CN1767199A - Dynamic random access memory unit, array thereof, and method for manufacturing the array - Google Patents
Dynamic random access memory unit, array thereof, and method for manufacturing the array Download PDFInfo
- Publication number
- CN1767199A CN1767199A CN200410089997.9A CN200410089997A CN1767199A CN 1767199 A CN1767199 A CN 1767199A CN 200410089997 A CN200410089997 A CN 200410089997A CN 1767199 A CN1767199 A CN 1767199A
- Authority
- CN
- China
- Prior art keywords
- plate
- layer
- semiconductor
- forming
- random access
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- 239000004065 semiconductor Substances 0.000 claims abstract description 147
- 239000003990 capacitor Substances 0.000 claims abstract description 57
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 239000010410 layer Substances 0.000 claims description 207
- 239000004020 conductor Substances 0.000 claims description 39
- 125000006850 spacer group Chemical group 0.000 claims description 38
- 239000002344 surface layer Substances 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 9
- 238000013461 design Methods 0.000 claims description 7
- 239000011810 insulating material Substances 0.000 claims description 7
- 238000000059 patterning Methods 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 13
- 229920005591 polysilicon Polymers 0.000 description 13
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- -1 phosphorous ions Chemical class 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RJCRUVXAWQRZKQ-UHFFFAOYSA-N oxosilicon;silicon Chemical compound [Si].[Si]=O RJCRUVXAWQRZKQ-UHFFFAOYSA-N 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
本发明涉及动态随机存取存储单元和其阵列、及该阵列的制造方法。该动态随机存取存储单元,包括基底上的半导体柱、半导体柱的侧壁下部分的电容器以及半导体柱的侧壁上部分的垂直晶体管。其中,电容器包括在半导体柱的侧壁下部分的第一平板、在第一平板周围且当作上电极的第二平板、在第二平板周围的第三平板以及将第二平板与第一及第三平板分离的介电层。其中,上述的第三平板电连接第一平板以形成下电极。此外,本发明基于动态随机存取存储单元,另提出动态随机存取存储器阵列及其制造方法。
The present invention relates to a dynamic random access memory cell and its array, and a method for manufacturing the array. The dynamic random access memory cell comprises a semiconductor column on a substrate, a capacitor at the lower part of the side wall of the semiconductor column, and a vertical transistor at the upper part of the side wall of the semiconductor column. The capacitor comprises a first plate at the lower part of the side wall of the semiconductor column, a second plate around the first plate and serving as an upper electrode, a third plate around the second plate, and a dielectric layer separating the second plate from the first and third plates. The third plate is electrically connected to the first plate to form a lower electrode. In addition, based on the dynamic random access memory cell, the present invention further proposes a dynamic random access memory array and a method for manufacturing the array.
Description
技术领域technical field
本发明有关于一种半导体元件,且特别是有关于一种动态随机存取存储器的存储单元及阵列结构,以及动态随机存取存储器阵列的制造过程。动态随机存取存储单元以具有高电容的电容器为特色。The present invention relates to a semiconductor device, and in particular to a storage unit and an array structure of a DRAM, and a manufacturing process of the DRAM array. DRAM cells feature capacitors with high capacitance.
背景技术Background technique
在半导体工业中,动态随机存取存储器是很重要的集成电路之一,故其激发了持续的研究与发展。增加储存容量,改善写入及读取的速度,以及减少动态随机存取存储单元的元件面积大小为现在持续努力的目标。一般来说,动态随机存取存储单元包括晶体管以及由晶体管操作的电容器。传统上,动态随机存取存储单元的设计可被区分为三种型态,即平面式、堆叠电容器式与沟渠式。在平面式的设计上,存储单元的晶体管和电容器以平面的构件制造而成。在堆叠电容器式的设计上,存储单元的电容器置放于晶体管的上方。而在沟渠式的设计上,晶体管置放于基底的表面,且电容器置放在形成于基底中的沟渠内。In the semiconductor industry, DRAM is one of the most important integrated circuits, so it stimulates continuous research and development. Increasing the storage capacity, improving the writing and reading speed, and reducing the device area size of the DRAM cell are the goals of continuous efforts. In general, a DRAM cell includes a transistor and a capacitor operated by the transistor. Traditionally, the design of DRAM cells can be divided into three types, namely planar, stacked capacitor and trench. In a planar design, the transistors and capacitors of the memory cell are fabricated with planar components. In a stacked capacitor design, the capacitor of the memory cell is placed above the transistor. In a trench design, the transistors are placed on the surface of the substrate, and the capacitors are placed in trenches formed in the substrate.
然而,在形成沟渠的工艺中,掩模的操作需要很精确的对准。对深次微米的半导体元件而言,深沟渠可能具有长度与直径的比为40∶1的高宽比。而典型地形成电容器的方法是先藉由沉积介电层于深且窄的沟渠侧壁,再以掺杂多晶硅层填满此沟渠。随着高宽比逐渐变大,例如大于20∶1,要填满沟渠也变得更加困难。However, in the process of forming the trench, the operation of the mask requires very precise alignment. For deep sub-micron semiconductor devices, deep trenches may have an aspect ratio of 40:1 in length to diameter. Capacitors are typically formed by first depositing a dielectric layer on the sidewalls of a deep and narrow trench, and then filling the trench with a doped polysilicon layer. As the aspect ratio becomes larger, for example greater than 20:1, it becomes more difficult to fill the trench.
发明内容Contents of the invention
有鉴于此,本发明的目的就是在提供一种动态随机存取存储单元,其具有形成于半导体柱的侧壁上的电容器,以解决现有的填满沟渠的问题,以及增加电容器的表面面积。In view of this, the object of the present invention is to provide a dynamic random access memory unit, which has a capacitor formed on the sidewall of the semiconductor pillar, to solve the existing problem of filling the trench, and to increase the surface area of the capacitor .
本发明的再一目的是提供一种以本发明的动态随机存取存储单元结构为基础的动态随机存取存储器阵列。因为形成垂直晶体管作为存储单元,使得动态随机存取存储器阵列能具有较高的集成度。Another object of the present invention is to provide a DRAM array based on the DRAM cell structure of the present invention. Since the vertical transistors are formed as memory cells, the DRAM array can have a higher degree of integration.
本发明的又一目的是提供一种动态随机存取存储器阵列的制作方法,以解决现有的填满沟渠的问题,以及增加电容器的电容,并增加动态随机存取存储器元件的整合。Another object of the present invention is to provide a method for fabricating a DRAM array, so as to solve the existing problem of filling trenches, increase the capacitance of capacitors, and increase the integration of DRAM elements.
本发明的动态随机存取存储单元包括基底上形成的半导体柱、半导体柱的侧壁下部分形成的电容器以及半导体柱的侧壁上部分形成的垂直晶体管。电容器包括第一平板、第二平板、第三平板与介电层。其中,第一平板配置于半导体柱的侧壁的下部分,第二平板配置于第一平板的周围,且当作上电极。第三平板配置于第二平板的周围,且与第一平板电连接而一起成为下电极。介电层将第二平板分离于第一平板及第三平板。垂直晶体管系以电性耦接到电容器。The dynamic random access memory unit of the present invention includes a semiconductor pillar formed on a substrate, a capacitor formed on the lower part of the sidewall of the semiconductor pillar, and a vertical transistor formed on the upper part of the sidewall of the semiconductor pillar. The capacitor includes a first plate, a second plate, a third plate and a dielectric layer. Wherein, the first flat plate is arranged on the lower part of the sidewall of the semiconductor column, and the second flat plate is arranged around the first flat plate and serves as an upper electrode. The third plate is arranged around the second plate, and is electrically connected with the first plate to form a lower electrode together. The dielectric layer separates the second plate from the first plate and the third plate. The vertical transistor is electrically coupled to the capacitor.
根据本发明的优选实施例,第一平板与第三平板藉由设计而彼此电连接,其中第一平板更延伸至半导体柱旁的基底中,且第三平板与半导体柱旁的基底接触。然而,第一平板与第三平板也可以选择藉由其他的连接设计电连接。According to a preferred embodiment of the present invention, the first plate and the third plate are electrically connected to each other by design, wherein the first plate further extends into the substrate next to the semiconductor pillar, and the third plate is in contact with the substrate next to the semiconductor pillar. However, the first plate and the third plate can also be electrically connected through other connection designs.
本发明的动态随机存取存储器阵列包括本发明前面所提及的存储单元的列与行,以及多条位元线与字元线。这些存储单元配置在半导体基底上,且具有上述的相同的结构。每一条位元线与一列存储单元的垂直晶体管电性耦接,而每一条字元线与一行存储单元的垂直晶体管电性耦接。此外,所有电容器的第一平板藉由半导体柱间的基底的掺杂表面层彼此连接,以致于所有存储单元的第一平板及第三平板构成了共用下电极。The DRAM array of the present invention includes the columns and rows of memory cells mentioned above in the present invention, and a plurality of bit lines and word lines. These memory cells are arranged on a semiconductor substrate and have the same structure as described above. Each bit line is electrically coupled to the vertical transistors of a column of memory cells, and each word line is electrically coupled to the vertical transistors of a row of memory cells. Furthermore, the first plates of all capacitors are connected to each other by the doped surface layer of the base between the semiconductor pillars, so that the first and third plates of all memory cells constitute a common lower electrode.
以下为本发明的动态随机存取存储单元的制造方法的描述。图案化半导体基底以于其上形成呈行列排列的半导体柱,接着在每一半导体柱的侧壁的下部分形成电容器,其包括以下步骤。首先,形成当作掺杂区的第一平板于每一半导体柱的侧壁的下部分内。接着,形成第一介电层于每一第一平板的周围,以及形成第二平板于每一第一介电层的周围,并当作上电极。然后,形成第二介电层于每一第二平板的周围,以及形成第三平板于每一第二介电层的周围,且电连接相对应的第一平板以形成下电极。之后,形成垂直晶体管于每一半导体柱的侧壁的上部分,且与相对应的电容器电性耦接。继之,形成多条位元线与字元线,其中每一条位元线与一列存储单元的晶体管电性耦接,而每一条字元线与一行存储单元的晶体管电性耦接。The following is a description of the manufacturing method of the DRAM unit of the present invention. Patterning the semiconductor substrate to form semiconductor pillars arranged in rows and columns thereon, and then forming capacitors on the lower portion of the sidewall of each semiconductor pillar, includes the following steps. Firstly, a first plate serving as a doped region is formed in the lower portion of the sidewall of each semiconductor pillar. Then, a first dielectric layer is formed around each first flat plate, and a second flat plate is formed around each first dielectric layer as an upper electrode. Then, a second dielectric layer is formed around each second plate, and a third plate is formed around each second dielectric layer, and the corresponding first plate is electrically connected to form a lower electrode. After that, a vertical transistor is formed on the upper portion of the sidewall of each semiconductor pillar, and is electrically coupled with the corresponding capacitor. Then, a plurality of bit lines and word lines are formed, wherein each bit line is electrically coupled to the transistors of a row of memory cells, and each word line is electrically coupled to the transistors of a row of memory cells.
因为本发明的动态随机存取存储器中的电容器的形成是环绕半导体柱,而不是形成在深沟渠内,所以在现有技术中由于深沟渠的高宽比而衍生的填满沟渠的问题因此解决。同时,电容器的表面面积和电容变得相当大,因为电容器可以在半导体柱的所有侧壁上形成,且当作上电极的第二平板镶入第一平板与第三平板之间,使电容更加倍增加。Since the capacitors in the DRAM of the present invention are formed around the semiconductor pillars rather than within the deep trench, the problem of filling the trench due to the aspect ratio of the deep trench in the prior art is thus solved. . At the same time, the surface area and capacitance of the capacitor become quite large, because the capacitor can be formed on all sidewalls of the semiconductor pillar, and the second plate as the upper electrode is embedded between the first plate and the third plate, making the capacitor more stable. multiplied.
此外,因为本发明的动态随机存取存储单元的晶体管以垂直结构形成,因此可大大地减少存储单元所占用的侧向面积以明显地增加动态随机存取存储器阵列的集成度。换言之,动态随机存取存储器阵列可以具有较高的集成度。In addition, because the transistors of the DRAM cell of the present invention are formed in a vertical structure, the lateral area occupied by the memory cell can be greatly reduced to significantly increase the integration of the DRAM array. In other words, the DRAM array can have a higher degree of integration.
再者,因为在本发明的动态随机存取存储器阵列的制造方法中,电容器的形成是环绕半导体柱,因此现有的填满沟渠的问题即被排除。因此,存取电容器的品质可被改善。Furthermore, because in the DRAM array manufacturing method of the present invention, the capacitors are formed around the semiconductor pillars, the existing problem of filling the trenches is eliminated. Therefore, the quality of the access capacitor can be improved.
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments are described below in detail together with accompanying drawings.
附图说明Description of drawings
图1到图18所绘示依照本发明的优选实施例的动态随机存取存储器阵列的制造流程示意图。其中,图1到图7所绘示为电容器的制造方法,图8到图14所绘示为垂直晶体管的制造方法,以及图15到图18所绘示为后续的步骤,包括位元线和字元线的制造方法。1 to 18 are schematic diagrams illustrating the manufacturing process of a DRAM array according to a preferred embodiment of the present invention. 1 to 7 illustrate a method for manufacturing a capacitor, FIGS. 8 to 14 illustrate a method for manufacturing a vertical transistor, and FIGS. 15 to 18 illustrate subsequent steps, including bit lines and How character lines are made.
图17与图18所绘示依照本发明的优选实施例的动态随机存取存储单元和阵列的结构。17 and 18 illustrate the structures of DRAM cells and arrays according to preferred embodiments of the present invention.
附图标记说明Explanation of reference signs
100:半导体基底 102:垫氧化层100: Semiconductor substrate 102: Pad oxide layer
104、136:图案化掩模层 110:半导体柱104, 136: Patterned mask layer 110: Semiconductor pillars
112、142、144:掺杂区 114:共形介电层112, 142, 144: Doped region 114: Conformal dielectric layer
116、120、122、1264、132:导体层116, 120, 122, 1264, 132: conductor layer
118、124、1262、134、1462:间隙壁118, 124, 1262, 134, 1462: spacers
118a、128、130、138、148:绝缘层118a, 128, 130, 138, 148: insulating layer
126:上电极 1266:下电极126: Upper electrode 1266: Lower electrode
127:电容器 132a:栅极127: Capacitor 132a: Gate
1361:图案 140:离子植入1361: pattern 140: ion implantation
145:晶体管 146:位元线145: Transistor 146: Bit line
1461:顶盖层 150:字元线1461: Cap layer 150: Character line
152:接触窗152: contact window
具体实施方式Detailed ways
图1清楚地显示出动态随机存取存储器阵列的透视图,图2到图11、图13到图15以及图18(a)则是沿着图1中的I-I’线的剖面示意图,而图18(b)为另一剖面示意图,以及图12、图16与图17皆为上视图。Fig. 1 clearly shows a perspective view of a DRAM array, and Fig. 2 to Fig. 11, Fig. 13 to Fig. 15 and Fig. 18(a) are schematic cross-sectional views along line II' in Fig. 1, And FIG. 18( b ) is another schematic cross-sectional view, and FIG. 12 , FIG. 16 and FIG. 17 are all top views.
更特别的是,图1到图7所绘示为形成动态随机存取存储器阵列的电容器的制造流程示意图,图8到图14所绘示为形成动态随机存取存储器阵列的晶体管的制造流程示意图,以及图15到图18所绘示为后续的步骤,包括位元线与字元线的制造方法。More particularly, FIG. 1 to FIG. 7 are schematic diagrams showing the manufacturing process of capacitors forming DRAM arrays, and FIG. 8 to FIG. 14 are schematic diagrams showing the manufacturing process of transistors forming DRAM arrays. , and FIG. 15 to FIG. 18 illustrate subsequent steps, including manufacturing methods of bit lines and word lines.
<电容器的制造方法><Manufacturing method of capacitor>
首先,请参照图1,提供半导体基底100,其材质例如为轻掺杂P型单晶硅,且于基底100上形成垫氧化层102及图案化掩模层104。其中,此图案化掩模层104包括行列排列的矩形或正方形区块,其形成的方法例如是于其上涂覆一光致抗蚀剂材料进行蚀刻工艺,而此图案化掩模层104材料例如是氮化硅(SiN)。然后,以图案化掩模层104为掩模,蚀刻基底100以形成行列排列的半导体柱110。要注意的是,在上视图中,图案化掩模层104的每一个区块的形状可以为圆形、椭圆形与其他多边形,即使在上视图中的图案化掩模层104为矩形或正方形。当然,在另一实施例中,半导体柱110的形状可以塑造为圆柱状、椭圆柱状或对应的多边形的半导体柱。First, referring to FIG. 1 , a
再者,特别要注意的是,为了方便起见在以下说明书的描述中,半导体柱110及其上的部分图案化掩模层104有时会被合称为半导体柱110。Furthermore, it should be noted that, for convenience, in the following description, the
请再参照图1,作为后来形成的存储电容器的部分共用下电极的掺杂区112是形成于每一半导体柱110的侧壁下部分及基底100的表面层中。此外,位在每一半导体柱110的部分掺杂区112是于本发明的发明内容中所提到作为电容器的第一平板。同时,介于半导体柱110之间且在基底100内的部分的掺杂区112就是在发明内容中所提到介于半导体柱110间的基底100的掺杂表面层。Referring to FIG. 1 again, the doped
掺杂的方法例如包括下列步骤。首先,于半导体柱110间形成预设厚度的含砷掺杂的氧化硅层(未绘示)。其中,形成含砷掺杂的氧化硅层的方法例如有二,分别是利用原位(in-situ)的方式,在基底100上沉积氧化硅的同时,掺杂砷以填满半导体柱110间的间隙,接着回蚀刻此含砷掺杂的氧化硅层直到预设的深度。或者是形成含砷掺杂的氧化层覆盖柱侧壁的下部分,且藉由光致抗蚀剂覆盖及回蚀刻工艺以定义预设的深度。在含砷掺杂的氧化层上覆盖未掺杂的氧化层后,进行热工艺将含砷氧化层中的砷原子热趋入半导体柱110的接触表面层,以及基底100的表面层。之后,移除含砷掺杂的氧化层及未掺杂的氧化层。The method of doping includes, for example, the following steps. First, an arsenic-doped silicon oxide layer (not shown) with a predetermined thickness is formed between the
后续的步骤在图2到图7中完整的叙述电容器的制造方法,其中图2到图7是沿图1的I-I’线的剖面示意图。Subsequent steps describe the manufacturing method of the capacitor completely in FIGS. 2 to 7, wherein FIGS. 2 to 7 are schematic cross-sectional views along line I-I' of FIG. 1.
首先,请参照图2,在基底100及半导体柱110间形成共形介电层114。其中,此共形介电层114的材质最好是氧化硅-氮化硅-氧化硅(ONO)或氮化硅-氧化硅(NO)组合层,并当作电容器介电层。然后,在半导体柱110间形成导体层116,且其具有几乎和掺杂区112一样的深度,或低于掺杂区112的深度。其中,导体层116的材质为导电材料,如重掺杂N型多晶硅,且其形成的方法如利用原位的方式,先于基底100上沉积多晶硅层并同时作掺杂以填满半导体柱110间的间隙,接着回蚀刻此多晶硅层直到预设的厚度。First, referring to FIG. 2 , a
之后,请参照图3,移除暴露出的部分共形介电层114,其可利用湿蚀刻工艺。而当共形介电层114的材质例如为包括顶氧化层、氮化硅层及底氧化层的ONO组合层时,可依序以稀氢氟酸、磷酸及稀氢氟酸分别移除暴露出的顶氧化层、氮化硅层及底氧化层。Afterwards, referring to FIG. 3 , the exposed part of the
然后,请参照图4,在导体层116上的每一半导体柱110的侧壁形成绝缘间隙壁118。其中绝缘间隙壁118的材质包含介电材料如氧化硅,且其形成的方法例如是进行化学气相沉积工艺(Chemical Vapor Deposition,CVD),以及随后进行各向异性蚀刻工艺。此外,要注意的是,虽然在剖面图中显示绝缘间隙壁118形成在对应的半导体柱110的两侧上,但事实上绝缘间隙壁118是环绕半导体柱110而形成。之后,在导体层116上的半导体柱110间形成另一导体层120并覆盖绝缘间隙壁118的下部。其中,导体层120的材质包括导电材料,如重掺杂N型多晶硅,且其形成的方法例如是利用原位的方式,先于基底100上沉积多晶硅层并同时掺杂,接着回蚀刻此多晶硅层直到预设的深度。Then, referring to FIG. 4 , insulating
接着,请参照图5,移除在每一半导体柱110上所暴露出的部分绝缘间隙壁118,以形成领绝缘层118a并环绕半导体柱110。接着,在领绝缘层118a与导体层120上的半导体柱110间形成另一导体层122。其中,导体层122的材质包括导电材料如重掺杂N型多晶硅,且其形成的方法是使用同于上述的沉积法及回蚀刻法。之后,在导体层122上的每一半导体柱110的侧壁形成掩模间隙壁124,且其的厚度大于领绝缘118a。此外,掩模间隙壁124是用来定义电容器的上电极,其详细说明如下。Next, referring to FIG. 5 , the exposed portion of the insulating
之后,请同时参照图5及图6,以掩模间隙壁124当作掩模,相继蚀刻上述的三层导体层122、120、116,以于每一个半导体柱110的下侧壁上形成上电极126。要注意的是,剩余的导体层122,即上电极126的上部分,与半导体柱110的侧壁直接接触。之后,于掩模间隙壁124及导体层122、120、116的侧壁上形成介电间隙壁1262。其中,此介电间隙壁1262可能为氮化硅和氧化硅(NO)的组合间隙壁,且其形成的方法是依序形成氮化硅层及氧化硅层,然后进行各向异性蚀刻以移除部分氮化硅层及氧化硅层。Afterwards, please refer to FIG. 5 and FIG. 6 at the same time, use the
然后,请参照图7,移除暴露出的介电层114,接着形成导体层1264以部分填入在柱内的间隙,且与在柱内的基底100的部分掺杂区112接触。因此,整个掺杂区112及导体层1264一同构成共用下电极1266。同时,在发明内容中有描述,与半导体柱110相对应的部分的掺杂区112及部分的导体层1264分别当作第一平板及第三平板。Then, referring to FIG. 7 , the exposed
其中,导体层1264的形成方法例如是先形成导体材料(未绘示)以填满柱内的间隙,接着使导电材料回蚀直到预设的深度,且其材质可能为掺杂多晶硅。此外,上电极126、两层介电层114、1262及共用下电极1266一同构成电容器127。因为电容器127形成在半导体柱110的所有侧壁上,且上电极126嵌入下电极1266的两个部分之间,其中这两个部分为掺杂区112与导体层1264,因此,电容器127的电容相当的大。Wherein, the formation method of the
此外,在上述的环绕每一个半导体柱的电容器的形成方法中,例如在材料、每一层的制造方法及这些层的制造顺序上有些许的润饰或更动,也都可能包含在本发明的范围内。In addition, in the above-mentioned method of forming a capacitor surrounding each semiconductor pillar, for example, some slight modifications or changes in the materials, the manufacturing method of each layer, and the manufacturing sequence of these layers may also be included in the scope of the present invention. within range.
<晶体管的制造方法><Manufacturing method of transistor>
接下来请参照图8,移除掩模间隙壁124及介电层1262的上部分,接着于半导体柱110内填入绝缘层128以覆盖所有的电容器127。其中,绝缘层128的材质包括介电材料,如氧化硅,且其形成的方法例如是先在基底100上沉积氧化硅,然后同样进行回蚀刻直到预设的深度。之后,请参照图9,在每一半导体柱110所暴露出的侧壁上形成栅绝缘层130。其中,此栅绝缘层130例如为一层薄的氧化硅层或一层薄的氧化硅/氮化硅层,而其形成的方法可能是利用热氧化工艺或者是热氧化氮化工艺。Next, referring to FIG. 8 , the
接着,在绝缘层128上的半导体柱110间形成导体层132,且覆盖栅绝缘层130的下部分。其中,导体层132的材质包括导电材料,如重掺杂N型多晶硅,且其形成的方法例如是利用原位的方式,在基底100上沉积多晶硅层的同时加入N型掺杂剂,之后回蚀刻此多晶硅层直到预设的深度。Next, a
之后,请参照图10,在导体层132上的每一个半导体柱110的侧壁上形成掩模间隙壁134。其中,此掩模间隙壁134作为后来定义栅极用,且其由绝缘材料所形成,其中此绝缘材料例如是氧化硅。After that, referring to FIG. 10 , a
然后,请同时参照图11及图12,其中,图12是在以下的步骤完成后的结构的上视图,而图11为沿着图12的XI-XI’线的剖面示意图。在基底100上形成图案化掩模层136,例如为图案化光致抗蚀剂层。且此图案化掩模层136包括一些平行且线性的图案1361,其中,每一个线性的图案1361覆盖同一行的半导体柱110及在同一行的半导体柱110间的部分导体层132。之后,以图案化掩模层136与掩模间隙壁134为掩模蚀刻导体层132,以于每一个半导体柱110的侧壁形成栅极132a。即使图案化掩模层136发生没有对准的问题,掩模间隙壁134也能使对应的栅极132a环绕其对应的半导体柱110。Then, please refer to FIG. 11 and FIG. 12 at the same time, wherein FIG. 12 is a top view of the structure after the following steps are completed, and FIG. 11 is a schematic cross-sectional view along line XI-XI' of FIG. 12 . A patterned
藉由同一行的半导体柱内所剩余的导体层132,连接在同行半导体柱110的侧壁上的栅极132a以形成栅极线132a(图中点状区域),其可直接称作为字元线。然而,可在栅极线132a上再形成另一低电阻的导体线,并与栅极线132a电连接以降低电阻,其说明如下。The remaining
此外,在上述的环绕每一个半导体柱的栅极的形成方法中,例如在材料、每一层的制造方法及这些层的制造顺序上有些许的润饰或更动,也都可能包含在本发明的范围内。In addition, in the above-mentioned formation method of the gate surrounding each semiconductor pillar, for example, some modifications or changes in the materials, the manufacturing method of each layer and the manufacturing sequence of these layers may also be included in the present invention. In the range.
<源极/漏极的制造方法><Manufacturing method of source/drain>
首先,请参照图13,以绝缘层138填满半导体柱110间的空隙,且此绝缘层138的材质为绝缘材料,如氧化硅,且其形成的方法例如是进行等离子体增强型化学气相沉积法(Plasma Enhanced CVD,PECVD),以及接着进行化学机械研磨法(chemical mechanical polishing,CMP)。First, referring to FIG. 13 , the gaps between the
之后,请参照图14,移除图案化掩模层104、垫氧化层102、部分掩模间隙壁134以及部分绝缘层138。其中,移除上述的四个部分的方法例如是进行化学机械研磨法,使得掩模间隙壁134和绝缘层138的上表面与那些半导体柱110大体上共平面。接着,进行离子植入140以于每一个半导体柱110的上部分形成掺杂区142,以作为源极/漏极区。其中,掺杂区142可能是以磷离子或砷离子为掺杂剂的N型重掺杂区。After that, referring to FIG. 14 , the patterned
然后,进行高温回火工艺以修补由离子植入140对半导体柱110所损坏的晶格,以及将下电极126的一些掺杂剂趋入每一个半导体柱110的侧壁,以形成掺杂区144。两个掺杂区142和144、栅极132a以及栅绝缘层130一同构成垂直晶体管145。要注意的是,虽然掺杂区144在先前的图示中未绘示,但事实上在下电极126的上部分122形成后(如图5所示)的每一个热工艺期间或多或少都会出现掺杂区144。然而,在优选实施例中,掺杂区144主要出现在掺杂区142形成后的高温回火工艺期间。Then, a high temperature tempering process is performed to repair the crystal lattice damaged by the
<位元线与字元线的制造方法><Manufacturing method of bit line and word line>
图15与图16绘示形成存储器阵列的位元线的步骤,其中,图16是在以下的步骤完成后的结构的上视图,而图15为沿着图16的XV-XV’线的剖面示意图。在垂直晶体管145的构造完成后,于基底100上形成多条位元线146。每一条位元线146与这些在同一列的半导体柱110的上部分的掺杂区142直接接触。其中,位元线146的材质为导电材料,如重掺杂N型多晶硅,且其的形成方法是使用沉积图案化法(deposition-patterning)或镶嵌工艺(damascene method)。15 and 16 illustrate the steps of forming the bit lines of the memory array, wherein FIG. 16 is a top view of the structure after the following steps are completed, and FIG. 15 is a cross-section along line XV-XV' of FIG. 16 schematic diagram. After the
此外,顶盖层1461配置在每一条位元线146上,且假设位元线146及顶盖层1461是以沉积图案化法所形成,则保护间隙壁1462就会形成在每一对位元线及顶盖层的侧壁上。其中,形成顶盖层1461及保护间隙壁1462的材质最好是氮化硅,而其的用途是以防止位元线146在后续的接触窗的蚀刻工艺中被暴露出,以便接触窗以自行对准的方法形成。之后,在基底100上形成绝缘层148以覆盖位元线146,并填满每两条位元线146之间的间隙,使位元线146与在下一个步骤中形成的字元线隔离。In addition, the
图17与图18(a)和(b)绘示形成存储器阵列的额外字元线的步骤,以电连接先前所形成的栅极线。图17是在以下的步骤完成后的结构的上视图,而图18(a)和图18(b)分别是沿着图17的A-A’线及B-B’线的剖面示意图。在绝缘层148形成后,在基底100上形成多条字元线150。每一条字元线150与在半导体柱110的侧壁上的一行中的栅极线电连接,其是透过至少一个介于两个半导体柱110之间的接触窗152。此外,接触窗152与导体层132直接接触,此导体层132连接在同一行的两相邻半导体柱110的侧壁上的两个栅极132a。17 and 18(a) and (b) illustrate the steps of forming additional word lines of the memory array to electrically connect previously formed gate lines. Figure 17 is a top view of the structure after the following steps are completed, and Figure 18(a) and Figure 18(b) are schematic cross-sectional views along the A-A' line and the B-B' line of Figure 17 respectively. After the insulating
接触窗152与字元线150的形成方法例如是先在绝缘层148中形成接触窗开口,以暴露出部分导体层132,然后沉积另一导体层以覆盖绝缘层148,且填满此接窗开口,接着图案化此导体层。或者是利用镶嵌工艺以形成接触窗152及字元线150。The method for forming the contact window 152 and the word line 150 is, for example, to first form a contact window opening in the insulating
此外,依照本发明的优选实施例,图17及图18(a)和(b)亦说明动态随机存取存储单元和阵列的结构。因此,动态随机存取存储单元和阵列的结构可根据上述的优选实施例的详述而理解。In addition, Fig. 17 and Fig. 18(a) and (b) also illustrate the structure of the DRAM unit and the array according to the preferred embodiment of the present invention. Therefore, the structure of the DRAM cell and the array can be understood from the above detailed description of the preferred embodiments.
请参照图17与图18(a)和(b),因为在本发明的动态随机存取存储单元中的电容器127是形成环绕半导体柱110,而不是形成在深沟渠中,所以在现有技术中因深沟渠的高宽比所衍生的填满沟渠的问题因此不存在。同时,电容器127的表面面积和电容变得相当大,因为电容器127可以在半导体柱110的所有侧壁上形成,且上电极126系嵌入下电极1266的两个部分112与1164之间,使电容更加倍增加。Please refer to Fig. 17 and Fig. 18 (a) and (b), because the
此外,因为本发明的动态随机存取存储单元的晶体管145是以垂直结构形成的,因此可大大地减少每一个存储单元的尺寸,以明显地提高存储器阵列的集成度。In addition, since the
虽然本发明已以优选实施例揭露如上,但是其并非用以限定本发明,本领域技术人员在不脱离本发明的精神和范围的情况下,当可作些许的更动与润饰,因此本发明的保护范围应以所附权利要求所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection should be defined by the appended claims.
Claims (40)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100899979A CN100373623C (en) | 2004-10-28 | 2004-10-28 | Dynamic random access memory cell and array thereof, and manufacturing method of the array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100899979A CN100373623C (en) | 2004-10-28 | 2004-10-28 | Dynamic random access memory cell and array thereof, and manufacturing method of the array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1767199A true CN1767199A (en) | 2006-05-03 |
CN100373623C CN100373623C (en) | 2008-03-05 |
Family
ID=36742926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100899979A Expired - Lifetime CN100373623C (en) | 2004-10-28 | 2004-10-28 | Dynamic random access memory cell and array thereof, and manufacturing method of the array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100373623C (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106992175A (en) * | 2017-03-29 | 2017-07-28 | 合肥智聚集成电路有限公司 | Semiconductor storage unit and preparation method thereof |
CN107025938A (en) * | 2016-02-01 | 2017-08-08 | 株式会社东芝 | Storage arrangement |
WO2023245711A1 (en) * | 2022-06-21 | 2023-12-28 | 长鑫存储技术有限公司 | Semiconductor structure and manufacturing method therefor, and memory |
WO2023245804A1 (en) * | 2022-06-21 | 2023-12-28 | 长鑫存储技术有限公司 | Semiconductor structure and manufacturing method therefor, and memory |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0917203A3 (en) * | 1997-11-14 | 2003-02-05 | Infineon Technologies AG | Gain cell DRAM structure and method of producing the same |
DE19944012B4 (en) * | 1999-09-14 | 2007-07-19 | Infineon Technologies Ag | Trench capacitor with capacitor electrodes and corresponding manufacturing process |
US7026209B2 (en) * | 2002-08-02 | 2006-04-11 | Promos Technologies Inc. | Dynamic random access memory cell and fabrication thereof |
-
2004
- 2004-10-28 CN CNB2004100899979A patent/CN100373623C/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107025938A (en) * | 2016-02-01 | 2017-08-08 | 株式会社东芝 | Storage arrangement |
CN106992175A (en) * | 2017-03-29 | 2017-07-28 | 合肥智聚集成电路有限公司 | Semiconductor storage unit and preparation method thereof |
WO2023245711A1 (en) * | 2022-06-21 | 2023-12-28 | 长鑫存储技术有限公司 | Semiconductor structure and manufacturing method therefor, and memory |
WO2023245804A1 (en) * | 2022-06-21 | 2023-12-28 | 长鑫存储技术有限公司 | Semiconductor structure and manufacturing method therefor, and memory |
Also Published As
Publication number | Publication date |
---|---|
CN100373623C (en) | 2008-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10854632B2 (en) | Vertical memory devices and methods of manufacturing the same | |
CN1118937A (en) | Buried bit line cell and the manufacturing method thereof | |
CN1897305A (en) | Vertical channel semiconductor devices and methods of manufacturing the same | |
CN1317769C (en) | Semiconductor storage device and its producing method | |
CN101043031A (en) | Semiconductor device with substantial driving current and decreased junction leakage current | |
CN1248065A (en) | Vertical device and method for semiconductor chip | |
CN1633714A (en) | 2f2 memory device system and method | |
CN1472813A (en) | Semiconductor memory device and method of manufacturing semiconductor memory device using sidewall spacer | |
CN1577805A (en) | Storage node contact forming method and structure for use in semiconductor memory | |
CN108389865A (en) | With the three-dimensional semiconductor memory device for tilting gate electrode | |
US7435643B2 (en) | Fabrication method of a dynamic random access memory | |
KR20220169174A (en) | Semiconductor device and method for fabricating the same | |
KR102720127B1 (en) | Three dimension semiconductor memory device | |
CN1870248A (en) | Manufacturing method for a trench capacitor having an isolation collar in a semiconductor memory cell | |
US7026209B2 (en) | Dynamic random access memory cell and fabrication thereof | |
CN1758427A (en) | Substrates for semiconductor components with embedded capacitors | |
US20210398998A1 (en) | Semiconductor device | |
US12200923B2 (en) | Method of fabricating semiconductor device having bit line comprising a plurality of pins extending toward the substrate | |
CN100373623C (en) | Dynamic random access memory cell and array thereof, and manufacturing method of the array | |
CN1841710A (en) | Integrated circuit and its manufacturing method | |
CN1469434A (en) | Method for forming contact hole | |
CN1309041C (en) | Method for manufacturing bit line and bit line contact window of memory component | |
CN1309050C (en) | Method of manufacturing memory cell with single-sided buried strap | |
CN1127135C (en) | Method of fabricating horizontal trench capacitor and dynamic random access memory cell array | |
TW202420567A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20080305 |
|
CX01 | Expiry of patent term |