CN1720857A - Human eye aberration and corneal surface shape measuring system based on micro-prism array shack-Hartmann wavefront sensor - Google Patents
Human eye aberration and corneal surface shape measuring system based on micro-prism array shack-Hartmann wavefront sensor Download PDFInfo
- Publication number
- CN1720857A CN1720857A CN 200410068953 CN200410068953A CN1720857A CN 1720857 A CN1720857 A CN 1720857A CN 200410068953 CN200410068953 CN 200410068953 CN 200410068953 A CN200410068953 A CN 200410068953A CN 1720857 A CN1720857 A CN 1720857A
- Authority
- CN
- China
- Prior art keywords
- human eye
- aberration
- lens
- wavefront sensor
- beam splitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004075 alteration Effects 0.000 title claims abstract description 74
- 238000003384 imaging method Methods 0.000 claims abstract description 30
- 210000001747 pupil Anatomy 0.000 claims abstract description 29
- 238000005286 illumination Methods 0.000 claims abstract description 5
- 210000004087 cornea Anatomy 0.000 claims description 15
- 230000003287 optical effect Effects 0.000 claims description 15
- 238000004441 surface measurement Methods 0.000 claims description 11
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 238000003745 diagnosis Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 32
- 238000012876 topography Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002207 retinal effect Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
Description
所属技术领域Technical field
本发明涉及一种基于微棱镜阵列夏克-哈特曼波前传感器的人眼像差和角膜面形测量系统,是一种采用同一个仪器,能同时实现人眼像差测量和人眼角膜表面面形测量的光学系统。The invention relates to a human eye aberration and corneal surface shape measurement system based on a microprism array Shack-Hartmann wavefront sensor, which uses the same instrument and can simultaneously realize human eye aberration measurement and human corneal measurement. Optical system for surface profile measurement.
背景技术Background technique
人眼的单色像差,如离焦、像散等和一些高阶像差,如彗差、球差等等,会导致视网膜成像质量的降低,并引起主观视觉感受的下降。在人眼的低级、高级像差测量、眼底视网膜成像技术等方面,常用夏克-哈特曼人眼像差测量系统。这类测量系统其主要特征在于采用的是基于微透镜阵列的夏克-哈特曼波前传感器(“Visual Performance after correcting the monochromaticand chromatic aberrations of the eye”Geun-Young Yoon and DavidR.Williams,J.Opt.Soc.Am.A/Vol.19,No.2/February)。目前,一种新型的基于微棱镜阵列的哈特曼波前传感器已发明成功(见中国专利申请号03126430.1和200310100168.1),其结构简单、稳定,相对于现有的基于微透镜阵列的哈特曼传感器技术,能够简化安装、调节,降低生产成本。在人眼像差测量方面,基于微棱镜阵列的夏克-哈特曼波前传感器同样能够无侵入地实现对人眼低级和高级像差的测量,该技术在人眼像差测量、人眼高阶像差矫正视觉仿真等方面的应用已申请若干项国家专利(见中国专利申请号03126431.X、200410009116.8和200410009043.2)。The monochromatic aberrations of the human eye, such as defocus, astigmatism, etc., and some higher-order aberrations, such as coma, spherical aberration, etc., will lead to the reduction of retinal imaging quality and the decline of subjective visual experience. The Shaker-Hartmann human eye aberration measurement system is commonly used in the measurement of low-level and high-level aberrations of the human eye, and fundus retinal imaging technology. The main feature of this type of measurement system is that it uses a Shack-Hartmann wavefront sensor based on a microlens array (“Visual Performance after correcting the monochromatic and chromatic aberrations of the eye” Geun-Young Yoon and DavidR.Williams, J. Opt.Soc.Am.A/Vol.19, No.2/February). At present, a new type of Hartmann wavefront sensor based on microprism array has been successfully invented (see Chinese patent application No. 03126430.1 and 200310100168.1), which has a simple and stable structure. Sensor technology can simplify installation, adjustment and reduce production costs. In terms of human eye aberration measurement, the Shack-Hartmann wavefront sensor based on microprism array can also measure the low-level and high-level aberrations of the human eye non-invasively. Several national patents have been applied for applications such as high-order aberration correction and visual simulation (see Chinese patent application numbers 03126431.X, 200410009116.8 and 200410009043.2).
除了人眼整体像差的测量之外,科学家们也开始关注人眼的一些特殊结构,如角膜和晶状体等的特性及其独立的光学面形。这些信息对于了解人眼各结构的光学特性和相互之间的作用有着非常重要的意义。眼外科的角膜修正术正是通过修正角膜形状来矫正人眼的整体像差,因此,不仅有必要了解人眼的整体像差,还需要对角膜面形、像差进行测量,并分析人眼整体像差和角膜像差之间的关系,以及角膜像差和人眼内部像差之间的相对平衡关系等,才能为医学临床提供更准确、充分的数据。In addition to the measurement of the overall aberration of the human eye, scientists have also begun to pay attention to some special structures of the human eye, such as the characteristics of the cornea and lens and their independent optical surfaces. This information is very important for understanding the optical properties of the various structures of the human eye and the interaction between them. Orthokeratology in ophthalmic surgery corrects the overall aberration of the human eye by correcting the shape of the cornea. Therefore, it is not only necessary to understand the overall aberration of the human eye, but also to measure the corneal surface shape and aberration, and to analyze the aberration of the human eye. The relationship between the overall aberration and the corneal aberration, and the relative balance between the corneal aberration and the internal aberration of the human eye can provide more accurate and sufficient data for clinical medicine.
目前,有一些实验机构开始研究采用基于投影的角膜地形测量系统,如激光干涉仪,或者基于反射的角膜地形测量系统,如角膜散光计、视频角膜测量仪(videokeratoscope)等来测量角膜地形,计算角膜像差,再以夏克-哈特曼波前传感器测量人眼整体像差的技术。但是测量角膜地形和测量人眼像差采用的是两种不同的仪器,在测量中有着不同的视参考轴线,导致在计算角膜像差以及计算人眼内部像差时产生误差,如文献(“Videokeratoscope-line-of-sight misalignment and its effect onmeasurements of corneal and internal coular aberrations”,J.Opt.Soc.Am.A19,657-669,2002)中所介绍的。At present, some experimental institutions have begun to study the use of projection-based corneal topography measurement systems, such as laser interferometers, or reflection-based corneal topography measurement systems, such as keratometers, videokeratoscopes, etc. to measure corneal topography. Corneal aberration, and the technology of measuring the overall aberration of the human eye with the Shack-Hartmann wavefront sensor. However, two different instruments are used to measure the corneal topography and the human eye aberration, and they have different visual reference axes in the measurement, which leads to errors in the calculation of corneal aberration and the calculation of the internal aberration of the human eye, as shown in the literature (“ Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal coular aberrations”, J.Opt.Soc.Am.A19, 657-669, 2002).
发明内容Contents of the invention
本发明所提供的技术解决问题是:提供一个既能测量人眼整体像差,又能同时对角膜面形进行测量的的基于微棱镜阵列夏克-哈特曼波前传感器的人眼像差和角膜面形测量系统,它测量人眼像差和角膜面形时采用的是同一个仪器,且能够一次得到人眼低级、高级像差数据和角膜像差数据,便于了解人眼的整体像差、角膜像差和人眼内部像差其特性和三者之间的关系;同时又避免了现有技术中采用不同仪器分别测量人眼像差和角膜像差带来的误差。The technical solution provided by the present invention is to provide a human eye aberration sensor based on a microprism array Shack-Hartmann wavefront sensor that can measure both the overall aberration of the human eye and the corneal surface shape at the same time. And corneal surface measurement system, it uses the same instrument to measure the human eye aberration and corneal surface shape, and can obtain the low-level, high-level aberration data and corneal aberration data of the human eye at one time, which is convenient for understanding the overall image of the human eye Aberration, corneal aberration, and internal aberration of the human eye and their characteristics and the relationship between the three; at the same time, errors caused by using different instruments to measure the aberration of the human eye and corneal aberration in the prior art are avoided.
本发明的技术解决方案是:基于微棱镜阵列夏克-哈特曼波前传感器的人眼像差和角膜面形测量系统:它由瞳孔或角膜照明光源、分光镜(位于人眼前方,反射一部分信标光进入瞳孔成像系统,透射光进入测量光路)、瞳孔成像物镜、CCD探测器、信标光源、信标光准直系统、口径控制装置、反射镜(位于口径控制装置和调焦系统之间)、前组调焦物镜、后组调焦物镜、分光镜(位于调焦系统和信标光准直系统之间)、口径匹配系统、反射镜(位于口径匹配系统中)、基于微棱镜阵列的夏克-哈特曼波前传感器、分光镜(位于调焦系统和目标系统之间)、目标系统、计算机和附加测量透镜组成。The technical solution of the present invention is: human eye aberration and corneal surface shape measurement system based on the microprism array Shack-Hartmann wavefront sensor: it consists of pupil or corneal illumination light source, beam splitter (positioned at the front of the human eye, reflecting Part of the beacon light enters the pupil imaging system, and the transmitted light enters the measurement optical path), pupil imaging objective lens, CCD detector, beacon light source, beacon light collimation system, aperture control device, mirror (located in the aperture control device and focusing system Between), the front group focusing objective lens, the rear group focusing objective lens, the beam splitter (located between the focusing system and the beacon light collimation system), the aperture matching system, the mirror (located in the aperture matching system), based on microprism The Shaker-Hartmann wavefront sensor of the array, the beam splitter (located between the focusing system and the target system), the target system, the computer and the additional measurement lens are composed.
所述的基于微棱镜阵列的夏克-哈特曼波前传感器主要由锯齿形相位光栅结构的微棱镜阵列、傅立叶透镜(或成像透镜)和光电耦合器件(如CCD探测器)组成,其中傅立叶透镜(或成像透镜)紧靠微棱镜阵列,光电耦合器件位于傅立叶透镜(或成像透镜)焦面上。The described Shack-Hartmann wavefront sensor based on the microprism array mainly consists of a microprism array of a sawtooth phase grating structure, a Fourier lens (or imaging lens) and a photoelectric coupling device (such as a CCD detector), wherein the Fourier The lens (or imaging lens) is close to the microprism array, and the photoelectric coupling device is located on the focal plane of the Fourier lens (or imaging lens).
本发明的原理是:在基于微棱镜阵列的人眼像差夏克-哈特曼测量仪的基础上(见中国发明专利申请号03126431.X),通过一个口径控制装置,改变人眼像差仪中信标光入射口径(由细光束变为宽光束),并用一附加测量透镜,通过该测量透镜的轴向调整,将宽光束的信标光聚焦到角膜曲面的内焦点,经角膜前表面反射,由附加测量透镜准直为平行光,再进入人眼像差测量仪,即可实现对人眼角膜表面面形的测量。而现有的基于微棱镜阵列的夏克-哈特曼人眼像差测量仪在对人眼整体像差进行测量时,是用一束细光束从瞳孔射入眼内,经人眼会聚后在眼底形成一个光斑,经眼底散射后从瞳孔射出,用基于微棱镜阵列的夏克-哈特曼波前传感器测量这束光的波前误差,即是人眼的像差。本发明对现有的基于微棱镜阵列的夏克-哈特曼人眼像差测量仪进行改造,能够在同一个系统上实现角膜面形和人眼整体像差的测量。The principle of the present invention is: on the basis of the human eye aberration Shack-Hartmann measuring instrument based on the microprism array (see Chinese invention patent application number 03126431.X), through a caliber control device, change the human eye aberration The incident aperture of the beacon light in the instrument (from a thin beam to a wide beam), and an additional measuring lens, through the axial adjustment of the measuring lens, focuses the beacon light of the wide beam to the inner focal point of the corneal surface, and passes through the front surface of the cornea The reflection is collimated into parallel light by the additional measuring lens, and then enters the human eye aberration measuring instrument to realize the measurement of the surface shape of the human cornea. However, when the existing Shaker-Hartmann human eye aberration measuring instrument based on microprism arrays measures the overall aberration of the human eye, it uses a beam of thin beams to enter the eye from the pupil, and after being converged by the human eye, A spot of light is formed on the fundus, scattered by the fundus and emitted from the pupil, and the wavefront error of this beam of light is measured by the Shack-Hartmann wavefront sensor based on the microprism array, which is the aberration of the human eye. The invention reforms the existing Shaker-Hartmann human eye aberration measuring instrument based on the microprism array, and can realize the measurement of the corneal surface shape and the overall aberration of the human eye on the same system.
所述的基于微棱镜镜阵列的人眼像差夏克-哈特曼波前传感器,主要由锯齿形相位光栅结构的微棱镜阵列、傅立叶透镜(或成像物镜)和光电耦合器件(如CCD探测器)组成,其中傅立叶透镜(或成像透镜)紧靠微棱镜阵列,光电耦合器件位于傅立叶透镜(或成像透镜)焦面上。The described human eye aberration Shack-Hartmann wavefront sensor based on the microprism mirror array mainly consists of a microprism array of a sawtooth phase grating structure, a Fourier lens (or an imaging objective lens) and a photoelectric coupling device (such as a CCD detection device), wherein the Fourier lens (or imaging lens) is close to the microprism array, and the photoelectric coupling device is located on the focal plane of the Fourier lens (or imaging lens).
系统视场光栏面或视场光栏实象面还加有共焦滤波光阑,共焦滤波光阑置于口径匹配系统的前组和后组透镜公共焦点处或者调焦系统的前组透镜和后组透镜的公共焦点处。A confocal filter diaphragm is added to the field diaphragm surface or the real image surface of the field diaphragm, and the confocal filter diaphragm is placed at the common focal point of the front group and rear group lenses of the aperture matching system or the front group of the focusing system The common focal point of the lens and the rear lens group.
本发明与现有技术相比的有益效果:本发明将人眼角膜面形的测量这一功能耦合到基于微棱镜阵列的夏克-哈特曼人眼像差仪上,通过附加光学件,就能够既实现人眼像差测量、又实现对角膜面形的测量,避免了使用不同仪器测量带来的误差。该系统结构简单,人眼像差测量和角膜面形测量功能之间的切换方便易操作,在现有技术基础上实现了人眼像差测量仪功能的扩大化,使得一次测量就能够得到角膜面形、人眼整体像差数据,帮助了解人眼角膜的光学特性、角膜像差和人眼内部像差以及相互之间的像差平衡方式,为临床医学,特别是视光学矫正和眼外科手术等提供更准确充分的诊断依据。The beneficial effect of the present invention compared with the prior art: the present invention couples the function of measuring the surface shape of the human eye to the Shack-Hartmann human eye aberrometer based on the microprism array, and through additional optical parts, It can not only realize the measurement of human eye aberration, but also realize the measurement of corneal surface shape, avoiding the error caused by using different instruments for measurement. The structure of the system is simple, and the switching between the functions of human eye aberration measurement and corneal surface shape measurement is convenient and easy to operate. The surface shape and the overall aberration data of the human eye help to understand the optical characteristics of the human cornea, corneal aberration and the internal aberration of the human eye, and the way of aberration balance between them. Surgery, etc. provide more accurate and sufficient basis for diagnosis.
附图说明Description of drawings
图1为本发明的系统结构原理框图。系统工作在人眼像差测量状态下,光束路径如图中阴影部分(细光束口径)所示;当在角膜面形测量功能下,系统工作在图示的宽光束口径下;Fig. 1 is a functional block diagram of the system structure of the present invention. The system works under the state of human eye aberration measurement, and the beam path is shown in the shaded part (fine beam aperture) in the figure; when the corneal surface measurement function is used, the system works under the wide beam aperture shown in the figure;
图2为本发明中的附加测量透镜测量角膜面形原理示意图;Fig. 2 is a schematic diagram of the principle of measuring corneal surface shape with an additional measuring lens in the present invention;
图3为本发明的基于微棱镜镜阵列的人眼像差夏克-哈特曼波前传感器的原理图。FIG. 3 is a schematic diagram of the human eye aberration Shack-Hartmann wavefront sensor based on the microprism mirror array of the present invention.
具体实施方式Detailed ways
如图1所示,本发明由瞳孔或角膜照明光源2、分光镜3、瞳孔成像物镜4、CCD 5、信标光源6、信标光准直系统7、口径控制装置8、反射镜9、分光镜10、前组调焦物镜11、后组调焦物镜12、分光镜13、口径匹配系统14、反射镜15、共焦滤波光阑16、基于微棱镜阵列的夏克-哈特曼波前传感器17、目标系统18、计算机19、和附加测量透镜20组成,其中,瞳孔或角膜照明光源(2)位于人眼侧前方;附加测量透镜(20)靠近人眼,其焦点与角膜曲面内焦点重合;分光镜(3)位于人眼前方,瞳孔成像物镜位于分光镜(3)的反射方向,CCD(5)位于瞳孔成像物镜的焦面上;信标光源(6)、信标光准直系统(7)、口径控制装置(8)、反射镜(9)、分光镜(10)、前组调焦物镜(11)、后组调焦物镜(12)、分光镜(3)共同组成信标光输入光路;分光镜(13)和目标系统(18)置于分光镜(10)的前方;口径匹配系统(14)位于分光镜(13)的光束反射方向,反射镜(15)位于口径匹配系统(14)光路中;基于微棱镜阵列的夏克-哈特曼波前传感器(17)位于口径匹配系统(14)的光路出口;计算机(19)对CCD(5)和基于微棱镜阵列的夏克-哈特曼波前传感器(17)施加控制信号,并进行数据处理。As shown in Figure 1, the present invention consists of pupil or corneal illumination light source 2, beam splitter 3, pupil imaging objective lens 4,
本发明中的瞳孔或角膜照明光源可以是近红外发光二极管;其中的信标光源可以是LD半导体激光器;其中的口径控制装置8可以是一个旋转信标装置;利用8使得通过它的光束口径变小,可以提供人眼像差测量需要的细光束;利用8使得通过它的光束口径变大,则可以放出角膜面形测量所需的宽光束;附加测量透镜20经过良好的消像差设计,并设有垂直光轴方向和沿轴方向的两维调整机构,可以适应不同个体的眼角膜曲率,将信标光调焦到角膜的内焦点如图2所示,并通过在系统中的移入或移出来实现不同功能状态之间的切换。Pupil among the present invention or cornea illuminating light source can be near-infrared light-emitting diode; Beacon light source wherein can be LD semiconductor laser; Aperture control device 8 wherein can be a rotating beacon device; Utilize 8 to make the beam aperture by it variable small, can provide the thin beam needed for human eye aberration measurement; use 8 to make the beam aperture passing through it larger, and then can release the wide beam required for corneal surface measurement; the
系统可以工作在角膜面形测量和人眼像差测量两个功能下,细述如下:The system can work under the two functions of corneal surface measurement and human eye aberration measurement, which are described in detail as follows:
当系统工作在角膜面形测量功能下时,首先进行瞳孔对准,用照明光源2照明被测量人眼1瞳孔,通过分光镜3反射,由瞳孔成像物镜4将被测量人眼1瞳孔成像在CCD 5靶面上,再将CCD 5输出的视频信号输入计算机19中的视频采集卡,实时显示在计算机显示器上。调整仪器位置,使被测量人眼1瞳孔中心位于仪器光轴中心,再由被测量者用眼睛通过分光镜3、前组调焦物镜11和后组调焦物镜12组成的调焦系统、分光镜10、分光镜13观察目标系统18中一无穷远的目标。在完成对准后,由信标光源6发出信标光,由信标光准直系统7进行准直,放开口径控制装置8到大通光口径,使信标光成为宽光束,经反射镜9反射后,再经分光镜10反射,通过调焦系统,透过分光镜3,透过附加测量透镜20,调整附加测量透镜,使信标光聚焦于角膜的内焦点处。角膜前表面的反射光再通过附加测量透镜20准直成为平行光束,透过分光镜3和调焦系统,再透过分光镜10,经分光镜13反射,进入口径匹配系统14、反射镜15,出射光进入基于微棱镜阵列的夏克-哈特曼波前传感器17,夏克-哈特曼波前传感器17将CCD输出的视频信号输入计算机19中,由计算机19计算出被测量人眼1角膜的面形。其中的口径匹配系统14实焦面处,或调焦系统的前组透镜11和后组透镜12的公共焦点处设有共焦滤波光阑16,只通过角膜前表面反射光,能滤除系统中出现的杂散光。When the system is working under the function of corneal surface measurement, the pupil alignment is first performed, and the pupil of the measured human eye is illuminated by the illumination source 2, reflected by the beam splitter 3, and the pupil of the measured human eye 1 is imaged by the pupil imaging objective lens 4 On the
完成角膜面形的测量之后,系统即可以工作在人眼整体像差测量的功能之下:改变口径控制装置8的通光口径,使信标光成为细光束,并将附加测量透镜20移出系统之外。与角膜面形测量程序相同,首先进行瞳孔对准,用瞳孔或角膜照明光源2照明被测量人眼1瞳孔,通过分光镜3反射,由瞳孔成像物镜4将被测量人眼1瞳孔成像在CCD 5靶面上,再将CCD 5输出的视频信号输入计算机19中的视频采集卡,实时显示在计算机显示器上。调整仪器位置,使被测量人眼1瞳孔中心位于仪器光轴中心,再由被测量者用眼睛通过分光镜3、前组调焦物镜11和后组调焦物镜12组成的调焦系统、分光镜10、分光镜13观察目标系统18中一无穷远的目标,调整调焦系统,使目标在眼底成像清楚。在完成对准、调焦后,由信标光源6发出、由信标光准直系统7进行准直后的信标光,经口径控制装置8成为细光束后,经反射镜9反射,再经分光镜10反射,通过调焦系统,最后透过分光镜3,进入被测量人眼1;被测量人眼1眼底散射的信标光透过分光镜3和调焦系统,再透过分光镜10,经分光镜13反射,进入口径匹配系统14、反射镜15,出射光进入基于微棱镜阵列的夏克-哈特曼波前传感器17,传感器17将CCD输出的视频信号输入计算机19中,由计算机19计算出被测量人眼1的像差。此时,其中的口径匹配系统14实焦面处,或调焦系统的前组透镜11和后组透镜12的公共焦点处的共焦滤波光阑16,又只允许眼底散射光通过,能够将角膜杂散光滤除。After the measurement of the corneal surface shape is completed, the system can work under the function of measuring the overall aberration of the human eye: change the aperture of the aperture control device 8 to make the beacon light into a thin beam, and move the
如图3所示,基于微棱镜阵列的夏克-哈特曼波前传感器主要由锯齿形相位光栅结构的微棱镜阵列31、傅立叶透镜(或成像透镜)32和光电耦合器件(如CCD探测器)33组成,其中傅立叶透镜(或成像透镜)32紧靠微棱镜阵列31,光电耦合器件33位于傅立叶透镜(或成像透镜)31焦面上。As shown in Fig. 3, the Shack-Hartmann wavefront sensor based on the microprism array is mainly composed of a
基于微棱镜阵列的人眼像差哈特曼传感器由的工作原理为:入射光束经微棱镜阵列31后,各个子孔径的光束分别产生了相应的相位变化,通过紧贴其后的傅立叶透镜(或成像透镜)32成像,由位于傅立叶透镜(或成像透镜)焦面上的光电耦合器件33探测其光强分布,该光强分布包含着二维锯齿形相位光栅阵列所产生的相位信息,每个子孔径所产生的相位变化不同,因而在傅立叶透镜(或成像透镜)焦面上形成一个光斑阵列,整个光束孔径被均匀分割。标准平面波入射产生的光斑阵列将被保存起来作为标定数据。The working principle of the human eye aberration Hartmann sensor based on the microprism array is: after the incident light beam passes through the
当具有一定像差的波前入射时,各个局部倾斜平面波对其子孔径内二维锯齿形相位光栅产生新的附加相位,该相位变化将反映到傅立叶透镜(或成像透镜)焦面的光斑位置偏移上。When a wavefront with a certain aberration is incident, each local inclined plane wave produces a new additional phase to the two-dimensional zigzag phase grating in its sub-aperture, and the phase change will be reflected in the spot position of the focal plane of the Fourier lens (or imaging lens) Offset on.
光电耦合器件33接收到的光斑信号可通过计算机进行处理,采用质心算法:由公式①计算光斑的位置(xi,yi),探测全孔径的波面误差信息:The light spot signal received by the photoelectric coupling device 33 can be processed by a computer, using the centroid algorithm: the position (xi , y i ) of the light spot is calculated by the formula ①, and the wavefront error information of the full aperture is detected:
式中,m=1~M,n=1~N为子孔径映射到光电耦合器件33光敏靶面34上对应的像素区域,Inm是光电耦合器件33光敏靶面34上第(n,m)个像素接收到的信号,xnm,ynm分别为第(n,m)个像素的x坐标和y坐标。In the formula, m=1~M, n=1~N is that the sub-aperture maps to the corresponding pixel area on the
再根据公式②计算入射波前的波前斜率gxi,gyi:Then calculate the wavefront slope g xi and g yi of the incident wavefront according to formula ②:
式中,(x0,y0)为标准平面波标定哈特曼传感器获得的光斑中心基准位置;哈特曼传感器探测波前畸变时,光斑中心偏移到(xi,yi),完成哈特曼波前传感器对信号的检测。In the formula, (x 0 , y 0 ) is the reference position of the center of the spot obtained by calibrating the Hartmann sensor with a standard plane wave; when the Hartmann sensor detects wavefront distortion, the center of the spot is shifted to ( xi , y i ), completing the Hartmann sensor Signal detection by a Terman wavefront sensor.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100689538A CN100450431C (en) | 2004-07-15 | 2004-07-15 | Human eye aberration and corneal surface measurement system based on microprism array Shack-Hartmann wavefront sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100689538A CN100450431C (en) | 2004-07-15 | 2004-07-15 | Human eye aberration and corneal surface measurement system based on microprism array Shack-Hartmann wavefront sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1720857A true CN1720857A (en) | 2006-01-18 |
CN100450431C CN100450431C (en) | 2009-01-14 |
Family
ID=35911730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100689538A Expired - Fee Related CN100450431C (en) | 2004-07-15 | 2004-07-15 | Human eye aberration and corneal surface measurement system based on microprism array Shack-Hartmann wavefront sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100450431C (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101803906A (en) * | 2010-03-10 | 2010-08-18 | 中国科学院光电技术研究所 | Automatic defocusing compensation human eye aberration Hartmann measuring instrument |
CN101963543A (en) * | 2010-08-19 | 2011-02-02 | 上海理工大学 | System and method for testing lens parameters based on Hartmann-Shark sensor |
CN101650157B (en) * | 2009-09-18 | 2011-04-20 | 中国科学院长春光学精密机械与物理研究所 | Detecting method and detecting device of surface-shape error of double curved surface convex reflecting mirror |
CN102429634A (en) * | 2011-08-23 | 2012-05-02 | 中国科学院光电技术研究所 | Human eye hartmann contrast sensitivity measuring instrument |
CN102657515A (en) * | 2012-05-10 | 2012-09-12 | 中国科学院长春光学精密机械与物理研究所 | Alignment light path device applied to retinal imaging system |
CN102657514A (en) * | 2012-05-10 | 2012-09-12 | 中国科学院长春光学精密机械与物理研究所 | Portable retinal imager |
CN104274152A (en) * | 2014-08-04 | 2015-01-14 | 上海嫦娥光学仪器科技有限公司 | Medical refractormeter and refraction method thereof |
CN105615825A (en) * | 2015-12-28 | 2016-06-01 | 上海美沃精密仪器有限公司 | Cornea surface contour obtaining system and use method thereof |
CN108113643A (en) * | 2013-03-17 | 2018-06-05 | 威盛纳斯医疗系统公司 | Wide visual field eye imaging devices and its correlation technique |
CN110987382A (en) * | 2019-12-28 | 2020-04-10 | 上海唯视锐光电技术有限公司 | Measuring equipment and measuring method for laser display color speckles |
CN112754420A (en) * | 2021-01-08 | 2021-05-07 | 瑞尔明康(杭州)视光科技有限公司 | Wavefront aberration measurement system, associated visual perception learning training system and method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002064030A1 (en) * | 2001-02-09 | 2002-08-22 | Kabushiki Kaisha Topcon | Eye characteristics measuring device |
US20030142271A1 (en) * | 2002-01-30 | 2003-07-31 | Ross Denwood F. | Aberration and corneal topography measurement |
US6634752B2 (en) * | 2002-03-11 | 2003-10-21 | Alcon, Inc. | Dual-path optical system for measurement of ocular aberrations and corneal topometry and associated methods |
US20040021826A1 (en) * | 2002-08-01 | 2004-02-05 | Sarver Edwin J. | Combination advanced corneal topography/wave front aberration measurement |
CN2617341Y (en) * | 2003-05-18 | 2004-05-26 | 黄长征 | Eye operating microscope with diopter testing function |
-
2004
- 2004-07-15 CN CNB2004100689538A patent/CN100450431C/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101650157B (en) * | 2009-09-18 | 2011-04-20 | 中国科学院长春光学精密机械与物理研究所 | Detecting method and detecting device of surface-shape error of double curved surface convex reflecting mirror |
CN101803906A (en) * | 2010-03-10 | 2010-08-18 | 中国科学院光电技术研究所 | Automatic defocusing compensation human eye aberration Hartmann measuring instrument |
CN101803906B (en) * | 2010-03-10 | 2011-12-14 | 中国科学院光电技术研究所 | Automatic defocusing compensation human eye aberration Hartmann measuring instrument |
CN101963543A (en) * | 2010-08-19 | 2011-02-02 | 上海理工大学 | System and method for testing lens parameters based on Hartmann-Shark sensor |
CN102429634A (en) * | 2011-08-23 | 2012-05-02 | 中国科学院光电技术研究所 | Human eye hartmann contrast sensitivity measuring instrument |
CN102657514B (en) * | 2012-05-10 | 2014-06-18 | 中国科学院长春光学精密机械与物理研究所 | Portable retinal imager |
CN102657514A (en) * | 2012-05-10 | 2012-09-12 | 中国科学院长春光学精密机械与物理研究所 | Portable retinal imager |
CN102657515B (en) * | 2012-05-10 | 2014-03-12 | 中国科学院长春光学精密机械与物理研究所 | Alignment light path device applied to retinal imaging system |
CN102657515A (en) * | 2012-05-10 | 2012-09-12 | 中国科学院长春光学精密机械与物理研究所 | Alignment light path device applied to retinal imaging system |
CN108113643A (en) * | 2013-03-17 | 2018-06-05 | 威盛纳斯医疗系统公司 | Wide visual field eye imaging devices and its correlation technique |
CN108245128A (en) * | 2013-03-17 | 2018-07-06 | 威盛纳斯医疗系统公司 | The eye imaging devices of hermetic seal |
CN104274152A (en) * | 2014-08-04 | 2015-01-14 | 上海嫦娥光学仪器科技有限公司 | Medical refractormeter and refraction method thereof |
CN104274152B (en) * | 2014-08-04 | 2016-09-14 | 上海嫦娥光学仪器科技有限公司 | A kind of medical treatment eye refractometer and optometry method thereof |
CN105615825A (en) * | 2015-12-28 | 2016-06-01 | 上海美沃精密仪器有限公司 | Cornea surface contour obtaining system and use method thereof |
CN110987382A (en) * | 2019-12-28 | 2020-04-10 | 上海唯视锐光电技术有限公司 | Measuring equipment and measuring method for laser display color speckles |
CN112754420A (en) * | 2021-01-08 | 2021-05-07 | 瑞尔明康(杭州)视光科技有限公司 | Wavefront aberration measurement system, associated visual perception learning training system and method |
Also Published As
Publication number | Publication date |
---|---|
CN100450431C (en) | 2009-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5528205B2 (en) | Ophthalmologic apparatus, ophthalmologic apparatus control method, adaptive optical system, image generation apparatus, image generation method, program | |
CN101803906B (en) | Automatic defocusing compensation human eye aberration Hartmann measuring instrument | |
US7077521B2 (en) | System and method for reconstruction of aberrated wavefronts | |
US6439720B1 (en) | Method and apparatus for measuring optical aberrations of the human eye | |
US6409345B1 (en) | Method and device for synchronous mapping of the total refraction non-homogeneity of the eye and its refractive components | |
JP5628177B2 (en) | Measuring system | |
US8459795B2 (en) | Measuring system for ophthalmic surgery | |
JP4517211B2 (en) | Eye characteristic measuring device | |
JPH11137522A (en) | Optical characteristic-measuring apparatus | |
JPH11137520A (en) | Ophthalmologic measuring instrument | |
CN101862178A (en) | Reflection type confocal scanning retina imaging system based on adaptive optics | |
CN101248981A (en) | Visual Optical Analysis System Based on Wavefront Aberration | |
US8740795B2 (en) | Reflective non-contact ocular pulse analyzer for clinical diagnosis of eye and cerebrovascular disease | |
KR20150082566A (en) | Apparatus and method for operating a real time large diopter range sequential wavefront sensor | |
CN100589780C (en) | A reflective artificial lens aberration Hartmann measuring instrument | |
JP4491663B2 (en) | Ophthalmic optical characteristic measuring device | |
JPH10305013A (en) | Opthalmoscopic characteristic measuring instrument | |
WO2002032299A1 (en) | Optical characteristics measuring device | |
CN113749608B (en) | A human eye wavefront aberration detection system | |
JP2012524590A (en) | Device and method for ray tracing conjugate wavefront aberration measurement | |
CN101278874A (en) | A Transmissive Hartmann Measuring Instrument for Intraocular Lens Aberration | |
CN100450431C (en) | Human eye aberration and corneal surface measurement system based on microprism array Shack-Hartmann wavefront sensor | |
CN115590460A (en) | Wavefront aberration detection system for eyes | |
CN115399728A (en) | A method and device for measuring eye axis based on variable focus OCT | |
CN106361266B (en) | Super-resolution confocal ophthalmoscope based on pupil filter and dark field technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090114 |