态随机存取存储器阵列包括本发明前面所提及的存储单元的列与行,以及多条位元线与字元线。这些存储单元配置在半导体基底上,且具有上述的相同的结构。每一条位元线与一列存储单元的垂直晶体管电性耦接,而每一条字元线与一行存储单元的垂直晶体管电性耦接。此外,所有电容器的第一平板藉由半导体柱间的基底的掺杂表面层彼此连接,以致于所有存储单元的第一平板及第三平板构成了共用下电极。The DRAM array of the present invention includes the columns and rows of memory cells mentioned above in the present invention, and a plurality of bit lines and word lines. These memory cells are arranged on a semiconductor substrate and have the same structure as described above. Each bit line is electrically coupled to the vertical transistors of a column of memory cells, and each word line is electrically coupled to the vertical transistors of a row of memory cells. Furthermore, the first plates of all capacitors are connected to each other by the doped surface layer of the base between the semiconductor pillars, so that the first and third plates of all memory cells constitute a common lower electrode.

以下为本发明的动态随机存取存储单元的制造方法的描述。图案化半导体基底以于其上形成呈行列排列的半导体柱,接着在每一半导体柱的侧壁的下部分形成电容器,其包括以下步骤。首先,形成当作掺杂区的第一平板于每一半导体柱的侧壁的下部分内。接着,形成第一介电层于每一第一平板的周围,以及形成第二平板于每一第一介电层的周围,并当作上电极。然后,形成第二介电层于每一第二平板的周围,以及形成第三平板于每一第二介电层的周围,且电连接相对应的第一平板以形成下电极。之后,形成垂直晶体管于每一半导体柱的侧壁的上部分,且与相对应的电容器电性耦接。继之,形成多条位元线与字元线,其中每一条位元线与一列存储单元的晶体管电性耦接,而每一条字元线与一行存储单元的晶体管电性耦接。The following is a description of the manufacturing method of the DRAM unit of the present invention. Patterning the semiconductor substrate to form semiconductor pillars arranged in rows and columns thereon, and then forming capacitors on the lower portion of the sidewall of each semiconductor pillar, includes the following steps. Firstly, a first plate serving as a doped region is formed in the lower portion of the sidewall of each semiconductor pillar. Then, a first dielectric layer is formed around each first flat plate, and a second flat plate is formed around each first dielectric layer as an upper electrode. Then, a second dielectric layer is formed around each second plate, and a third plate is formed around each second dielectric layer, and the corresponding first plate is electrically connected to form a lower electrode. After that, a vertical transistor is formed on the upper portion of the sidewall of each semiconductor pillar, and is electrically coupled with the corresponding capacitor. Then, a plurality of bit lines and word lines are formed, wherein each bit line is electrically coupled to the transistors of a row of memory cells, and each word line is electrically coupled to the transistors of a row of memory cells.

因为本发明的动态随机存取存储器中的电容器的形成是环绕半导体柱,而不是形成在深沟渠内,所以在现有技术中由于深沟渠的高宽比而衍生的填满沟渠的问题因此解决。同时,电容器的表面面积和电容变得相当大,因为电容器可以在半导体柱的所有侧壁上形成,且当作上电极的第二平板镶入第一平板与第三平板之间,使电容更加倍增加。Since the capacitors in the DRAM of the present invention are formed around the semiconductor pillars rather than within the deep trench, the problem of filling the trench due to the aspect ratio of the deep trench in the prior art is thus solved. . At the same time, the surface area and capacitance of the capacitor become quite large, because the capacitor can be formed on all sidewalls of the semiconductor pillar, and the second plate as the upper electrode is embedded between the first plate and the third plate, making the capacitor more stable. multiplied.

此外,因为本发明的动态随机存取存储单元的晶体管以垂直结构形成,因此可大大地减少存储单元所占用的侧向面积以明显地增加动态随机存取存储器阵列的集成度。换言之,动态随机存取存储器阵列可以具有较高的集成度。In addition, because the transistors of the DRAM cell of the present invention are formed in a vertical structure, the lateral area occupied by the memory cell can be greatly reduced to significantly increase the integration of the DRAM array. In other words, the DRAM array can have a higher degree of integration.

再者,因为在本发明的动态随机存取存储器阵列的制造方法中,电容器的形成是环绕半导体柱,因此现有的填满沟渠的问题即被排除。因此,存取电容器的品质可被改善。Furthermore, because in the DRAM array manufacturing method of the present invention, the capacitors are formed around the semiconductor pillars, the existing problem of filling the trenches is eliminated. Therefore, the quality of the access capacitor can be improved.

为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments are described below in detail together with accompanying drawings.

附图说明Description of drawings

图1到图18所绘示依照本发明的优选实施例的动态随机存取存储器阵列的制造流程示意图。其中,图1到图7所绘示为电容器的制造方法,图8到图14所绘示为垂直晶体管的制造方法,以及图15到图18所绘示为后续的步骤,包括位元线和字元线的制造方法。1 to 18 are schematic diagrams illustrating the manufacturing process of a DRAM array according to a preferred embodiment of the present invention. 1 to 7 illustrate a method for manufacturing a capacitor, FIGS. 8 to 14 illustrate a method for manufacturing a vertical transistor, and FIGS. 15 to 18 illustrate subsequent steps, including bit lines and How character lines are made.

图17与图18所绘示依照本发明的优选实施例的动态随机存取存储单元和阵列的结构。17 and 18 illustrate the structures of DRAM cells and arrays according to preferred embodiments of the present invention.

附图标记说明Explanation of reference signs

100:半导体基底                    102:垫氧化层100: Semiconductor substrate 102: Pad oxide layer

104、136:图案化掩模层             110:半导体柱104, 136: Patterned mask layer 110: Semiconductor pillars

112、142、144:掺杂区              114:共形介电层112, 142, 144: Doped region 114: Conformal dielectric layer

116、120、122、1264、132:导体层116, 120, 122, 1264, 132: conductor layer

118、124、1262、134、1462:间隙壁118, 124, 1262, 134, 1462: spacers

118a、128、130、138、148:绝缘层118a, 128, 130, 138, 148: insulating layer

126:上电极                        1266:下电极126: Upper electrode 1266: Lower electrode

127:电容器     132a:栅极127: Capacitor 132a: Gate

1361:图案      140:离子植入1361: pattern 140: ion implantation

145:晶体管     146:位元线145: Transistor 146: Bit line

1461:顶盖层    150:字元线1461: Cap layer 150: Character line

152:接触窗152: contact window

具体实施方式Detailed ways

图1清楚地显示出动态随机存取存储器阵列的透视图,图2到图11、图13到图15以及图18(a)则是沿着图1中的I-I’线的剖面示意图,而图18(b)为另一剖面示意图,以及图12、图16与图17皆为上视图。Fig. 1 clearly shows a perspective view of a DRAM array, and Fig. 2 to Fig. 11, Fig. 13 to Fig. 15 and Fig. 18(a) are schematic cross-sectional views along line II' in Fig. 1, And FIG. 18( b ) is another schematic cross-sectional view, and FIG. 12 , FIG. 16 and FIG. 17 are all top views.

更特别的是,图1到图7所绘示为形成动态随机存取存储器阵列的电容器的制造流程示意图,图8到图14所绘示为形成动态随机存取存储器阵列的晶体管的制造流程示意图,以及图15到图18所绘示为后续的步骤,包括位元线与字元线的制造方法。More particularly, FIG. 1 to FIG. 7 are schematic diagrams showing the manufacturing process of capacitors forming DRAM arrays, and FIG. 8 to FIG. 14 are schematic diagrams showing the manufacturing process of transistors forming DRAM arrays. , and FIG. 15 to FIG. 18 illustrate subsequent steps, including manufacturing methods of bit lines and word lines.

<电容器的制造方法><Manufacturing method of capacitor>

首先,请参照图1,提供半导体基底100,其材质例如为轻掺杂P型单晶硅,且于基底100上形成垫氧化层102及图案化掩模层104。其中,此图案化掩模层104包括行列排列的矩形或正方形区块,其形成的方法例如是于其上涂覆一光致抗蚀剂材料进行蚀刻工艺,而此图案化掩模层104材料例如是氮化硅(SiN)。然后,以图案化掩模层104为掩模,蚀刻基底100以形成行列排列的半导体柱110。要注意的是,在上视图中,图案化掩模层104的每一个区块的形状可以为圆形、椭圆形与其他多边形,即使在上视图中的图案化掩模层104为矩形或正方形。当然,在另一实施例中,半导体柱110的形状可以塑造为圆柱状、椭圆柱状或对应的多边形的半导体柱。First, referring to FIG. 1 , a semiconductor substrate 100 is provided, which is made of lightly doped P-type single crystal silicon, and a pad oxide layer 102 and a patterned mask layer 104 are formed on the substrate 100 . Wherein, the patterned mask layer 104 includes rectangular or square blocks arranged in rows and columns, which are formed by, for example, coating a photoresist material on it and performing an etching process, and the patterned mask layer 104 material An example is silicon nitride (SiN). Then, using the patterned mask layer 104 as a mask, the substrate 100 is etched to form semiconductor pillars 110 arranged in rows and columns. It should be noted that, in the top view, the shape of each block of the patterned mask layer 104 can be a circle, an ellipse or other polygons, even if the patterned mask layer 104 in the top view is a rectangle or a square . Of course, in another embodiment, the shape of the semiconductor pillar 110 can be shaped as a cylindrical, elliptical cylindrical or corresponding polygonal semiconductor pillar.

再者,特别要注意的是,为了方便起见在以下说明书的描述中,半导体柱110及其上的部分图案化掩模层104有时会被合称为半导体柱110。Furthermore, it should be noted that, for convenience, in the following description, the semiconductor pillar 110 and the part of the patterned mask layer 104 thereon are sometimes collectively referred to as the semiconductor pillar 110 .

请再参照图1,作为后来形成的存储电容器的部分共用下电极的掺杂区112是形成于每一半导体柱110的侧壁下部分及基底100的表面层中。此外,位在每一半导体柱110的部分掺杂区112是于本发明的发明内容中所提到作为电容器的第一平板。同时,介于半导体柱110之间且在基底100内的部分的掺杂区112就是在发明内容中所提到介于半导体柱110间的基底100的掺杂表面层。Referring to FIG. 1 again, the doped region 112 serving as a part of the common lower electrode of the storage capacitor formed later is formed in the lower portion of the sidewall of each semiconductor pillar 110 and the surface layer of the substrate 100 . In addition, a part of the doped region 112 located in each semiconductor pillar 110 is mentioned as the first plate of the capacitor in the summary of the present invention. Meanwhile, the part of the doped region 112 between the semiconductor pillars 110 and inside the substrate 100 is the doped surface layer of the substrate 100 between the semiconductor pillars 110 mentioned in the summary of the invention.

掺杂的方法例如包括下列步骤。首先,于半导体柱110间形成预设厚度的含砷掺杂的氧化硅层(未绘示)。其中,形成含砷掺杂的氧化硅层的方法例如有二,分别是利用原位(in-situ)的方式,在基底100上沉积氧化硅的同时,掺杂砷以填满半导体柱110间的间隙,接着回蚀刻此含砷掺杂的氧化硅层直到预设的深度。或者是形成含砷掺杂的氧化层覆盖柱侧壁的下部分,且藉由光致抗蚀剂覆盖及回蚀刻工艺以定义预设的深度。在含砷掺杂的氧化层上覆盖未掺杂的氧化层后,进行热工艺将含砷氧化层中的砷原子热趋入半导体柱110的接触表面层,以及基底100的表面层。之后,移除含砷掺杂的氧化层及未掺杂的氧化层。The method of doping includes, for example, the following steps. First, an arsenic-doped silicon oxide layer (not shown) with a predetermined thickness is formed between the semiconductor pillars 110 . Among them, there are two methods for forming the arsenic-doped silicon oxide layer, for example, using an in-situ (in-situ) method to deposit silicon oxide on the substrate 100 while doping arsenic to fill the space between the semiconductor pillars 110. gap, and then etch back the arsenic-doped silicon oxide layer to a preset depth. Alternatively, an arsenic-doped oxide layer is formed to cover the lower portion of the sidewall of the pillar, and a predetermined depth is defined by a photoresist covering and etching back process. After covering the undoped oxide layer on the arsenic-doped oxide layer, a thermal process is performed to heat the arsenic atoms in the arsenic-containing oxide layer into the contact surface layer of the semiconductor pillar 110 and the surface layer of the substrate 100 . Afterwards, the arsenic-doped oxide layer and the undoped oxide layer are removed.

后续的步骤在图2到图7中完整的叙述电容器的制造方法,其中图2到图7是沿图1的I-I’线的剖面示意图。Subsequent steps describe the manufacturing method of the capacitor completely in FIGS. 2 to 7, wherein FIGS. 2 to 7 are schematic cross-sectional views along line I-I' of FIG. 1.

首先,请参照图2,在基底100及半导体柱110间形成共形介电层114。其中,此共形介电层114的材质最好是氧化硅-氮化硅-氧化硅(ONO)或氮化硅-氧化硅(NO)组合层,并当作电容器介电层。然后,在半导体柱110间形成导体层116,且其具有几乎和掺杂区112一样的深度,或低于掺杂区112的深度。其中,导体层116的材质为导电材料,如重掺杂N型多晶硅,且其形成的方法如利用原位的方式,先于基底100上沉积多晶硅层并同时作掺杂以填满半导体柱110间的间隙,接着回蚀刻此多晶硅层直到预设的厚度。First, referring to FIG. 2 , a conformal dielectric layer 114 is formed between the substrate 100 and the semiconductor pillar 110 . Wherein, the conformal dielectric layer 114 is preferably made of silicon oxide-silicon nitride-silicon oxide (ONO) or silicon nitride-silicon oxide (NO) combination layer, and is used as a capacitor dielectric layer. Then, a conductive layer 116 is formed between the semiconductor pillars 110 , and has a depth almost the same as that of the doped region 112 , or a depth lower than that of the doped region 112 . Wherein, the material of the conductor layer 116 is a conductive material, such as heavily doped N-type polysilicon, and the method of forming it is, for example, using an in-situ method, first depositing a polysilicon layer on the substrate 100 and simultaneously doping to fill the semiconductor pillars 110 gap, and then etch back the polysilicon layer to a preset thickness.

之后,请参照图3,移除暴露出的部分共形介电层114,其可利用湿蚀刻工艺。而当共形介电层114的材质例如为包括顶氧化层、氮化硅层及底氧化层的ONO组合层时,可依序以稀氢氟酸、磷酸及稀氢氟酸分别移除暴露出的顶氧化层、氮化硅层及底氧化层。Afterwards, referring to FIG. 3 , the exposed part of the conformal dielectric layer 114 is removed, which can be performed by a wet etching process. When the material of the conformal dielectric layer 114 is, for example, an ONO combination layer including a top oxide layer, a silicon nitride layer, and a bottom oxide layer, the exposed layers can be removed by dilute hydrofluoric acid, phosphoric acid, and dilute hydrofluoric acid, respectively. The top oxide layer, silicon nitride layer and bottom oxide layer.

然后,请参照图4,在导体层116上的每一半导体柱110的侧壁形成绝缘间隙壁118。其中绝缘间隙壁118的材质包含介电材料如氧化硅,且其形成的方法例如是进行化学气相沉积工艺(Chemical Vapor Deposition,CVD),以及随后进行各向异性蚀刻工艺。此外,要注意的是,虽然在剖面图中显示绝缘间隙壁118形成在对应的半导体柱110的两侧上,但事实上绝缘间隙壁118是环绕半导体柱110而形成。之后,在导体层116上的半导体柱110间形成另一导体层120并覆盖绝缘间隙壁118的下部。其中,导体层120的材质包括导电材料,如重掺杂N型多晶硅,且其形成的方法例如是利用原位的方式,先于基底100上沉积多晶硅层并同时掺杂,接着回蚀刻此多晶硅层直到预设的深度。Then, referring to FIG. 4 , insulating spacers 118 are formed on the sidewalls of each semiconductor pillar 110 on the conductive layer 116 . The material of the insulating spacer 118 includes a dielectric material such as silicon oxide, and the method of forming it is, for example, performing a chemical vapor deposition process (Chemical Vapor Deposition, CVD) and then performing an anisotropic etching process. In addition, it should be noted that although the cross-sectional view shows that the insulating spacers 118 are formed on both sides of the corresponding semiconductor pillars 110 , in fact the insulating spacers 118 are formed around the semiconductor pillars 110 . Afterwards, another conductive layer 120 is formed between the semiconductor pillars 110 on the conductive layer 116 and covers the lower portion of the insulating spacer 118 . Wherein, the material of the conductor layer 120 includes a conductive material, such as heavily doped N-type polysilicon, and the method of forming it is, for example, using an in-situ method to deposit a polysilicon layer on the substrate 100 and dope it at the same time, and then etch back the polysilicon. Layer up to a preset depth.

接着,请参照图5,移除在每一半导体柱110上所暴露出的部分绝缘间隙壁118,以形成领绝缘层118a并环绕半导体柱110。接着,在领绝缘层118a与导体层120上的半导体柱110间形成另一导体层122。其中,导体层122的材质包括导电材料如重掺杂N型多晶硅,且其形成的方法是使用同于上述的沉积法及回蚀刻法。之后,在导体层122上的每一半导体柱110的侧壁形成掩模间隙壁124,且其的厚度大于领绝缘118a。此外,掩模间隙壁124是用来定义电容器的上电极,其详细说明如下。Next, referring to FIG. 5 , the exposed portion of the insulating spacer 118 on each semiconductor pillar 110 is removed to form a collar insulating layer 118 a surrounding the semiconductor pillar 110 . Next, another conductive layer 122 is formed between the collar insulating layer 118 a and the semiconductor pillars 110 on the conductive layer 120 . Wherein, the material of the conductive layer 122 includes conductive material such as heavily doped N-type polysilicon, and its formation method is the same as the above-mentioned deposition method and etching back method. Afterwards, a mask spacer 124 is formed on the sidewall of each semiconductor pillar 110 on the conductive layer 122, and its thickness is greater than that of the collar insulation 118a. In addition, the mask spacer 124 is used to define the upper electrode of the capacitor, which is described in detail below.

之后,请同时参照图5及图6,以掩模间隙壁124当作掩模,相继蚀刻上述的三层导体层122、120、116,以于每一个半导体柱110的下侧壁上形成上电极126。要注意的是,剩余的导体层122,即上电极126的上部分,与半导体柱110的侧壁直接接触。之后,于掩模间隙壁124及导体层122、120、116的侧壁上形成介电间隙壁1262。其中,此介电间隙壁1262可能为氮化硅和氧化硅(NO)的组合间隙壁,且其形成的方法是依序形成氮化硅层及氧化硅层,然后进行各向异性蚀刻以移除部分氮化硅层及氧化硅层。Afterwards, please refer to FIG. 5 and FIG. 6 at the same time, use the mask spacer 124 as a mask, and successively etch the above-mentioned three layers of conductor layers 122, 120, 116 to form an upper sidewall on the lower sidewall of each semiconductor pillar 110. Electrode 126. It is to be noted that the remaining conductive layer 122 , that is, the upper portion of the upper electrode 126 , is in direct contact with the sidewall of the semiconductor pillar 110 . Afterwards, a dielectric spacer 1262 is formed on the sidewalls of the mask spacer 124 and the conductive layers 122 , 120 , 116 . Wherein, the dielectric spacer 1262 may be a combined spacer of silicon nitride and silicon oxide (NO), and its formation method is to sequentially form a silicon nitride layer and a silicon oxide layer, and then perform anisotropic etching to remove Part of the silicon nitride layer and the silicon oxide layer are removed.

然后,请参照图7,移除暴露出的介电层114,接着形成导体层1264以部分填入在柱内的间隙,且与在柱内的基底100的部分掺杂区112接触。因此,整个掺杂区112及导体层1264一同构成共用下电极1266。同时,在发明内容中有描述,与半导体柱110相对应的部分的掺杂区112及部分的导体层1264分别当作第一平板及第三平板。Then, referring to FIG. 7 , the exposed dielectric layer 114 is removed, and then a conductive layer 1264 is formed to partially fill the gap in the pillar and contact with part of the doped region 112 of the substrate 100 in the pillar. Therefore, the entire doped region 112 and the conductive layer 1264 together form a common lower electrode 1266 . Meanwhile, it is described in the Summary of the Invention that the part of the doped region 112 corresponding to the semiconductor pillar 110 and the part of the conductor layer 1264 are respectively regarded as the first plate and the third plate.

其中,导体层1264的形成方法例如是先形成导体材料(未绘示)以填满柱内的间隙,接着使导电材料回蚀直到预设的深度,且其材质可能为掺杂多晶硅。此外,上电极126、两层介电层114、1262及共用下电极1266一同构成电容器127。因为电容器127形成在半导体柱110的所有侧壁上,且上电极126嵌入下电极1266的两个部分之间,其中这两个部分为掺杂区112与导体层1264,因此,电容器127的电容相当的大。Wherein, the formation method of the conductive layer 1264 is, for example, to firstly form a conductive material (not shown) to fill the gaps in the columns, and then etch back the conductive material to a preset depth, and the material may be doped polysilicon. In addition, the upper electrode 126 , the two dielectric layers 114 , 1262 and the common lower electrode 1266 together form a capacitor 127 . Since the capacitor 127 is formed on all sidewalls of the semiconductor pillar 110, and the upper electrode 126 is embedded between two parts of the lower electrode 1266, wherein the two parts are the doped region 112 and the conductive layer 1264, therefore, the capacitance of the capacitor 127 quite big.

此外,在上述的环绕每一个半导体柱的电容器的形成方法中,例如在材料、每一层的制造方法及这些层的制造顺序上有些许的润饰或更动,也都可能包含在本发明的范围内。In addition, in the above-mentioned method of forming a capacitor surrounding each semiconductor pillar, for example, some slight modifications or changes in the materials, the manufacturing method of each layer, and the manufacturing sequence of these layers may also be included in the scope of the present invention. within range.

<晶体管的制造方法><Manufacturing method of transistor>

接下来请参照图8,移除掩模间隙壁124及介电层1262的上部分,接着于半导体柱110内填入绝缘层128以覆盖所有的电容器127。其中,绝缘层128的材质包括介电材料,如氧化硅,且其形成的方法例如是先在基底100上沉积氧化硅,然后同样进行回蚀刻直到预设的深度。之后,请参照图9,在每一半导体柱110所暴露出的侧壁上形成栅绝缘层130。其中,此栅绝缘层130例如为一层薄的氧化硅层或一层薄的氧化硅/氮化硅层,而其形成的方法可能是利用热氧化工艺或者是热氧化氮化工艺。Next, referring to FIG. 8 , the mask spacer 124 and the upper portion of the dielectric layer 1262 are removed, and then the insulating layer 128 is filled in the semiconductor pillar 110 to cover all the capacitors 127 . Wherein, the material of the insulating layer 128 includes a dielectric material, such as silicon oxide, and its formation method is, for example, depositing silicon oxide on the substrate 100 first, and then performing etching back to a predetermined depth. After that, referring to FIG. 9 , a gate insulating layer 130 is formed on the exposed sidewall of each semiconductor pillar 110 . Wherein, the gate insulating layer 130 is, for example, a thin silicon oxide layer or a thin silicon oxide/silicon nitride layer, and its formation method may be a thermal oxidation process or a thermal oxynitride process.

接着,在绝缘层128上的半导体柱110间形成导体层132,且覆盖栅绝缘层130的下部分。其中,导体层132的材质包括导电材料,如重掺杂N型多晶硅,且其形成的方法例如是利用原位的方式,在基底100上沉积多晶硅层的同时加入N型掺杂剂,之后回蚀刻此多晶硅层直到预设的深度。Next, a conductive layer 132 is formed between the semiconductor pillars 110 on the insulating layer 128 and covers the lower portion of the gate insulating layer 130 . Wherein, the material of the conductor layer 132 includes a conductive material, such as heavily doped N-type polysilicon, and the method of forming it is, for example, using an in-situ method, adding an N-type dopant while depositing a polysilicon layer on the substrate 100, and then returning to the substrate 100. This polysilicon layer is etched to a predetermined depth.

之后,请参照图10,在导体层132上的每一个半导体柱110的侧壁上形成掩模间隙壁134。其中,此掩模间隙壁134作为后来定义栅极用,且其由绝缘材料所形成,其中此绝缘材料例如是氧化硅。After that, referring to FIG. 10 , a mask spacer 134 is formed on the sidewall of each semiconductor pillar 110 on the conductor layer 132 . Wherein, the mask spacer 134 is used to define the gate later, and it is formed of an insulating material, wherein the insulating material is, for example, silicon oxide.

然后,请同时参照图11及图12,其中,图12是在以下的步骤完成后的结构的上视图,而图11为沿着图12的XI-XI’线的剖面示意图。在基底100上形成图案化掩模层136,例如为图案化光致抗蚀剂层。且此图案化掩模层136包括一些平行且线性的图案1361,其中,每一个线性的图案1361覆盖同一行的半导体柱110及在同一行的半导体柱110间的部分导体层132。之后,以图案化掩模层136与掩模间隙壁134为掩模蚀刻导体层132,以于每一个半导体柱110的侧壁形成栅极132a。即使图案化掩模层136发生没有对准的问题,掩模间隙壁134也能使对应的栅极132a环绕其对应的半导体柱110。Then, please refer to FIG. 11 and FIG. 12 at the same time, wherein FIG. 12 is a top view of the structure after the following steps are completed, and FIG. 11 is a schematic cross-sectional view along line XI-XI' of FIG. 12 . A patterned mask layer 136 , such as a patterned photoresist layer, is formed on the substrate 100 . And the patterned mask layer 136 includes some parallel and linear patterns 1361 , wherein each linear pattern 1361 covers the semiconductor pillars 110 in the same row and part of the conductive layer 132 between the semiconductor pillars 110 in the same row. Afterwards, the conductive layer 132 is etched using the patterned mask layer 136 and the mask spacer 134 as a mask to form a gate 132 a on the sidewall of each semiconductor pillar 110 . Even if the patterned mask layer 136 is misaligned, the mask spacer 134 enables the corresponding gate 132 a to surround its corresponding semiconductor pillar 110 .

藉由同一行的半导体柱内所剩余的导体层132,连接在同行半导体柱110的侧壁上的栅极132a以形成栅极线132a(图中点状区域),其可直接称作为字元线。然而,可在栅极线132a上再形成另一低电阻的导体线,并与栅极线132a电连接以降低电阻,其说明如下。The remaining conductor layer 132 in the same row of semiconductor pillars is connected to the gates 132a on the sidewalls of the same row of semiconductor pillars 110 to form gate lines 132a (dotted areas in the figure), which can be directly referred to as characters Wire. However, another low-resistance conductor line may be formed on the gate line 132a and electrically connected to the gate line 132a to reduce the resistance, which is described below.

此外,在上述的环绕每一个半导体柱的栅极的形成方法中,例如在材料、每一层的制造方法及这些层的制造顺序上有些许的润饰或更动,也都可能包含在本发明的范围内。In addition, in the above-mentioned formation method of the gate surrounding each semiconductor pillar, for example, some modifications or changes in the materials, the manufacturing method of each layer and the manufacturing sequence of these layers may also be included in the present invention. In the range.

<源极/漏极的制造方法><Manufacturing method of source/drain>

首先,请参照图13,以绝缘层138填满半导体柱110间的空隙,且此绝缘层138的材质为绝缘材料,如氧化硅,且其形成的方法例如是进行等离子体增强型化学气相沉积法(Plasma Enhanced CVD,PECVD),以及接着进行化学机械研磨法(chemical mechanical polishing,CMP)。First, referring to FIG. 13 , the gaps between the semiconductor pillars 110 are filled with an insulating layer 138, and the material of the insulating layer 138 is an insulating material, such as silicon oxide, and its formation method is, for example, plasma-enhanced chemical vapor deposition. Plasma Enhanced CVD (PECVD), followed by chemical mechanical polishing (CMP).

之后,请参照图14,移除图案化掩模层104、垫氧化层102、部分掩模间隙壁134以及部分绝缘层138。其中,移除上述的四个部分的方法例如是进行化学机械研磨法,使得掩模间隙壁134和绝缘层138的上表面与那些半导体柱110大体上共平面。接着,进行离子植入140以于每一个半导体柱110的上部分形成掺杂区142,以作为源极/漏极区。其中,掺杂区142可能是以磷离子或砷离子为掺杂剂的N型重掺杂区。After that, referring to FIG. 14 , the patterned mask layer 104 , the pad oxide layer 102 , part of the mask spacer 134 and part of the insulating layer 138 are removed. Wherein, the method of removing the above four parts is, for example, performing chemical mechanical polishing, so that the upper surfaces of the mask spacers 134 and the insulating layer 138 are substantially coplanar with those semiconductor pillars 110 . Next, ion implantation 140 is performed to form a doped region 142 on the upper portion of each semiconductor pillar 110 as a source/drain region. Wherein, the doped region 142 may be an N-type heavily doped region with phosphorous ions or arsenic ions as dopants.

然后,进行高温回火工艺以修补由离子植入140对半导体柱110所损坏的晶格,以及将下电极126的一些掺杂剂趋入每一个半导体柱110的侧壁,以形成掺杂区144。两个掺杂区142和144、栅极132a以及栅绝缘层130一同构成垂直晶体管145。要注意的是,虽然掺杂区144在先前的图示中未绘示,但事实上在下电极126的上部分122形成后(如图5所示)的每一个热工艺期间或多或少都会出现掺杂区144。然而,在优选实施例中,掺杂区144主要出现在掺杂区142形成后的高温回火工艺期间。Then, a high temperature tempering process is performed to repair the crystal lattice damaged by the ion implantation 140 to the semiconductor pillars 110, and some dopants of the lower electrode 126 tend to enter the sidewalls of each semiconductor pillar 110 to form doped regions. 144. The two doped regions 142 and 144 , the gate 132 a and the gate insulating layer 130 together form a vertical transistor 145 . It should be noted that although the doped region 144 is not shown in the previous figures, in fact it will be more or less during each thermal process after the upper portion 122 of the lower electrode 126 is formed (as shown in FIG. 5 ). Doped regions 144 are present. However, in a preferred embodiment, the doped region 144 is primarily present during the high temperature tempering process after the doped region 142 is formed.

<位元线与字元线的制造方法><Manufacturing method of bit line and word line>

图15与图16绘示形成存储器阵列的位元线的步骤,其中,图16是在以下的步骤完成后的结构的上视图,而图15为沿着图16的XV-XV’线的剖面示意图。在垂直晶体管145的构造完成后,于基底100上形成多条位元线146。每一条位元线146与这些在同一列的半导体柱110的上部分的掺杂区142直接接触。其中,位元线146的材质为导电材料,如重掺杂N型多晶硅,且其的形成方法是使用沉积图案化法(deposition-patterning)或镶嵌工艺(damascene method)。15 and 16 illustrate the steps of forming the bit lines of the memory array, wherein FIG. 16 is a top view of the structure after the following steps are completed, and FIG. 15 is a cross-section along line XV-XV' of FIG. 16 schematic diagram. After the vertical transistor 145 is constructed, a plurality of bit lines 146 are formed on the substrate 100 . Each bit line 146 is in direct contact with the doped regions 142 of the upper portions of the semiconductor pillars 110 in the same column. Wherein, the bit line 146 is made of conductive material, such as heavily doped N-type polysilicon, and is formed by using a deposition-patterning method or a damascene method.

此外,顶盖层1461配置在每一条位元线146上,且假设位元线146及顶盖层1461是以沉积图案化法所形成,则保护间隙壁1462就会形成在每一对位元线及顶盖层的侧壁上。其中,形成顶盖层1461及保护间隙壁1462的材质最好是氮化硅,而其的用途是以防止位元线146在后续的接触窗的蚀刻工艺中被暴露出,以便接触窗以自行对准的方法形成。之后,在基底100上形成绝缘层148以覆盖位元线146,并填满每两条位元线146之间的间隙,使位元线146与在下一个步骤中形成的字元线隔离。In addition, the capping layer 1461 is disposed on each bit line 146, and assuming that the bit line 146 and the capping layer 1461 are formed by deposition and patterning, the protection spacer 1462 will be formed on each pair of bit lines. line and the side walls of the top cover. Among them, the material for forming the top cover layer 1461 and the protective spacer 1462 is preferably silicon nitride, and its purpose is to prevent the bit line 146 from being exposed in the subsequent etching process of the contact window, so that the contact window can automatically The method of alignment is formed. Afterwards, an insulating layer 148 is formed on the substrate 100 to cover the bit lines 146 and fill the gap between every two bit lines 146 to isolate the bit lines 146 from the word lines formed in the next step.

图17与图18(a)和(b)绘示形成存储器阵列的额外字元线的步骤,以电连接先前所形成的栅极线。图17是在以下的步骤完成后的结构的上视图,而图18(a)和图18(b)分别是沿着图17的A-A’线及B-B’线的剖面示意图。在绝缘层148形成后,在基底100上形成多条字元线150。每一条字元线150与在半导体柱110的侧壁上的一行中的栅极线电连接,其是透过至少一个介于两个半导体柱110之间的接触窗152。此外,接触窗152与导体层132直接接触,此导体层132连接在同一行的两相邻半导体柱110的侧壁上的两个栅极132a。17 and 18(a) and (b) illustrate the steps of forming additional word lines of the memory array to electrically connect previously formed gate lines. Figure 17 is a top view of the structure after the following steps are completed, and Figure 18(a) and Figure 18(b) are schematic cross-sectional views along the A-A' line and the B-B' line of Figure 17 respectively. After the insulating layer 148 is formed, a plurality of word lines 150 are formed on the substrate 100 . Each word line 150 is electrically connected to a row of gate lines on the sidewalls of the semiconductor pillars 110 through at least one contact window 152 between two semiconductor pillars 110 . In addition, the contact window 152 is in direct contact with the conductive layer 132, and the conductive layer 132 is connected to two gates 132a on the sidewalls of two adjacent semiconductor pillars 110 in the same row.

接触窗152与字元线150的形成方法例如是先在绝缘层148中形成接触窗开口,以暴露出部分导体层132,然后沉积另一导体层以覆盖绝缘层148,且填满此接窗开口,接着图案化此导体层。或者是利用镶嵌工艺以形成接触窗152及字元线150。The method for forming the contact window 152 and the word line 150 is, for example, to first form a contact window opening in the insulating layer 148 to expose a part of the conductive layer 132, and then deposit another conductive layer to cover the insulating layer 148 to fill up the contact window. openings, followed by patterning the conductor layer. Alternatively, a damascene process is used to form the contact holes 152 and the word lines 150 .

此外,依照本发明的优选实施例,图17及图18(a)和(b)亦说明动态随机存取存储单元和阵列的结构。因此,动态随机存取存储单元和阵列的结构可根据上述的优选实施例的详述而理解。In addition, Fig. 17 and Fig. 18(a) and (b) also illustrate the structure of the DRAM unit and the array according to the preferred embodiment of the present invention. Therefore, the structure of the DRAM cell and the array can be understood from the above detailed description of the preferred embodiments.

请参照图17与图18(a)和(b),因为在本发明的动态随机存取存储单元中的电容器127是形成环绕半导体柱110,而不是形成在深沟渠中,所以在现有技术中因深沟渠的高宽比所衍生的填满沟渠的问题因此不存在。同时,电容器127的表面面积和电容变得相当大,因为电容器127可以在半导体柱110的所有侧壁上形成,且上电极126系嵌入下电极1266的两个部分112与1164之间,使电容更加倍增加。Please refer to Fig. 17 and Fig. 18 (a) and (b), because the capacitor 127 in the dynamic random access memory unit of the present invention is formed to surround the semiconductor column 110, rather than being formed in the deep trench, so in the prior art The problem of filling the trench due to the aspect ratio of the deep trench therefore does not exist. Simultaneously, the surface area and capacitance of the capacitor 127 become quite large, because the capacitor 127 can be formed on all sidewalls of the semiconductor pillar 110, and the upper electrode 126 is embedded between the two parts 112 and 1164 of the lower electrode 1266, making the capacitance Multiplied even more.

此外,因为本发明的动态随机存取存储单元的晶体管145是以垂直结构形成的,因此可大大地减少每一个存储单元的尺寸,以明显地提高存储器阵列的集成度。In addition, since the transistor 145 of the DRAM cell of the present invention is formed in a vertical structure, the size of each memory cell can be greatly reduced to significantly increase the integration of the memory array.

虽然本发明已以优选实施例揭露如上,但是其并非用以限定本发明,本领域技术人员在不脱离本发明的精神和范围的情况下,当可作些许的更动与润饰,因此本发明的保护范围应以所附权利要求所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection should be defined by the appended claims.

Claims (40)

1.一种动态随机存取存储单元,包括:1. A dynamic random access storage unit, comprising: 一半导体柱,位于一基底上;a semiconductor pillar located on a substrate; 一电容器,位于该半导体柱的一侧壁的下部分,包括:A capacitor, located on a lower portion of a sidewall of the semiconductor pillar, comprising: 一第一平板,位于该半导体柱的该侧壁的下部分中;a first plate located in the lower portion of the sidewall of the semiconductor pillar; 一第二平板,位于该第一平板周围以作为一上电极;a second flat plate located around the first flat plate as an upper electrode; 一第三平板,位于该第二平板周围,且与该第一平板电连接以一同作为一下电极;以及a third plate, located around the second plate, and electrically connected with the first plate to serve as a lower electrode; and 一介电层,使该第二平板与该第一平板及该第三平板分离;以及a dielectric layer separating the second plate from the first plate and the third plate; and 一垂直晶体管,位于该半导体柱的该侧壁的上部分,且电性耦接该电容器。A vertical transistor is located on the upper portion of the sidewall of the semiconductor pillar and is electrically coupled to the capacitor. 2.如权利要求1所述的动态随机存取存储单元,其中:2. The dynamic random access memory unit of claim 1, wherein: 该第一平板与该第三平板藉由一设计电连接,其中该第一平板更延伸至该半导体柱旁的该基底,该第三平板与该半导体柱旁的该基底接触;以及The first plate and the third plate are electrically connected by a design, wherein the first plate further extends to the base next to the semiconductor pillar, and the third plate contacts the base next to the semiconductor pillar; and 该介电层也配置于该半导体柱旁的该基底中的部分该第一平板上,以使该第二平板的一底层与该第一平板分离。The dielectric layer is also disposed on a portion of the first plate in the substrate next to the semiconductor pillar to separate a bottom layer of the second plate from the first plate. 3.如权利要求2所述的动态随机存取存储单元,其中该介电层包括:3. The DRAM unit as claimed in claim 2, wherein the dielectric layer comprises: 一第一介电层,位于该半导体柱与该第二平板之间,且位于该基底与该第二平板之间;以及a first dielectric layer between the semiconductor pillar and the second plate, and between the substrate and the second plate; and 一第二介电层,位于该第二平板与该第三平板之间,且连接该第一介电层。A second dielectric layer is located between the second plate and the third plate and connected to the first dielectric layer. 4.如权利要求1所述的动态随机存取存储单元,其中该第二平板具有一上部分直接接触该半导体柱中的该垂直晶体管的一源极/漏极区。4. The DRAM cell of claim 1, wherein the second plate has an upper portion directly contacting a source/drain region of the vertical transistor in the semiconductor pillar. 5.如权利要求1所述的动态随机存取存储单元,其中该第一平板、该第二平板、该第三平板与该介电层环绕该半导体柱。5. The DRAM cell of claim 1, wherein the first plate, the second plate, the third plate and the dielectric layer surround the semiconductor pillar. 6.如权利要求5所述的动态随机存取存储单元,其中该电容器还包括一领绝缘层环绕该半导体柱,且藉由该第二平板的上部分覆盖。6. The DRAM cell of claim 5, wherein the capacitor further comprises an insulating layer surrounding the semiconductor pillar and covered by an upper portion of the second plate. 7.如权利要求6所述的动态随机存取存储单元,其中该第二平板包括:7. The DRAM unit of claim 6, wherein the second panel comprises: 一第一导体层,环绕该领绝缘层;a first conductor layer surrounding the insulating layer; 一第二导体层,位于该第一导体层与该领绝缘层下方;以及a second conductor layer located below the first conductor layer and the collar insulating layer; and 一第三导体层,位于该第一导体层与该领绝缘层上,且电性耦接该垂直晶体管。A third conductive layer is located on the first conductive layer and the insulating layer, and is electrically coupled to the vertical transistor. 8.如权利要求1所述的动态随机存取存储单元,其中该垂直晶体管包括:8. The DRAM cell of claim 1, wherein the vertical transistor comprises: 一第一掺杂区,位于该半导体柱的侧壁中,且电连接该电容器的上电极;a first doped region located in the sidewall of the semiconductor pillar and electrically connected to the upper electrode of the capacitor; 一第二掺杂区,位于该半导体柱的上部分中;a second doped region located in the upper portion of the semiconductor pillar; 一栅极,位于该第一掺杂区与该第二掺杂区之间的该半导体柱的侧壁上;以及a gate located on the sidewall of the semiconductor pillar between the first doped region and the second doped region; and 一栅绝缘层,位于该半导体柱的侧壁与该栅极之间。A gate insulating layer is located between the sidewall of the semiconductor column and the gate. 9.如权利要求8所述的动态随机存取存储单元,其中该栅极与该上电极的上部分的一绝缘层隔离。9. The DRAM cell of claim 8, wherein the gate is isolated from an insulating layer on an upper portion of the upper electrode. 10.如权利要求8所述的动态随机存取存储单元,其中该第一掺杂区、该栅极与该栅绝缘层环绕该半导体柱。10. The DRAM cell of claim 8, wherein the first doped region, the gate and the gate insulating layer surround the semiconductor pillar. 11.一种动态随机存取存储器阵列,包括:11. A dynamic random access memory array comprising: 多个排成行和列的存储单元配置于一基底上,每一该些存储单元包括:A plurality of memory cells arranged in rows and columns are disposed on a substrate, and each of the memory cells includes: 一半导体柱,位于该基底上;a semiconductor pillar located on the substrate; 一电容器,位于该半导体柱的一侧壁的下部分,包括一第一平板位于该半导体柱的该侧壁的下部分中、一第二平板位于该第一平板周围以做为一上电极、一第三平板位于该第二平板周围且与该第一平板电连接以一同做为一下电极以及一介电层使该第二平板与该第一平板及该第三平板分隔;a capacitor located at the lower portion of the side wall of the semiconductor pillar, comprising a first plate located in the lower portion of the side wall of the semiconductor pillar, a second plate located around the first plate as an upper electrode, A third plate is located around the second plate and is electrically connected to the first plate to serve as a lower electrode and a dielectric layer to separate the second plate from the first plate and the third plate; 一垂直晶体管,位于该半导体柱的该侧壁的上部分,且电性耦接该电容器;a vertical transistor located on the upper portion of the sidewall of the semiconductor pillar and electrically coupled to the capacitor; 多条位元线,每一该些位元线耦接一列中的该些垂直晶体管;以及a plurality of bit lines, each of the bit lines coupled to the vertical transistors in a column; and 多条字元线,每一该些字元线耦接一行中的该些垂直晶体管。A plurality of word lines, each of the word lines is coupled to the vertical transistors in a row. 12.如权利要求11所述的动态随机存取存储器阵列,其中:12. The dynamic random access memory array of claim 11, wherein: 该些第一平板藉由该些半导体柱间的该基底的一掺杂表面层彼此电连接;The first plates are electrically connected to each other through a doped surface layer of the substrate between the semiconductor pillars; 该些第三平板一同构成一导体层,且该导体层部分填入该些半导体柱间的间隙与该基底的该掺杂表面层接触;以及The third plates together form a conductive layer, and the conductive layer partially fills the gap between the semiconductor pillars and contacts the doped surface layer of the substrate; and 该些第一平板、该掺杂表面层与该导体层一起做为一共用下电极。The first plates, the doped surface layer and the conductor layer together serve as a common lower electrode. 13.如权利要求12所述的动态随机存取存储器阵列,其中在每一该些存储单元中,该介电层包括:13. The dynamic random access memory array as claimed in claim 12, wherein in each of the memory cells, the dielectric layer comprises: 一第一介电层,位于该第二平板与该半导体柱之间,且位于该第二平板与该基底的该掺杂表面层之间;以及a first dielectric layer between the second slab and the semiconductor pillar, and between the second slab and the doped surface layer of the substrate; and 一第二介电层,位于该第二平板与该第三平板之间,且连接该第一介电层。A second dielectric layer is located between the second plate and the third plate and connected to the first dielectric layer. 14.如权利要求11所述的动态随机存取存储器阵列,其中每一该些第二平板具有一上部分直接接触一相对应的垂直晶体管的一源极/漏极区。14. The DRAM array of claim 11, wherein each of the second plates has an upper portion directly contacting a source/drain region of a corresponding vertical transistor. 15.如权利要求11所述的动态随机存取存储器阵列,其中在每一该些电容器中,该第一平板、该第二平板、该介电层与该第三平板环绕该半导体柱。15. The DRAM array of claim 11, wherein in each of the capacitors, the first plate, the second plate, the dielectric layer and the third plate surround the semiconductor pillar. 16.如权利要求15所述的动态随机存取存储器阵列,其中每一该些电容器还包括一领绝缘层环绕该相对应的半导体柱,且藉由该第二平板的上部分覆盖。16. The DRAM array of claim 15, wherein each of the capacitors further comprises an insulating layer surrounding the corresponding semiconductor pillar and covered by an upper portion of the second plate. 17.如权利要求16所述的动态随机存取存储器阵列,其中该第二平板包括:17. The DRAM array of claim 16, wherein the second panel comprises: 一第一导体层,环绕该领绝缘层;a first conductor layer surrounding the insulating layer; 一第二导体层,位于该第一导体层与该领绝缘层下方;以及a second conductor layer located below the first conductor layer and the collar insulating layer; and 一第三导体层,位于该第一导体层与该领绝缘层上,且电性耦接一相对应的垂直晶体管。A third conductor layer is located on the first conductor layer and the collar insulating layer, and is electrically coupled to a corresponding vertical transistor. 18.如权利要求11所述的动态随机存取存储器阵列,其中每一该些垂直晶体管包括:18. The DRAM array of claim 11, wherein each of the vertical transistors comprises: 一第一掺杂区,位于一相对应的半导体柱的侧壁中,且电连接一相对应的电容器的上电极;a first doped region located in a sidewall of a corresponding semiconductor pillar and electrically connected to an upper electrode of a corresponding capacitor; 一第二掺杂区,位于该半导体柱的上部分中;a second doped region located in the upper portion of the semiconductor pillar; 一栅极,位于该第一掺杂区与该第二掺杂区之间的该半导体柱的侧壁上;以及a gate located on the sidewall of the semiconductor pillar between the first doped region and the second doped region; and 一栅绝缘层,位于该半导体柱的侧壁与该栅极之间。A gate insulating layer is located between the sidewall of the semiconductor column and the gate. 19.如权利要求18所述的动态随机存取存储器阵列,其中每一该些位元线与在同一列的该些存储单元的该些垂直晶体管的该些第二掺杂区直接接触。19. The DRAM array of claim 18, wherein each of the bit lines is in direct contact with the second doped regions of the vertical transistors of the memory cells in the same column. 20.如权利要求18所述的动态随机存取存储器阵列,其中在同一行的该些存储单元的该些栅极彼此连接以形成一栅极线。20. The DRAM array of claim 18, wherein the gates of the memory cells in the same row are connected to each other to form a gate line. 21.如权利要求20所述的动态随机存取存储器阵列,其中该栅极线直接作为该行的该些垂直晶体管的一字元线。21. The DRAM array of claim 20, wherein the gate line directly serves as a word line of the vertical transistors in the row. 22.如权利要求20所述的动态随机存取存储器阵列,其中一字元线藉由至少位于两该些半导体柱之间的一接触窗与该栅极线电连接。22. The dynamic random access memory array of claim 20, wherein a word line is electrically connected to the gate line through a contact window located at least between two of the semiconductor pillars. 23.一种动态随机存取存储器阵列的制造方法,包括:23. A method of manufacturing a dynamic random access memory array, comprising: 图案化一半导体基底,以在该半导体基底上形成有多个排成行和列的半导体柱;patterning a semiconductor substrate to form a plurality of semiconductor pillars arranged in rows and columns on the semiconductor substrate; 形成一电容器于每一该些半导体柱的一侧壁的下部分上,包括:forming a capacitor on a lower portion of a sidewall of each of the semiconductor pillars, comprising: 形成一第一平板于每一该些半导体柱的该侧壁的下部分中;forming a first plate in the lower portion of the sidewall of each of the semiconductor pillars; 形成一第一介电层于每一该些第一平板周围;forming a first dielectric layer around each of the first plates; 形成一第二平板于每一该些第一介电层周围,以当作一上电极;forming a second plate around each of the first dielectric layers as an upper electrode; 形成一第二介电层于每一该些第二平板周围;以及forming a second dielectric layer around each of the second plates; and 形成一第三平板于每一该些第二介电层周围,其中该第三平板电连接一相对应的第一平板以形成一下电极;forming a third plate around each of the second dielectric layers, wherein the third plate is electrically connected to a corresponding first plate to form a lower electrode; 形成一垂直晶体管于每一该些半导体柱的一侧壁的上部分,且该垂直晶体管与一相对应的电容器耦接;以及forming a vertical transistor on an upper portion of a sidewall of each of the semiconductor pillars, and coupling the vertical transistor to a corresponding capacitor; and 形成多条位元线于该半导体基底上,其中每一该些位元线耦接一列的该些垂直晶体管。A plurality of bit lines are formed on the semiconductor substrate, wherein each of the bit lines is coupled to a row of the vertical transistors. 24.如权利要求23所述的动态随机存取存储器阵列的制造方法,其中该些第一平板与该些半导体柱之间的该基底的一掺杂表面层一起形成,以使所有该些第一平板彼此电连接。24. The manufacturing method of a dynamic random access memory array as claimed in claim 23, wherein the first plates are formed together with a doped surface layer of the substrate between the semiconductor pillars, so that all the first plates A plate is electrically connected to each other. 25.如权利要求24所述的动态随机存取存储器阵列的制造方法,其中形成该第一介电层的步骤包括形成一共形介电层于该基底的该掺杂表面层与每一该些半导体柱的侧壁上。25. The manufacturing method of a dynamic random access memory array as claimed in claim 24, wherein the step of forming the first dielectric layer comprises forming a conformal dielectric layer on the doped surface layer of the substrate and each of the on the sidewall of the semiconductor pillar. 26.如权利要求25所述的动态随机存取存储器阵列的制造方法,其中形成该些第三平板的步骤包括:26. The method for manufacturing a dynamic random access memory array as claimed in claim 25, wherein the step of forming the third plates comprises: 移除该第二平板与该第二介电层所暴露的该第一介电层,以暴露出该些半导体柱间的部分该掺杂表面层;以及removing the first dielectric layer exposed by the second plate and the second dielectric layer to expose a portion of the doped surface layer between the semiconductor pillars; and 形成一导体层部分填入该些半导体柱间的间隙,以当作所有电容器的该些第三平板。A conductive layer is formed to partially fill the gaps between the semiconductor pillars to serve as the third plates of all capacitors. 27.如权利要求25所述的动态随机存取存储器阵列的制造方法,其中形成该第二平板的步骤包括:27. The method for manufacturing a dynamic random access memory array as claimed in claim 25, wherein the step of forming the second plate comprises: 形成至少一导体层部分填入该些半导体柱间的间隙;forming at least one conductive layer to partially fill the gap between the semiconductor pillars; 形成一间隙壁于每一该些半导体柱的侧壁上;以及forming a spacer on the sidewall of each of the semiconductor pillars; and 以该些间隙壁为掩模,蚀刻该些第二平板内的该导体层。The conductor layer in the second plates is etched by using the spacers as a mask. 28.如权利要求27所述的动态随机存取存储器阵列的制造方法,其中形成该些第二介电层与该些第三平板的步骤包括:28. The method of manufacturing a dynamic random access memory array as claimed in claim 27, wherein the step of forming the second dielectric layers and the third plates comprises: 形成一介电间隙壁于每一该些间隙壁的侧壁与相对应的该第二平板上,其中该介电间隙壁的下部分作为该第二介电层;forming a dielectric spacer on the sidewall of each of the spacers and the corresponding second plate, wherein the lower part of the dielectric spacer serves as the second dielectric layer; 以该间隙壁与该介电间隙壁为蚀刻掩模,以移除暴露出的该第一介电层;using the spacer and the dielectric spacer as an etching mask to remove the exposed first dielectric layer; 形成一第二导体层部分填入该些半导体柱间的间隙,以当作所有电容器的该些第三平板;以及forming a second conductive layer to partially fill the gaps between the semiconductor pillars to serve as the third plates for all capacitors; and 移除每一该间隙壁与每一该介电间隙壁的上部分。The upper portion of each of the spacers and each of the dielectric spacers is removed. 29.如权利要求27所述的动态随机存取存储器阵列的制造方法,其中形成至少一导体层的步骤包括:29. The method for manufacturing a dynamic random access memory array as claimed in claim 27, wherein the step of forming at least one conductor layer comprises: 形成一第一导体层部分填入该些半导体柱间的间隙;forming a first conductive layer to partially fill the gap between the semiconductor pillars; 移除该第一导体层所暴露出的部分该共形介电层;removing the exposed portion of the conformal dielectric layer from the first conductor layer; 形成一绝缘间隙壁于第一导体层上的该些半导体柱的侧壁;forming an insulating spacer on the sidewalls of the semiconductor pillars on the first conductor layer; 形成一第二导体层于该些半导体柱间以覆盖该些绝缘间隙壁的下部分;forming a second conductor layer between the semiconductor pillars to cover the lower portions of the insulating spacers; 移除该第二导体层所暴露出的每一该绝缘间隙壁的一部分,以形成一领绝缘层于每一该些半导体柱上;以及removing a portion of each of the insulating spacers exposed by the second conductive layer to form an insulating layer on each of the semiconductor pillars; and 形成一第三导体层于该些半导体柱间及该领绝缘层与该第二导体层上。A third conductor layer is formed between the semiconductor pillars and on the collar insulating layer and the second conductor layer. 30.如权利要求23所述的动态随机存取存储器阵列的制造方法,其中在每一该些存储单元中,该第二平板的一上部分直接接触该半导体柱。30. The method of manufacturing a DRAM array as claimed in claim 23, wherein in each of the memory cells, an upper portion of the second plate directly contacts the semiconductor pillar. 31.如权利要求23所述的动态随机存取存储器阵列的制造方法,其中形成该些垂直晶体管的步骤包括:31. The method of manufacturing a dynamic random access memory array as claimed in claim 23, wherein the step of forming the vertical transistors comprises: 以一第一绝缘材料层部分填入该些半导体柱间的间隙,以覆盖该些电容器;partially filling the gaps between the semiconductor pillars with a first insulating material layer to cover the capacitors; 形成一垂直晶体管的一栅极结构于该第一绝缘层上的每一该些半导体柱的侧壁,且该栅极结构包括一栅极电极及位于该半导体柱与该栅极电极之间的一栅绝缘层;A gate structure of a vertical transistor is formed on the sidewalls of each of the semiconductor pillars on the first insulating layer, and the gate structure includes a gate electrode and a gate electrode between the semiconductor pillar and the gate electrode a gate insulating layer; 形成一垂直晶体管的一第一掺杂区于每一该些半导体柱的侧壁内,该第一掺杂区耦接相同的该半导体柱的侧壁上的该电容器;以及forming a first doped region of a vertical transistor in the sidewall of each of the semiconductor pillars, the first doped region coupled to the capacitor on the same sidewall of the semiconductor pillar; and 形成一垂直晶体管的一第二掺杂区于每一该些半导体柱的上部分。A second doped region of a vertical transistor is formed on the upper portion of each of the semiconductor pillars. 32.如权利要求31所述的动态随机存取存储器阵列的制造方法,其中形成该栅极结构的步骤包括:32. The method of manufacturing a dynamic random access memory array as claimed in claim 31, wherein the step of forming the gate structure comprises: 形成一栅极绝缘层于该第一绝缘材料层上方的每一该些半导体柱的侧壁;forming a gate insulating layer on the sidewalls of each of the semiconductor pillars above the first insulating material layer; 形成一导体层于该些半导体柱之间与该第一绝缘材料层上,该第一导体层具有一上表面低于该些半导体柱的上表面;forming a conductor layer between the semiconductor pillars and on the first insulating material layer, the first conductor layer having an upper surface lower than the upper surface of the semiconductor pillars; 形成一掩模间隙壁于该导体层上方的每一该些半导体柱的侧壁;forming a mask spacer on the sidewalls of each of the semiconductor pillars above the conductor layer; 形成一掩模层,该掩模层包括于该半导体基底上的多个线性图案,其中每一该些线性图案跨过在同一行的该些半导体柱;以及forming a mask layer comprising a plurality of linear patterns on the semiconductor substrate, wherein each of the linear patterns straddles the semiconductor pillars in the same row; and 以该掩模间隙壁与该掩模层作为一掩模,蚀刻该导体层,以形成一栅极于每一该些半导体柱的侧壁上,其中在同一行的该些半导体柱上的该些栅极藉由在相同行的半导体柱间的该导体层连接以形成一栅极线。Using the mask spacer and the mask layer as a mask, etching the conductor layer to form a gate on the sidewall of each of the semiconductor columns, wherein the semiconductor columns on the same row The gates are connected by the conductor layer between semiconductor pillars in the same row to form a gate line. 33.如权利要求32所述的动态随机存取存储器阵列的制造方法,还包括在形成该些位元线之后,形成多条字元线于基底上方,其中每一该些字元线交错形成于该些位元线上方,并藉由至少一接触窗电连接一相对应的栅极线,该接触窗位于该相对应行的该些半导体柱间。33. The manufacturing method of the dynamic random access memory array as claimed in claim 32, further comprising forming a plurality of word lines on the substrate after forming the bit lines, wherein each of the word lines is formed alternately Above the bit lines and electrically connected to a corresponding gate line through at least one contact window, the contact window is located between the semiconductor pillars in the corresponding row. 34.如权利要求33所述的动态随机存取存储器阵列的制造方法,其中形成该些字元线的步骤包括:34. The manufacturing method of a dynamic random access memory array as claimed in claim 33, wherein the step of forming the word lines comprises: 形成一介电层于该基底上,且覆盖该些位元线;以及forming a dielectric layer on the substrate and covering the bit lines; and 形成至少一贯穿该介电层的接触窗与位于该介电层上的一字元线,该字元线电连接该栅极线,其中该接触窗与在相同行的两该些半导体柱的该导体层直接接触。forming at least one contact window through the dielectric layer and a word line on the dielectric layer, the word line is electrically connected to the gate line, wherein the contact window is connected to the two semiconductor pillars in the same row The conductor layers are in direct contact. 35.如权利要求34所述的动态随机存取存储器阵列的制造方法,其中:35. The method of manufacturing a dynamic random access memory array as claimed in claim 34, wherein: 每一该些位元线有一顶盖层形成于其上;以及each of the bit lines has a capping layer formed thereon; and 该方法还包括:The method also includes: 于该介电层形成之前,形成一保护间隙壁于每一对位元线与该顶盖层侧壁。Before the dielectric layer is formed, a protective spacer is formed on each pair of bit lines and the sidewall of the cap layer. 36.如权利要求34所述的动态随机存取存储器阵列的制造方法,其中该接触窗与该字元线利用一镶嵌工艺所形成。36. The method of manufacturing a dynamic random access memory array as claimed in claim 34, wherein the contacts and the word lines are formed by a damascene process. 37.如权利要求31所述的动态随机存取存储器阵列的制造方法,其中在每一该些存储单元上,该半导体柱的侧壁的该第一掺杂区藉由从该第二平板的一上部分掺杂扩散而成,其中该第二平板的该上部分直接接触该半导体柱。37. The manufacturing method of a dynamic random access memory array as claimed in claim 31, wherein on each of the memory cells, the first doped region of the sidewall of the semiconductor pillar is obtained from the second plate An upper portion is doped and diffused, wherein the upper portion of the second plate directly contacts the semiconductor pillar. 38.如权利要求31所述的动态随机存取存储器阵列的制造方法,其中每一该些位元线形成直接接触在同一列的该些晶体管的该些第二掺杂区。38. The method of manufacturing a dynamic random access memory array as claimed in claim 31, wherein each of the bit lines forms the second doped regions directly contacting the transistors in the same column. 39.如权利要求38所述的动态随机存取存储器阵列的制造方法,其中于每一该些位元线形成之前,该些半导体柱间的间隙以一第二绝缘材料层填满,且覆盖该些晶体管。39. The manufacturing method of a dynamic random access memory array as claimed in claim 38, wherein before each of the bit lines is formed, the gap between the semiconductor pillars is filled with a second insulating material layer, and covers the transistors. 40.如权利要求23所述的动态随机存取存储器阵列的制造方法,还包括于形成该些位元线之后,形成多条字元线于该基底上方,其中每一该些字元线与同一行的该些垂直晶体管耦接。40. The manufacturing method of a dynamic random access memory array as claimed in claim 23 , further comprising forming a plurality of word lines above the substrate after forming the bit lines, wherein each of the word lines is connected to The vertical transistors in the same row are coupled.
CNB2004100899979A 2004-10-28 2004-10-28 Dynamic random access memory cell and array thereof, and manufacturing method of the array Expired - Lifetime CN100373623C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100899979A CN100373623C (en) 2004-10-28 2004-10-28 Dynamic random access memory cell and array thereof, and manufacturing method of the array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100899979A CN100373623C (en) 2004-10-28 2004-10-28 Dynamic random access memory cell and array thereof, and manufacturing method of the array

Publications (2)

Publication Number Publication Date
CN1767199A true CN1767199A (en) 2006-05-03
CN100373623C CN100373623C (en) 2008-03-05

Family

ID=36742926

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100899979A Expired - Lifetime CN100373623C (en) 2004-10-28 2004-10-28 Dynamic random access memory cell and array thereof, and manufacturing method of the array

Country Status (1)

Country Link
CN (1) CN100373623C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992175A (en) * 2017-03-29 2017-07-28 合肥智聚集成电路有限公司 Semiconductor storage unit and preparation method thereof
CN107025938A (en) * 2016-02-01 2017-08-08 株式会社东芝 Storage arrangement
WO2023245711A1 (en) * 2022-06-21 2023-12-28 长鑫存储技术有限公司 Semiconductor structure and manufacturing method therefor, and memory
WO2023245804A1 (en) * 2022-06-21 2023-12-28 长鑫存储技术有限公司 Semiconductor structure and manufacturing method therefor, and memory

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917203A3 (en) * 1997-11-14 2003-02-05 Infineon Technologies AG Gain cell DRAM structure and method of producing the same
DE19944012B4 (en) * 1999-09-14 2007-07-19 Infineon Technologies Ag Trench capacitor with capacitor electrodes and corresponding manufacturing process
US7026209B2 (en) * 2002-08-02 2006-04-11 Promos Technologies Inc. Dynamic random access memory cell and fabrication thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107025938A (en) * 2016-02-01 2017-08-08 株式会社东芝 Storage arrangement
CN106992175A (en) * 2017-03-29 2017-07-28 合肥智聚集成电路有限公司 Semiconductor storage unit and preparation method thereof
WO2023245711A1 (en) * 2022-06-21 2023-12-28 长鑫存储技术有限公司 Semiconductor structure and manufacturing method therefor, and memory
WO2023245804A1 (en) * 2022-06-21 2023-12-28 长鑫存储技术有限公司 Semiconductor structure and manufacturing method therefor, and memory

Also Published As

Publication number Publication date
CN100373623C (en) 2008-03-05

Similar Documents

Publication Publication Date Title
US10854632B2 (en) Vertical memory devices and methods of manufacturing the same
CN1118937A (en) Buried bit line cell and the manufacturing method thereof
CN1897305A (en) Vertical channel semiconductor devices and methods of manufacturing the same
CN1317769C (en) Semiconductor storage device and its producing method
CN101043031A (en) Semiconductor device with substantial driving current and decreased junction leakage current
CN1248065A (en) Vertical device and method for semiconductor chip
CN1633714A (en) 2f2 memory device system and method
CN1472813A (en) Semiconductor memory device and method of manufacturing semiconductor memory device using sidewall spacer
CN1577805A (en) Storage node contact forming method and structure for use in semiconductor memory
CN108389865A (en) With the three-dimensional semiconductor memory device for tilting gate electrode
US7435643B2 (en) Fabrication method of a dynamic random access memory
KR20220169174A (en) Semiconductor device and method for fabricating the same
KR102720127B1 (en) Three dimension semiconductor memory device
CN1870248A (en) Manufacturing method for a trench capacitor having an isolation collar in a semiconductor memory cell
US7026209B2 (en) Dynamic random access memory cell and fabrication thereof
CN1758427A (en) Substrates for semiconductor components with embedded capacitors
US20210398998A1 (en) Semiconductor device
US12200923B2 (en) Method of fabricating semiconductor device having bit line comprising a plurality of pins extending toward the substrate
CN100373623C (en) Dynamic random access memory cell and array thereof, and manufacturing method of the array
CN1841710A (en) Integrated circuit and its manufacturing method
CN1469434A (en) Method for forming contact hole
CN1309041C (en) Method for manufacturing bit line and bit line contact window of memory component
CN1309050C (en) Method of manufacturing memory cell with single-sided buried strap
CN1127135C (en) Method of fabricating horizontal trench capacitor and dynamic random access memory cell array
TW202420567A (en) Semiconductor device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20080305

CX01 Expiry of patent term