CN1724512A - Method of synthesizing hydrodiazo kind compound - Google Patents

Method of synthesizing hydrodiazo kind compound Download PDF

Info

Publication number
CN1724512A
CN1724512A CN 200510046874 CN200510046874A CN1724512A CN 1724512 A CN1724512 A CN 1724512A CN 200510046874 CN200510046874 CN 200510046874 CN 200510046874 A CN200510046874 A CN 200510046874A CN 1724512 A CN1724512 A CN 1724512A
Authority
CN
China
Prior art keywords
compound
azo
carbon monoxide
synthesizing
promotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510046874
Other languages
Chinese (zh)
Other versions
CN1295209C (en
Inventor
刘晓智
李宏颖
张欣
孙丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CNB2005100468741A priority Critical patent/CN1295209C/en
Publication of CN1724512A publication Critical patent/CN1724512A/en
Application granted granted Critical
Publication of CN1295209C publication Critical patent/CN1295209C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention provides a process for synthesizing azocompound hydrogenated which comprises, reacting aromatic azocompound in organic solvent under normal pressure at the presence of carbon monoxide and water, using selenium as catalyst, organic bases or inorganic bases as catalyst promoter, synthesizing azocompound hydrogenated in one step, wherein the mol ratio of the aromatic azocompound and water is 1:1-20, the mol amount of selenium is 0.1-8% of the aromatic azocompound, the mol amount of organic base or inorganic base is 0-10% of the aromatic azocompound, the reacting time is 0.5-3 hours, the reaction temperature is 30-100 deg. C.

Description

A kind of method of synthesizing hydrodiazo kind compound
Technical field
The present invention relates to the synthetic method of azobenzene compound, relate in particular to a kind of method of utilizing catalyzing carbon monoxide reduction synthesizing hydrodiazo benzene-like compounds.
Background technology
Hydrazobenzene is applied to fields such as medicine, agricultural chemicals as important organic synthesis intermediate and the raw material of a big class.The method that the azo aromatic compound that reduces now prepares the hydrodiazo aromatic compound mainly contains: metallic reducing method, catalysis hydrazine reduction method and sodium sulfide reducing method, though aforesaid method technology is ripe, but byproduct of reaction is the product that environment is polluted, in reduction process, belong to superseded method, its cost of catalysis hydrazine reduction method is higher, the catalyzing carbon monoxide method of reducing at the existing report of reduction nitro, carries out the reductive report but have not yet to see to azo-group.
Summary of the invention
The object of the present invention is to provide a kind of under normal pressure the method for reaction conditions gentleness, catalytic reduction synthesizing hydrodiazo kind compound that cost is low.
For achieving the above object, the technical solution used in the present invention is as follows: in the presence of carbon monoxide and water, with the aromatic azo-compound is raw material, selenium is catalyzer, organic bases or mineral alkali are promotor, or do not add any promotor, and in organic solvent, under normal pressure, react, azo is reduced to hydrodiazo.Reaction formula is as follows:
Figure A20051004687400041
Wherein: X or Y be-H ,-R ,-OH ,-NH 2,-R-NH 2, RO-,-Cl ,-F ,-Br ,-CF 3,-CHO;
The molar ratio of material of above-mentioned aromatic azo-compound and water is 1: 1~10; The mol ratio of reactant aromatic azo-compound and CO is 1: 1.1~3, and the mole dosage of selenium is 0.5~8% of a reactant aromatic azo-compound; The mole dosage of promotor is 0~10% of a reactant aromatic azo-compound; Solvent load is with complete molten being as the criterion of aromatic azo-compound, temperature of reaction is 30~100 ℃, reaction times is 0.5-3 hour, different azo-compounds, and catalyst levels, promotor consumption reaction times difference proceed to conventional liquid chromatography for measuring productive rate in reaction and to change below 1%, stop to feed carbon monoxide, after the cooling, switch aerating oxygen or air, filter, distill, wash aftertreatment then.
Described promotor is: mineral alkali be sodium hydroxide and/or potassium hydroxide and/or yellow soda ash and/salt of wormwood and/or sodium acetate and/or potassium acetate; Described organic bases is triethylamine and/or aniline and/or pyridine and/or triphenylphosphine and/or 1,5-diaza-bicyclo [5.4.0]-5-undecylene (DBU) and/or 1,5-diaza-bicyclo [5.3.0]-5-nonene (DBN) and/or N-crassitude and/or 1,4-diaza-bicyclo [2.2.2] octane (DABCO).Describedly do not add any promotor and be meant and only make catalyzer and need not add other material can react as promotor with selenium;
Described carbon monoxide can use the industrial carbon monoxide tail gas that contains air, nitrogen, carbonic acid gas and/or water vapour except that using technical pure CO, wherein the content sum of nitrogen, carbonic acid gas and/or water vapour is smaller or equal to 95% of cumulative volume, air content is smaller or equal to 30% of cumulative volume, the carbon monoxide consumption is measured consumption in molar ratio, for shorten the reaction times feed carbon monoxide can adopt excessive; Wherein said organic solvent is one or both polarity and/or nonpolar inert solvent; Described polar solvent is tetrahydrofuran (THF), N, dinethylformamide (DMF), dimethyl sulfoxide (DMSO) (DMSO), glycol ether, ethylene glycol diethyl ether, dioxane, crown ether or acetone, and non-polar solvent is normal hexane, toluene or benzene.Selecting for use of solvent is to select the big solvent of solubleness according to the solubleness of aromatic azo-compound in solvent.
Wherein, be alkyl, amino, alkylamino, alkoxyl group etc. to electron substituent group in the described reactant aromatic azo-compound, electron-withdrawing substituent is the chlorine that directly links to each other with aromatic ring, fluorine, bromine, trifluoromethyl, alkyloyl etc.
Reaction preference height of the present invention, to adopt nonmetal selenium be catalyzer can reach more than 99% the reduction selectivity of azo-group, and sensitive group such as halogen, alkyloyl is unaffected on the aromatic ring, and productive rate is therefrom waited until height; The present invention has the efficient of atomic economy reaction in addition.
Has phase transfer function.In catalyzed reaction of the present invention, solid selenium powder catalyzer is insoluble in the reaction system before the reaction beginning, the selenium of solid phase changes the active substance that is dissolved in reaction system into and carries out the homogeneous catalyzed reaction in reaction process, after reaction ends, catalyzer is separated out with the solid phase selenium powder again, very easily separates with product.Therefore, the present invention combines the advantage of homogeneous catalysis and heterogeneous catalyst.
The present invention has following advantage:
1. the present invention is a synthesis under normal pressure, and facility investment is few, and is easy to operate and safe.
2. cost is low, and raw material is simple, be easy to get, and only uses the lower nonmetal selenium of price to be catalyzer.
3. environmentally friendly.It is green reaction that the present invention does not have the three wastes substantially, has reached the requirement of cleaner production, helps large-scale industrial production.
4. the reaction process difficulty is low.The present invention is easy and simple to handle, and product separates with the postorder of catalyzer easily.
5. good economy performance.This method reduction selectivity can reach 99%, the productive rate height.
Embodiment
Below by embodiment in detail the present invention is described in detail; Yet, the invention is not restricted to following embodiment.
Embodiment 1
Having prolong and stirring adding nitrogen benzide 9.1g (50mmol), Se0.08 (1mmol), H in the there-necked flask at 500ml 2O 9g (0.5mol), triethylamine 0.5g (5mmol) and solvent DMF 200mL (2.6mol),, continue logical people's carbon monoxide, then be heated to 88 ℃ of stirring reactions 0.5 hour, be cooled to room temperature, carbon monoxide is switched to oxygen or after pneumatic blending 0.5-1 hour, filters out selenium powder according to a conventional method.Underpressure distillation (5kPa is following) steams solvent, and productive rate 95% is filtered in washing.
Embodiment 2
The temperature of reaction water yield, CO content are as follows, and experimental technique and condition are with embodiment 1.
Temperature (℃) The water yield (mol) Carbon monoxide (mol) Time (min) Productive rate (%)
30 0.2 0.08 180 90
100 1 0.06 60 95
50 0.5 0.06 60 90
80 0.1 0.05 30 90
Embodiment 3
Solvent and alkali are as shown in the table, and experimental technique and charging capacity, promotor molar weight, solvent load and condition are with embodiment 1.
Solvent Alkali Temperature of reaction (℃) Reaction times (min) Productive rate (%)
DMSO -- 90 30 95
Tetrahydrofuran (THF) DBU 50 150 80
Toluene Triethylamine 80 180 48
Acetone Pyridine 70 100 50
Dioxane Aniline 90 140 76
Glycol ether Yellow soda ash 80 130 68
Ethylene glycol diethyl ether Sodium hydroxide 80 150 83
Embodiment 4:
Different catalyst combination, experimental technique and condition are with embodiment 1
Solvent Consumption (ml) The promotor combination Consumption g (5mmol) Reaction times min Productive rate (%)
The DMSO tetrahydrofuran (THF) 100 100 The sodium hydroxide sodium acetate 0.1 0.2 30 96
Toluene benzene 100 100 The sodium acetate triethylamine 0.2 0.25 30 70
Dioxane DMSO 100 100 Pyridine triethylamine sodium acetate 0.1 0.15 0.15 40 90
Glycol ether acetone 100 100 DBN DABCO 0.35 0.25 50 80
DMSO DMF 100 100 Sodium hydroxide DBU 0.1 0.4 60 95
Normal hexane toluene 100 100 Sodium acetate DBN 0.2 0.35 80 86
Embodiment 5:
Reduce with industrial carbon monoxide tail gas, its experimental technique and condition are with embodiment 1.
CO forms Volume content % Reaction times min Productive rate %
Air water CO 10 5 85 60 96
Air CO 2CO 50 45 5 150 95
N 2Water vapour CO 2CO 20 10 20 50 100 95
Embodiment 6:
Different material is as follows, and other experimental technique and condition are with embodiment 1.
Raw material Reaction times (min) Productive rate (%)
X Y
Right-NH 2 H 30 90
Right-NH 2 To N, the N-dimethylamino 50 97
To methyl To chlorine 30 95
To chlorine To trifluoromethyl 40 95
Between hydroxyl To amino 60 90
To fluorine Adjacent aldehyde radical 50 95

Claims (6)

1. the method for a synthesizing hydrodiazo kind compound, it is characterized in that: in the presence of carbon monoxide and water, be raw material with the aromatic azo-compound, selenium is catalyzer, organic bases or mineral alkali are promotor, or do not add any promotor, under normal pressure, temperature of reaction is 30~100 ℃ in organic solvent, reaction times is 0.5-3 hour, stop to feed carbon monoxide, switch aerating oxygen or air, filter, distill, wash aftertreatment then;
Azo is reduced to azoxy, and reaction formula is as follows:
Figure A2005100468740002C1
Wherein: X or Y be-H ,-R ,-OH ,-NH 2,-R-NH 2,-Cl ,-F ,-CF 3,-CHO.
2, the method for synthesizing hydrodiazo kind compound according to claim 1 is characterized in that: the molar ratio of material of described aromatic azo-compound and water is 1: 1~10; The mol ratio of reactant aromatic azo-compound and CO is 1: 1.1~3, and the mole dosage of selenium is 0.5~8% of a reactant aromatic azo-compound; The mole dosage of promotor is 0~10% of a reactant aromatic azo-compound.
3. according to the method for the described synthesizing hydrodiazo kind compound of claim 1, it is characterized in that: described promotor mineral alkali be sodium hydroxide and/or potassium hydroxide and/or yellow soda ash and/salt of wormwood and/or sodium acetate and/or potassium acetate; Described organic bases is triethylamine and/or aniline and/or pyridine and/or triphenylphosphine and/or 1,5-diaza-bicyclo [5.4.0]-5-undecylene and/or 1,5-diaza-bicyclo [5.3.0]-5-nonene and/or N-crassitude and/or 1,4-diaza-bicyclo [2.2.2] octane.
4. according to the method for the described synthetic azo compound of claim 1, it is characterized in that: wherein said carbon monoxide can use the industrial carbon monoxide tail gas that contains air, nitrogen, carbonic acid gas and/or water vapour, wherein the content sum of nitrogen, carbonic acid gas and/or water vapour is smaller or equal to 95% of cumulative volume, and air content is less than 30%.
5. according to the method for the described synthetic azo compound of claim 1, it is characterized in that: wherein said organic solvent is one or both polarity and/or nonpolar inert solvent.
6. according to the method for the described synthetic azo compound of claim 5, it is characterized in that: described polar solvent is tetrahydrofuran (THF), N, dinethylformamide, dimethyl sulfoxide (DMSO), glycol ether, ethylene glycol diethyl ether, dioxane, crown ether or acetone, non-polar solvent are normal hexane, toluene or benzene.
CNB2005100468741A 2005-07-14 2005-07-14 Method of synthesizing hydrodiazo kind compound Expired - Fee Related CN1295209C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100468741A CN1295209C (en) 2005-07-14 2005-07-14 Method of synthesizing hydrodiazo kind compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100468741A CN1295209C (en) 2005-07-14 2005-07-14 Method of synthesizing hydrodiazo kind compound

Publications (2)

Publication Number Publication Date
CN1724512A true CN1724512A (en) 2006-01-25
CN1295209C CN1295209C (en) 2007-01-17

Family

ID=35924158

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100468741A Expired - Fee Related CN1295209C (en) 2005-07-14 2005-07-14 Method of synthesizing hydrodiazo kind compound

Country Status (1)

Country Link
CN (1) CN1295209C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623478A (en) * 2018-07-13 2018-10-09 山东隆信药业有限公司 A kind of method that white oil substitutes toluene production DCB 3,3' dichlorobenzidine hydrochloride

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2302998A1 (en) * 1975-03-05 1976-10-01 Colour Chem Ltd PROCESS FOR PREPARING HYDRAZOBENZENE DERIVATIVES
JPS57186145A (en) * 1981-05-11 1982-11-16 Kanegafuchi Chem Ind Co Ltd Measurement and device of vaporizing component in liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623478A (en) * 2018-07-13 2018-10-09 山东隆信药业有限公司 A kind of method that white oil substitutes toluene production DCB 3,3' dichlorobenzidine hydrochloride

Also Published As

Publication number Publication date
CN1295209C (en) 2007-01-17

Similar Documents

Publication Publication Date Title
CN102070382B (en) Method for preparing benzaldehyde or substituted benzaldehyde by catalytically oxidizing methylbenzene or substituted methylbenzene
CN101133016A (en) Method for producing substituted biphenyls
CN101619034B (en) Diselenide compound synthesis method
CN101445459B (en) Method for synthesizing 2, 4-dichloroaniline
CN102391059A (en) Method for synthesizing cyclopropyl alkyl aromatic compound
CN103172480B (en) Method for preparing iodo aromatic hydrocarbon
CN101274915A (en) Method for synthesizing isoxazole
CN101284753B (en) Self-coupling reaction method of manganses-catalyzed and oxidized chlorobenzene grignard reagent
CN1295209C (en) Method of synthesizing hydrodiazo kind compound
CN102558095B (en) Method for preparing aromatic amine compound
CN1295208C (en) Method for synthesizing hydrogenated azo compounds
CN1187314C (en) Synthesis of arylamine compound
CN102127038B (en) Method for synthetizing mono-thioether compound
KR20000077194A (en) Process for substituted 3-hydroxybutyrate esters
CN101003456B (en) Method for preparing Beta, Gamma unsaturated ester
CN113979966A (en) Preparation method of 2-phenylbenzothiazole
CN115819371B (en) Preparation method of benzothiazole-2-formaldehyde and derivatives thereof
CN114874127B (en) Preparation method of difluoro carbonyl indolone compound
CN110483272B (en) Novel method for asymmetric synthesis of (1S,2S) -2-fluorocyclopropanecarboxylic acid by catalysis of chiral rhodium catalyst
US7247758B2 (en) Method for producing 2,3,6,7,10,11-hexahydroxytriphenylene
CN1600774A (en) Method for synthesizing 1-amino naphthalenes
CN115340474B (en) Application of zirconium hydroxide as catalyst in catalyzing aniline or derivative thereof to prepare 1-diphenyl diazene oxide or derivative thereof
CN112574244B (en) Synthesis method of 1-phenyl vinyl borate
CN113262816B (en) Catalytic system and method for synthesizing benzo [1,2-b:4,5-b' ] dibenzofuran by using same
CN1951914A (en) Process for synthesis of symmetrical aryl urea compound

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070117