CN1713490A - Numerical Control Servo System and Control Method for Bearingless Permanent Magnet Synchronous Motor - Google Patents
Numerical Control Servo System and Control Method for Bearingless Permanent Magnet Synchronous Motor Download PDFInfo
- Publication number
- CN1713490A CN1713490A CN 200510040064 CN200510040064A CN1713490A CN 1713490 A CN1713490 A CN 1713490A CN 200510040064 CN200510040064 CN 200510040064 CN 200510040064 A CN200510040064 A CN 200510040064A CN 1713490 A CN1713490 A CN 1713490A
- Authority
- CN
- China
- Prior art keywords
- bearing
- permanent magnet
- freedom
- synchronous motor
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims description 15
- 239000000725 suspension Substances 0.000 claims abstract description 18
- 238000011217 control strategy Methods 0.000 claims abstract description 10
- 230000003068 static effect Effects 0.000 claims abstract description 10
- 230000004044 response Effects 0.000 claims abstract description 5
- 238000006073 displacement reaction Methods 0.000 claims description 45
- 238000004804 winding Methods 0.000 claims description 30
- 230000004907 flux Effects 0.000 claims description 16
- 239000000523 sample Substances 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 3
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 3
- 238000005755 formation reaction Methods 0.000 claims 3
- 238000001816 cooling Methods 0.000 claims 1
- 239000000696 magnetic material Substances 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000009466 transformation Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 7
- 238000005339 levitation Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005312 nonlinear dynamic Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Landscapes
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Description
技术领域technical field
本发明是无轴承永磁同步电机数控伺服控制系统结构与控制方法,适用于密封泵、高速或超高速数控机床、工业机器人、航空航天、生命科学等众多特殊电气传动领域,特别是无接触、无需润滑及无磨损等特点,用于真空技术、纯净洁室及无菌车间以及腐蚀性介质或非常纯净介质的传输等特殊场合,属于电力传动控制设备的技术领域。The present invention is a structure and control method of a bearingless permanent magnet synchronous motor numerical control servo control system, which is suitable for many special electrical transmission fields such as sealed pumps, high-speed or ultra-high-speed numerical control machine tools, industrial robots, aerospace, life sciences, etc., especially non-contact, No need for lubrication and no wear, etc., it is used in special occasions such as vacuum technology, pure clean room and aseptic workshop, and the transmission of corrosive media or very pure media, and belongs to the technical field of electric drive control equipment.
背景技术Background technique
传统的五自由度无轴承永磁电机(除旋转自由度外),由2个二自由度无轴承永磁同步电机单元,1个轴向磁轴承构成。电机机械结构相当复杂、转子轴向很长,电机临界转速受到很大限制,特别是控制系统比较庞大,2个二自由度无轴承永磁电机单元需要4个三相逆变驱动电路,轴向磁轴承需要1路开关功率放大器,并且2个二自由度无轴承电机单元要考虑很好协调控制,控制系统过于复杂,很难在实际中得到应用。The traditional five-degree-of-freedom bearingless permanent magnet motor (except the rotational degree of freedom) is composed of two two-degree-of-freedom bearingless permanent magnet synchronous motor units and one axial magnetic bearing. The mechanical structure of the motor is quite complicated, the axial direction of the rotor is very long, and the critical speed of the motor is greatly limited, especially the control system is relatively large. Two two-degree-of-freedom bearingless permanent magnet motor units require four three-phase inverter drive circuits, and the axial Magnetic bearings require a switching power amplifier, and two two-degree-of-freedom bearingless motor units need to be well coordinated and controlled. The control system is too complicated to be applied in practice.
为了从本质上简化五自由度无轴承永磁同步电机机械结构和控制的复杂性,实现悬浮转子的高速旋转与控制,需要采用新的机械结构与控制方法,研制结构紧凑、控制简单的无轴承永磁同步电机数控伺服系统结构与控制方法。In order to essentially simplify the complexity of the mechanical structure and control of the five-degree-of-freedom bearingless permanent magnet synchronous motor and realize the high-speed rotation and control of the suspended rotor, it is necessary to adopt a new mechanical structure and control method to develop a bearingless motor with a compact structure and simple control. Structure and control method of CNC servo system for permanent magnet synchronous motor.
国内外没有相关的专利和文献。There are no relevant patents and documents at home and abroad.
发明内容Contents of the invention
本发明的目的是改变传统五自由度无轴承永磁同步电机结构,设计一种由三自由度径向-轴向混合磁轴承和二自由度无轴承永磁同步电机构成的五自由度无轴承永磁同步电机(除旋转自由度外)样机本体,同时采用了基于转子磁场定向控制策略对二自由度无轴承永磁同步电机进行双闭环控制,三自由度磁轴承采用3个独立位置PID控制器进行控制。实现了电机结构简单、控制系统性能优良的效果。使得此类无轴承永磁同步电机在密封泵、高速或超高速数控机床、工业机器人、航空航天、生命科学等众多特殊电气传动领域,特别是无接触、无需润滑及无磨损等特点,用于真空技术、纯净洁室及无菌车间以及腐蚀性介质或非常纯净介质的传输等特殊场合电气传动系统中得到广泛应用。The purpose of the present invention is to change the structure of the traditional five-degree-of-freedom bearingless permanent magnet synchronous motor, and design a five-degree-of-freedom bearingless motor composed of a three-degree-of-freedom radial-axial hybrid magnetic bearing and a two-degree-of-freedom bearingless permanent magnet synchronous motor The prototype body of the permanent magnet synchronous motor (except the rotation degree of freedom) adopts a rotor field-oriented control strategy based on the double closed-loop control of the two-degree-of-freedom bearingless permanent-magnet synchronous motor, and the three-degree-of-freedom magnetic bearing adopts three independent position PID control device to control. The structure of the motor is simple and the performance of the control system is excellent. This type of bearingless permanent magnet synchronous motor is used in many special electrical transmission fields such as sealed pumps, high-speed or ultra-high-speed CNC machine tools, industrial robots, aerospace, life sciences, etc., especially for non-contact, non-lubricating and non-wearing characteristics. It is widely used in electrical drive systems for special occasions such as vacuum technology, pure clean rooms and aseptic workshops, and the transmission of corrosive media or very pure media.
本发明的方案是:五自由度无轴承永磁同步电机数控伺服系统机械结构是由1个二自由度无轴承永磁同步电机和1个三自由度径向-轴向混合磁轴承构成。三自由度径向-轴向混合磁轴承由轴向定子、轴向控制线圈、转子铁芯、径向控制线圈、径向定子和环形永久磁铁构成。转子铁芯分别与两侧轴向定子之间的间隙作为2个轴向气隙;转子铁芯分别与径向定子磁极之间的间隙作为4个径向气隙。轴向磁路和径向磁路分别经过相应定子、气隙和转子构成了完整的磁通回路。在轴向气隙与径向气隙处合成磁通由永磁偏磁磁通与控制磁通进行合成,合成磁通的变化能改变径向或轴向的悬浮力。The solution of the present invention is: the mechanical structure of the numerical control servo system of the five-degree-of-freedom bearingless permanent magnet synchronous motor is composed of a two-degree-of-freedom bearingless permanent-magnet synchronous motor and a three-degree-of-freedom radial-axial hybrid magnetic bearing. The three-degree-of-freedom radial-axial hybrid magnetic bearing is composed of an axial stator, an axial control coil, a rotor core, a radial control coil, a radial stator and an annular permanent magnet. The gaps between the rotor core and the axial stators on both sides are regarded as two axial air gaps; the gaps between the rotor iron core and the radial stator poles are regarded as four radial air gaps. The axial magnetic circuit and the radial magnetic circuit respectively pass through the corresponding stator, air gap and rotor to form a complete magnetic flux circuit. The composite magnetic flux at the axial air gap and the radial air gap is synthesized by the permanent magnet bias magnetic flux and the control magnetic flux, and the change of the composite magnetic flux can change the radial or axial levitation force.
三自由度径向-轴向磁轴承控制系统由线性闭环控制器、开关功率放大器、三自由度磁轴承执行电磁铁控制线圈和位移传感器构成,通过位移传感器检测磁轴承径向和轴向的位移与给定的参考量进行比较,分别调整位置PID控制器参数,产生相应的控制信号,经过开关功率放大器产生控制电流,分别驱动电磁铁线圈,产生电磁力,实现三自由度径向-轴向磁轴承转子悬浮在平衡位置。The three-degree-of-freedom radial-axial magnetic bearing control system is composed of a linear closed-loop controller, a switching power amplifier, a three-degree-of-freedom magnetic bearing executive solenoid control coil and a displacement sensor, and the radial and axial displacement of the magnetic bearing is detected by the displacement sensor Compared with the given reference quantity, adjust the parameters of the position PID controller respectively, generate corresponding control signals, generate control current through the switching power amplifier, drive the electromagnet coils respectively, generate electromagnetic force, and realize three-degree-of-freedom radial-axial The magnetic bearing rotor is suspended in an equilibrium position.
二自由度无轴承永磁电机由定子铁芯、转子、永磁体、不锈钢套环、电机绕组、径向力绕组和转轴等构成。转子的径向位移有位移传感器进行检测,速度有霍尔传感器检测。The two-degree-of-freedom bearingless permanent magnet motor is composed of a stator core, a rotor, a permanent magnet, a stainless steel collar, a motor winding, a radial force winding, and a rotating shaft. The radial displacement of the rotor is detected by a displacement sensor, and the speed is detected by a Hall sensor.
二自由度无轴承电机控制系统由径向位置控制子系统和速度控制子系统构成,两个子系统都采用双闭环进行控制。位置子系统内环由电流闭环控制器、2个坐标变换、电压型三相逆变器和电流传感器构成,通过电流传感器检测悬浮力绕组中的实际电流,调整电流闭环控制器中电流PI控制器参数,实现电流闭环控制;外环由位置闭环控制器、内环、二自由度无轴承电机、电涡流位移传感器等构成,通过调整线性闭环控制器的参数就可以对转子位置进行控制。速度环子系统也由内环电流环和外环速度环构成,内环由电流闭环控制器、2个坐标变换、电压型三相逆变器和电流传感器构成,通过电流传感器检测电机绕组中的实际电流,通过调整电流闭环控制器中电流PI控制器实现电流闭环控制;外环由速度闭环控制器、内环、二自由度无轴承永磁同步电机、霍尔传感器等构成,通过调整速度PI控制器的参数,对电机的速度进行闭环控制。通过测量转子的磁场大小,采用转子磁场定向控制策略对转子位移和速度之间进行动态解耦控制。The two-degree-of-freedom bearingless motor control system consists of a radial position control subsystem and a speed control subsystem, and both subsystems are controlled by double closed loops. The inner loop of the position subsystem is composed of a current closed-loop controller, two coordinate transformations, a voltage-type three-phase inverter and a current sensor. The actual current in the suspension force winding is detected by the current sensor, and the current PI controller in the current closed-loop controller is adjusted. parameters to realize current closed-loop control; the outer loop is composed of a position closed-loop controller, an inner loop, a two-degree-of-freedom bearingless motor, and an eddy current displacement sensor. The rotor position can be controlled by adjusting the parameters of the linear closed-loop controller. The speed loop subsystem is also composed of an inner loop current loop and an outer loop speed loop. The inner loop is composed of a current closed loop controller, two coordinate transformations, a voltage type three-phase inverter, and a current sensor. The current sensor detects the voltage in the motor winding. The actual current is realized by adjusting the current PI controller in the current closed-loop controller to realize the current closed-loop control; the outer loop is composed of a speed closed-loop controller, an inner loop, a two-degree-of-freedom bearingless permanent magnet synchronous motor, and a Hall sensor. By adjusting the speed PI The parameters of the controller are used to perform closed-loop control on the speed of the motor. By measuring the magnetic field of the rotor, the rotor field-oriented control strategy is used to control the dynamic decoupling between the rotor displacement and speed.
本发明的原理是改变传统五自由度无轴承永磁同步电机结构,设计了一种由三自由度径向-轴向混合磁轴承和二自由度无轴承永磁同步电机构成的五自由度无轴承永磁同步电机(除旋转自由度)数控伺服系统样机本体。采用转子磁场定向控制策略对二自由度无轴承永磁同步电机进行了非线性动态解耦控制。对三自由度磁轴承位置采用三个位置控制器进行独立控制,通过调整位置PID控制器的参数,实现三自由度混合磁轴承稳定工作。对二自由度无轴承永磁同步电机,通过霍尔传感器检测转子磁场的位置,采用基于转子磁场的定向控制策略进行解耦控制,通过调整转速控制环中PI控制器的参数,确保转速具有良好的响应性能;通过调整位置控制环中PI控制器参数和PID控制器的参数,确保无轴承电机径向悬浮系统具有良好的动静态性能。The principle of the invention is to change the structure of the traditional five-degree-of-freedom bearingless permanent magnet synchronous motor, and design a five-degree-of-freedom non-magnetic Bearing permanent magnet synchronous motor (except rotation degree of freedom) CNC servo system prototype body. A nonlinear dynamic decoupling control of a two-degree-of-freedom bearingless permanent magnet synchronous motor is carried out using a rotor field-oriented control strategy. The position of the three-degree-of-freedom magnetic bearing is independently controlled by three position controllers, and the stable operation of the three-degree-of-freedom hybrid magnetic bearing is realized by adjusting the parameters of the position PID controller. For the two-degree-of-freedom bearingless permanent magnet synchronous motor, the position of the rotor magnetic field is detected by the Hall sensor, and the directional control strategy based on the rotor magnetic field is used for decoupling control. By adjusting the parameters of the PI controller in the speed control loop, it is ensured that the speed has a good Response performance; By adjusting the parameters of the PI controller and the PID controller in the position control loop, it is ensured that the radial suspension system of the bearingless motor has good dynamic and static performance.
采用本方案研制的无轴承永磁同步电机数控伺服系统,与3个磁轴承支承的永磁同步电机及传统五自由度无轴承永磁同步电机(2个二自由度无轴承永磁同步电机单元和1个轴向磁轴承构成)相比,具有以下优点:①系统由2个部分构成,结构紧凑,转子长度大大缩短,电机转速、功率可以进一步得到提高,并可以实现微型化;②控制系统结构简单,无需考虑2个二自由度无轴承永磁同步电机单元之间的协调控制,控制算法容易实现。The bearingless permanent magnet synchronous motor numerical control servo system developed by this scheme is compatible with the permanent magnet synchronous motor supported by three magnetic bearings and the traditional five-degree-of-freedom bearingless permanent magnet synchronous motor (two two-degree-of-freedom bearingless permanent magnet synchronous motor units) Compared with an axial magnetic bearing), it has the following advantages: ①The system is composed of 2 parts, the structure is compact, the length of the rotor is greatly shortened, the speed and power of the motor can be further improved, and miniaturization can be realized; ②The control system The structure is simple, there is no need to consider the coordinated control between two two-degree-of-freedom bearingless permanent magnet synchronous motor units, and the control algorithm is easy to implement.
本发明的优点在于:The advantages of the present invention are:
1.无轴承永磁同步电机数控伺服系统机械结构更加合理,更实用。摆脱了3个磁轴承支承的永磁同步电机和传统五自由度无轴承永磁同步电机结构复杂,临界转速低,控制系统过于复杂的缺陷。1. The mechanical structure of the bearingless permanent magnet synchronous motor CNC servo system is more reasonable and practical. It gets rid of the shortcomings of the permanent magnet synchronous motor supported by three magnetic bearings and the traditional five-degree-of-freedom bearingless permanent magnet synchronous motor with complex structure, low critical speed and overly complicated control system.
2.巧妙地实现了径向-轴向三自由度磁轴承联合控制。相比于二自由度径向磁轴承与单自由度轴向磁轴承的给合,在相同功率或支承力下,大大缩小了转子轴向的长度;或使得相同体积下系统功率可以做得更高,悬浮力可以做得更大。2. The joint control of the radial-axial three-degree-of-freedom magnetic bearing is cleverly realized. Compared with the combination of two-degree-of-freedom radial magnetic bearing and single-degree-of-freedom axial magnetic bearing, under the same power or supporting force, the axial length of the rotor is greatly reduced; or the system power can be made more in the same volume Higher, the suspension force can be made bigger.
3.三自由度径向-轴向混合磁轴承结构紧凑、采用永磁偏磁,减少了功率放大器的体积和功耗,降低了制造成本。3. The three-degree-of-freedom radial-axial hybrid magnetic bearing has a compact structure and adopts permanent magnetic bias, which reduces the volume and power consumption of the power amplifier and reduces the manufacturing cost.
4.二自由度无轴承永磁同步电机基于转子磁场定向控制策略,位置子系统和速度子系统采用转子磁场定向控制,磁场检测简单可靠,控制方法容易实现。4. The two-degree-of-freedom bearingless permanent magnet synchronous motor is based on the rotor field-oriented control strategy, the position subsystem and the speed subsystem adopt the rotor field-oriented control, the magnetic field detection is simple and reliable, and the control method is easy to implement.
5.磁轴承开关功率放大器和无轴承电机的电压型三相逆变器技术成熟,成本低,使得系统总体造价降低。5. The magnetic bearing switching power amplifier and the voltage-type three-phase inverter of the bearingless motor are mature in technology and low in cost, which reduces the overall cost of the system.
6.三自由度径向-轴向混合磁轴承和二自由度无轴承永磁同步电机数字控制部分共用一个DSP数字信号处理器,除开关功率放大器、电压型三相逆变器和传感器及接口电路外,其它控制环节都有软件编程来实现,增加了系统的柔性和可靠性。6. The digital control part of the three-degree-of-freedom radial-axial hybrid magnetic bearing and the two-degree-of-freedom bearingless permanent magnet synchronous motor share a DSP digital signal processor, except for the switching power amplifier, voltage-type three-phase inverter, sensors and interfaces In addition to the circuit, other control links are realized by software programming, which increases the flexibility and reliability of the system.
7.本发明设计的五自由度无轴承永磁同步电机的机械结构,结构紧凑,这种结构可以用于其它类型的无轴承电机(如无轴承交流异步电机、无轴承磁阻电机、无轴承开关磁阻电机)中。7. The mechanical structure of the five-degree-of-freedom bearingless permanent magnet synchronous motor designed by the present invention has a compact structure, and this structure can be used for other types of bearingless motors (such as bearingless AC asynchronous motors, bearingless reluctance motors, bearingless switched reluctance motor).
附图说明Description of drawings
图1是五自由度无轴承永磁同步电机机械结构图,由三自由度径向-轴向混合磁轴承和二自由度无轴承永磁同步电机构成。具体由:径向辅助轴承(1),9个位移传感器探头(2),转轴(3),后端盖(4),磁轴承转子铁芯(5),磁轴承轴向定子(6),磁轴承轴向控制线圈(7),磁轴承环形永磁体(8),磁轴承径向定子(9),磁轴承径向控制线圈(10),2个位移传感器支架(11),2个定位套筒(12),无轴承永磁同步电机定子(13),无轴承永磁同步电机转子(14),4个无轴承电机转速检测霍尔传感器(15),缸筒外套(16),缸筒内套(17),前端盖(18),辅助轴承(19)。Figure 1 is a mechanical structure diagram of a five-degree-of-freedom bearingless permanent magnet synchronous motor, which is composed of a three-degree-of-freedom radial-axial hybrid magnetic bearing and a two-degree-of-freedom bearingless permanent magnet synchronous motor. Specifically, it consists of: radial auxiliary bearing (1), nine displacement sensor probes (2), rotating shaft (3), rear end cover (4), magnetic bearing rotor core (5), magnetic bearing axial stator (6), Magnetic bearing axial control coil (7), magnetic bearing annular permanent magnet (8), magnetic bearing radial stator (9), magnetic bearing radial control coil (10), 2 displacement sensor brackets (11), 2 positioning Sleeve (12), stator of bearingless permanent magnet synchronous motor (13), rotor of bearingless permanent magnet synchronous motor (14), 4 Hall sensors for speed detection of bearingless motor (15), cylinder casing (16), cylinder Tube inner sleeve (17), front end cover (18), auxiliary bearing (19).
图2是五自由度无轴承永磁同步电机的结构示意图,其中包括二自由度无轴承永磁同步电机(21)和三自由度径向-轴向混合磁轴承(22)。Fig. 2 is a structural schematic diagram of a five-degree-of-freedom bearingless permanent magnet synchronous motor, which includes a two-degree-of-freedom bearingless permanent-magnet synchronous motor (21) and a three-degree-of-freedom radial-axial hybrid magnetic bearing (22).
图3是三自由度径向-轴向混合磁轴承径向定子(9)和轴向定子(6)的结构示意图。Fig. 3 is a structural schematic diagram of a radial stator (9) and an axial stator (6) of a three-degree-of-freedom radial-axial hybrid magnetic bearing.
图4是三自由度径向-轴向混合磁轴承径向线圈(10)和轴向线圈(7)的结构示意图,轴向和径向相对的两个线圈分别串联,作为相应自由度的控制线圈。Fig. 4 is a structural schematic diagram of the radial coil (10) and the axial coil (7) of a three-degree-of-freedom radial-axial hybrid magnetic bearing. coil.
图5是三自由度径向-轴向混合磁轴承轴向磁路的磁路图,转子铁芯(5)分别与两侧轴向定子(6)之间的间隙作为2个轴向气隙,在轴向气隙处合成磁通由永磁偏磁磁通φPM分别与控制磁通φZEM进行合成,合成磁通的变化改变轴向的悬浮力。Figure 5 is a magnetic circuit diagram of the axial magnetic circuit of a three-degree-of-freedom radial-axial hybrid magnetic bearing, and the gaps between the rotor core (5) and the axial stators (6) on both sides are used as two axial air gaps , the synthetic flux at the axial air gap is synthesized by the permanent magnet bias flux φ PM and the control flux φ ZEM respectively, and the change of the synthetic flux changes the axial levitation force.
图6是三自由度径向-轴向混合磁轴承径向磁路的磁路图,转子铁芯(5)分别与径向定子(9)4个磁极之间的间隙作为4个径向气隙。径向磁路分别经过径向定子(9)、气隙和转子铁芯(5)构成了完整的磁通回路。径向气隙处合成磁通由永磁偏磁磁通φPM分别与控制磁通(φXEM,φYEM)进行合成,气隙处合成磁通的变化能改变径向或轴向的悬浮力。Fig. 6 is the magnetic circuit diagram of the radial magnetic circuit of the three-degree-of-freedom radial-axial hybrid magnetic bearing, and the gaps between the rotor core (5) and the four magnetic poles of the radial stator (9) serve as four radial gas Gap. The radial magnetic circuit respectively passes through the radial stator (9), the air gap and the rotor iron core (5) to form a complete magnetic flux circuit. The synthetic flux at the radial air gap is synthesized by the permanent magnet bias flux φ PM and the control flux (φ XEM , φ YEM ) respectively, and the change of the synthetic flux at the air gap can change the radial or axial levitation force .
图7是三自由度径向-轴向混合磁轴承控制系统框图。由三自由度径向-轴向混合磁轴承(22)、位移传感器(50),线性闭环控制器(30),开关功率放大器(40)构成。由位移传感器(50)对转子位置进行检测,与给定的参考位置信号进行比较并在DSP内部通过软件编程实现PID位置控制。Fig. 7 is a block diagram of a three-degree-of-freedom radial-axial hybrid magnetic bearing control system. It consists of a three-degree-of-freedom radial-axial hybrid magnetic bearing (22), a displacement sensor (50), a linear closed-loop controller (30), and a switching power amplifier (40). The position of the rotor is detected by the displacement sensor (50), compared with a given reference position signal, and the PID position control is realized through software programming inside the DSP.
图8是二自由度无轴承永磁同步电机双闭环控制系统的结构图。两个子系统都采用双闭环进行控制,位置子系统内环由电流闭环控制器(70)、坐标变换(81,82)、电压型三相逆变器(91)、电流传感器(101)构成;外环由位置闭环控制器(60)、内环、二自由度无轴承永磁同步电机(21)、电涡流位移传感器(54、55)构成。Fig. 8 is a structural diagram of a double-closed-loop control system for a two-degree-of-freedom bearingless permanent magnet synchronous motor. Both subsystems are controlled by a double closed-loop, and the inner loop of the position subsystem is composed of a current closed-loop controller (70), a coordinate transformation (81, 82), a voltage-type three-phase inverter (91), and a current sensor (101); The outer ring is composed of a position closed-loop controller (60), an inner ring, a two-degree-of-freedom bearingless permanent magnet synchronous motor (21), and eddy current displacement sensors (54, 55).
速度环子系统也由内环电流环和外环速度环构成,电流内环由电流闭环控制器(74)、坐标变换(83,84)、电压型三相逆变器(92)、电流传感器(102)构成。外环由闭环控制器(64)、电流内环、二自由度无轴承永磁同步电机(21)、霍尔传感器(15)构成,通过调整速度PI控制器(64)的参数,可以对电机的速度进行闭环控制。The speed loop subsystem is also composed of an inner loop current loop and an outer loop speed loop. The current inner loop consists of a current closed-loop controller (74), coordinate transformation (83, 84), voltage-type three-phase inverter (92), and a current sensor (102) Composition. The outer loop is composed of a closed-loop controller (64), a current inner loop, a two-degree-of-freedom bearingless permanent magnet synchronous motor (21), and a Hall sensor (15). By adjusting the parameters of the speed PI controller (64), the motor closed-loop control of the speed.
图9是采用DSP作为无轴承永磁同步电机数控伺服系统结构与控制方法的本发明装置控制系统组成示意图。其中DSP控制器110。Fig. 9 is a schematic diagram of the composition of the control system of the device of the present invention using DSP as the structure and control method of the numerical control servo system of the bearingless permanent magnet synchronous motor. Wherein the DSP controller 110 .
图10是以DSP为控制器CPU的实现本发明的系统软件框图。Fig. 10 is the system software block diagram of realizing the present invention with DSP as controller CPU.
具体实施方式Detailed ways
本发明的实施方式是:Embodiments of the present invention are:
其采用的控制方法是由二自由度无轴承永磁同步电机(21)、三自由度径向-轴向混合磁轴承(22)等构成五自由度无轴承永磁同步电机数控伺服系统样机本体,采用线性闭环控制器(30)控制三自由度混合磁轴承径向-轴向的位置;调整位置PID控制器(31,32,33)的控制参数,实现三自由度径向-轴向混合磁轴承稳定工作;利用霍尔传感器(15)检测转子磁场大小,采用基于转子磁场定向控制策略对径向位移和电机转速进行动态解耦控制二自由度无轴承永磁同步电机;通过调整位置控制环中2个PI控制器参数(71,72)和2个PID控制器(61,62)的参数,实现二自由度无轴承永磁同步电机径向悬浮系统的良好的动静态性能;通过调整转速控制环中3个PI控制器(64,75,76)的参数,确保转速具有良好的响应性能。The control method adopted is a five-degree-of-freedom bearingless permanent magnet synchronous motor CNC servo system prototype body composed of a two-degree-of-freedom bearingless permanent magnet synchronous motor (21) and a three-degree-of-freedom radial-axial hybrid magnetic bearing (22). , using a linear closed-loop controller (30) to control the radial-axial position of the three-degree-of-freedom hybrid magnetic bearing; adjusting the control parameters of the position PID controller (31, 32, 33) to realize the three-degree-of-freedom radial-axial hybrid The magnetic bearing works stably; the Hall sensor (15) is used to detect the size of the rotor magnetic field, and the radial displacement and the motor speed are dynamically decoupled and controlled using a rotor field-oriented control strategy based on a two-degree-of-freedom bearingless permanent magnet synchronous motor; by adjusting the position control The parameters of two PI controllers (71, 72) and two PID controllers (61, 62) in the ring realize the good dynamic and static performance of the two-degree-of-freedom bearingless permanent magnet synchronous motor radial suspension system; by adjusting The parameters of the three PI controllers (64, 75, 76) in the speed control loop ensure that the speed has good response performance.
具体实施分以下9步:The specific implementation is divided into the following 9 steps:
1.无轴承永磁同步电机本体是由在缸筒内套中二自由度无轴承永磁同步电机(21)和三自由度径向-轴向混合磁轴承(22)构成;1. The body of the bearingless permanent magnet synchronous motor is composed of a two-degree-of-freedom bearingless permanent-magnet synchronous motor (21) and a three-degree-of-freedom radial-axial hybrid magnetic bearing (22) in the inner sleeve of the cylinder;
右端的三自由度径向—轴向混合磁轴承(22)由径向辅助轴承(1)固定在后端盖(4)中;轴向位移传感器探头(2)固定在后端盖(4)上,处于转轴(3)的中心上,检测转轴(3)的轴向位移;磁轴承的4个径向位移传感器探头(2)固定在传感器支架(11)上,传感器支架(11)固定在紧靠磁轴承的侧面;磁轴承转子铁芯(5)同转轴(3)固定在一起,由硅钢片材料叠压而成;磁轴承的轴向定子(6)包围径向定子(9)和环形永磁体(8),环形永磁体(8)安装在磁轴承径向定子(9)和磁轴承的轴向定子(6)之间;磁轴承径向控制线圈(10)分别绕在径向定子(9)的沿圆周均匀分布的四个磁极上,相对的2个磁极上的线圈相串联为一个径向自由度的控制线圈,提供径向控制磁通;磁轴承的轴向控制线圈(7)在磁轴承轴向定子内侧,均匀分布的磁轴承径向定子(9)和永磁体(8)两侧,2个线圈串联;The three-degree-of-freedom radial-axial hybrid magnetic bearing (22) at the right end is fixed in the rear end cover (4) by the radial auxiliary bearing (1); the axial displacement sensor probe (2) is fixed in the rear end cover (4) on the center of the rotating shaft (3) to detect the axial displacement of the rotating shaft (3); the four radial displacement sensor probes (2) of the magnetic bearing are fixed on the sensor bracket (11), and the sensor bracket (11) is fixed on Close to the side of the magnetic bearing; the magnetic bearing rotor core (5) is fixed together with the rotating shaft (3), and is made of laminated silicon steel sheet materials; the axial stator (6) of the magnetic bearing surrounds the radial stator (9) and The annular permanent magnet (8), the annular permanent magnet (8) is installed between the radial stator (9) of the magnetic bearing and the axial stator (6) of the magnetic bearing; the radial control coil (10) of the magnetic bearing is respectively wound in the radial direction On the four magnetic poles evenly distributed along the circumference of the stator (9), the coils on the two opposite magnetic poles are connected in series to form a radial degree of freedom control coil, which provides radial control magnetic flux; the axial control coil of the magnetic bearing ( 7) Inside the axial stator of the magnetic bearing, on both sides of the radial stator (9) of the magnetic bearing and the permanent magnet (8) evenly distributed, two coils are connected in series;
左端的二自由度无轴承永磁同步电机(21)中,无轴承永磁同步电机转子(14)表面装有永磁材料钕铁硼做成极对数为2的永磁体,永磁体外面用钢筒固定,电机转子(14)装在转轴(3)上;无轴承永磁同步电机的定子(13),套用标准永磁同步电机的定子,定子槽中叠压2套绕组,两套绕组的极对数为±1的关系;无轴承永磁同步电机的4个径向位移传感器探头(2)安装在靠近前端盖(18)的传感器支架(11)上,采用差动测量径向二自由度的位移,传感器支架(11)固定在无轴承永磁同步电机(21)的左端;设有测量转速的4个霍尔传感器(15)固定在传感器支架(11);前端盖中装有辅助轴承(19)作为无轴承永磁同步电机的辅助支承轴承。In the two-degree-of-freedom bearingless permanent magnet synchronous motor (21) at the left end, the surface of the bearingless permanent magnet synchronous motor rotor (14) is equipped with permanent magnet material neodymium iron boron to make a permanent magnet with a pole pair number of 2. The steel cylinder is fixed, and the motor rotor (14) is installed on the rotating shaft (3); the stator (13) of the bearingless permanent magnet synchronous motor is the stator of a standard permanent magnet synchronous motor, and two sets of windings are stacked in the stator slot, and the two sets of windings The number of pole pairs is ±1; the four radial displacement sensor probes (2) of the bearingless permanent magnet synchronous motor are installed on the sensor bracket (11) close to the front end cover (18), and the radial displacement sensor probes (2) are measured by differential measurement. For the displacement of degrees of freedom, the sensor bracket (11) is fixed on the left end of the bearingless permanent magnet synchronous motor (21); 4 Hall sensors (15) that measure the rotating speed are fixed on the sensor bracket (11); Auxiliary bearing (19) is as the auxiliary supporting bearing of bearingless permanent magnet synchronous motor.
三自由度径向-轴向混合磁轴承(22)、二自由度无轴承永磁同步电机(21)、2个定位套筒(12)、2个传感器支架(11)全部装在缸筒内套17中,缸筒由内套17和外套16构成,用于支承三自由度径向-轴向混合磁轴承定子和二自由度无轴承永磁同步电机定子的缸筒双层结构,两层之间具有螺旋沟道,通水对五自由度无轴承永磁同步电机系统进行冷却。Three-degree-of-freedom radial-axial hybrid magnetic bearing (22), two-degree-of-freedom bearingless permanent magnet synchronous motor (21), two positioning sleeves (12), and two sensor brackets (11) are all installed in the cylinder In the sleeve 17, the cylinder is composed of an inner sleeve 17 and an outer sleeve 16, and is used to support a three-degree-of-freedom radial-axial hybrid magnetic bearing stator and a two-degree-of-freedom bearingless permanent magnet synchronous motor stator. There is a spiral channel between them, through which water cools the five-degree-of-freedom bearingless permanent magnet synchronous motor system.
三自由度径向-轴向混合磁轴承(22)的控制系统由线性闭环控制器(30)、开关功率放大器(40)、三自由度径向-轴向磁轴承(22)、位移传感器(50)依次相连构成。The control system of the three-degree-of-freedom radial-axial hybrid magnetic bearing (22) consists of a linear closed-loop controller (30), a switching power amplifier (40), a three-degree-of-freedom radial-axial magnetic bearing (22), and a displacement sensor ( 50) connected successively to form.
二自由度无轴承永磁同步电机(21)的控制系统由径向位置控制子系统和速度控制子系统构成,位置子系统内环由电流闭环控制器(70)、坐标变换(81,82)、电压型三相逆变器(91)、电流传感器(101)等构成;外环由位置闭环控制器(60)、内环、二自由度无轴承永磁同步电机(21)、位移传感器(54、55)构成。速度环子系统由电流内环和速度外环构成,电流内环由电流闭环控制器(74)、坐标变换(83,84)、电压型三相逆变器(92)、电流传感器(102)等构成,外环由速度闭环控制器(63)、电流内环、二自由度无轴承永磁同步电机(21)、霍尔传感器(15)等构成。The control system of the two-degree-of-freedom bearingless permanent magnet synchronous motor (21) is composed of a radial position control subsystem and a speed control subsystem, and the inner loop of the position subsystem is composed of a current closed-loop controller (70), coordinate transformation (81, 82) , a voltage-type three-phase inverter (91), a current sensor (101), etc.; the outer ring is composed of a position closed-loop controller (60), an inner ring, a two-degree-of-freedom bearingless permanent magnet synchronous motor (21), and a displacement sensor ( 54, 55) composition. The speed loop subsystem consists of a current inner loop and a speed outer loop. The current inner loop consists of a current closed-loop controller (74), coordinate transformation (83, 84), voltage-type three-phase inverter (92), and a current sensor (102). etc., the outer ring is composed of a speed closed-loop controller (63), an inner current ring, a two-degree-of-freedom bearingless permanent magnet synchronous motor (21), a Hall sensor (15) and the like.
采用二自由度无轴承异步电机代替所述的二自由度无轴承永磁同步电机,构成五自由度无轴承异步电机数控伺服系统;具体是无轴承异步电机套用标准异步电机的定子和鼠笼转子结构,在定子槽中叠压两套绕组,两套绕组的极对数为±1的关系,采用光电编码盘安装在转轴的一端。A two-degree-of-freedom bearingless asynchronous motor is used instead of the two-degree-of-freedom bearingless permanent magnet synchronous motor to form a five-degree-of-freedom bearingless asynchronous motor CNC servo system; specifically, the bearingless asynchronous motor applies the stator and squirrel-cage rotor of a standard asynchronous motor Structure, two sets of windings are stacked in the stator slot, the number of pole pairs of the two sets of windings is ±1, and the photoelectric encoder disc is installed at one end of the shaft.
2.位移检测。采用电涡流传感器对轴向与径向5个自由度位移进行检测。轴向采用一个电涡流传感器,而径向采用8个电涡流传感器在x方向与y方向分别进行差动式检测,以获得精准的位置信号,并经接口电路处理使其在DSP的A/D输入信号范围之内,由DSP内置采样/保持电路对其进行信号采集处理。2. Displacement detection. The eddy current sensor is used to detect the displacement of 5 degrees of freedom in the axial and radial directions. One eddy current sensor is used in the axial direction, and 8 eddy current sensors are used in the radial direction to perform differential detection in the x direction and y direction respectively, so as to obtain accurate position signals, which are processed by the interface circuit to make them appear in the DSP A/D Within the range of the input signal, the built-in sampling/holding circuit of DSP performs signal acquisition and processing on it.
3.转速检测。采用4霍尔传感器对转子磁场进行差动检测和处理,得到磁场转角量和电机转速大小。测量转速的4个霍尔传感器(15)固定在传感器支架(11)上,接近电机转子,通过测量转子的磁场大小,来间接测量电机的转速;也可以采用光电编码器安装在转轴的一端来测量电机的转速。3. Speed detection. 4 Hall sensors are used to differentially detect and process the rotor magnetic field to obtain the magnetic field rotation angle and the motor speed. Four Hall sensors (15) for measuring the rotational speed are fixed on the sensor bracket (11), close to the rotor of the motor, and indirectly measure the rotational speed of the motor by measuring the magnetic field of the rotor; a photoelectric encoder can also be installed on one end of the rotating shaft to measure the rotational speed of the motor. Measure the speed of the motor.
4.磁轴承开关功率放大器。采用传统的开关功率放大器,具有响应速度快,结构简单、效率高等特点。由DSP输出的控制信号直接作为开关功率放大器驱动信号,经放大产生控制电流,控制电流在执行磁铁中产生主动磁悬浮力来使转子保持在平衡位置。4. Magnetic bearing switching power amplifier. Using traditional switching power amplifier, it has the characteristics of fast response, simple structure and high efficiency. The control signal output by the DSP is directly used as the driving signal of the switching power amplifier, which is amplified to generate a control current, and the control current generates an active magnetic levitation force in the executive magnet to keep the rotor in a balanced position.
5.无轴承电机电压型三相逆变器。采用的智能功率模块IPM作为主逆变电路,DSP输出三相PWM信号控制电压型三相逆变器,DSP检测逆变器故障信号,并进行故障处理。5. Bearingless motor voltage type three-phase inverter. The intelligent power module IPM is used as the main inverter circuit, and the DSP outputs three-phase PWM signals to control the voltage-type three-phase inverter. The DSP detects the inverter fault signal and handles the fault.
6.构建三自由度径向-轴向混合磁轴承控制系统。三自由度磁轴承位置控制系统由线性闭环控制器、开关功率放大器、三自由度径向-轴向磁轴承执行电磁铁、位移传感器构成,通过位移传感器检测磁轴承径向和轴向的位移与给定的位移参考值进行比较,分别调整位置PID控制器的参数,产生相应的控制信号,经过开关功率放大器产生控制电流,分别驱动电磁铁线圈,产生电磁力,实现三自由度磁轴承转子悬浮在平衡位置。6. Construct a three-degree-of-freedom radial-axial hybrid magnetic bearing control system. The three-degree-of-freedom magnetic bearing position control system consists of a linear closed-loop controller, a switching power amplifier, a three-degree-of-freedom radial-axial magnetic bearing actuator electromagnet, and a displacement sensor. The displacement sensor detects the radial and axial displacement of the magnetic bearing and The given displacement reference value is compared, the parameters of the position PID controller are adjusted respectively, the corresponding control signal is generated, the control current is generated through the switching power amplifier, and the electromagnet coil is respectively driven to generate electromagnetic force to realize the three-degree-of-freedom magnetic bearing rotor levitation in a balanced position.
对三自由度径向-轴向磁轴承位置控制是通过位移传感器(51,52,53)检测磁轴承径向和轴向的位移与给定的位移参考值进行比较,分别调整位置PID控制器(31,32,33)的参数,产生相应的控制信号,经过开关功率放大器(41,42,43)产生控制电流,分别驱动三自由度径向-轴向磁轴承(22)的电磁铁线圈(10,7),产生电磁力,实现三自由度径向-轴向磁轴承转子悬浮在平衡位置。For three-degree-of-freedom radial-axial magnetic bearing position control, the displacement sensor (51, 52, 53) detects the radial and axial displacement of the magnetic bearing and compares it with a given displacement reference value, and adjusts the position PID controller respectively. The parameters of (31, 32, 33) generate corresponding control signals, generate control currents through switching power amplifiers (41, 42, 43), and respectively drive the electromagnet coils of the three-degree-of-freedom radial-axial magnetic bearing (22) (10, 7), generating electromagnetic force to realize the suspension of the three-degree-of-freedom radial-axial magnetic bearing rotor at the equilibrium position.
7.构建二自由度无轴承永磁同步电机控制系统。组成二自由度无轴承永磁同步电机控制系统的径向位置控制子系统和速度控制子系统都采用双闭环进行控制;通过电流传感器(101)检测悬浮力绕组中的实际电流,经坐标变换(81)运算和处理,通过调整电流闭环控制器(70)中PI控制器(71,72)参数,实现电流闭环控制;通过调整位置PID控制器(61,62)的参数,实现对转子径向位置进行控制;通过电流传感器(102)检测无轴承永磁同步电机(21)电机绕组中的实际电流,通过调整电流闭环控制器(74)中PI控制器(75,76)的参数,实现电流闭环控制;通过调整速度PI控制器(64)的参数,可以对电机的速度进行闭环控制;7. Construct a two-degree-of-freedom bearingless permanent magnet synchronous motor control system. The radial position control subsystem and the speed control subsystem that make up the two-degree-of-freedom bearingless permanent magnet synchronous motor control system are controlled by double closed loops; the actual current in the suspension force winding is detected by the current sensor (101), and the coordinate transformation ( 81) Computation and processing, by adjusting the parameters of the PI controller (71, 72) in the current closed-loop controller (70), the current closed-loop control is realized; by adjusting the parameters of the position PID controller (61, 62), the radial direction of the rotor is realized. The position is controlled; the actual current in the motor winding of the bearingless permanent magnet synchronous motor (21) is detected by the current sensor (102), and the current is realized by adjusting the parameters of the PI controller (75, 76) in the current closed-loop controller (74). Closed-loop control; by adjusting the parameters of the speed PI controller (64), the speed of the motor can be closed-loop controlled;
位移和速度之间的动态解耦控制,采用转子磁场定向控制策略进行解耦,通过检测转子磁场的位置角γ,将两相旋转D-Q坐标(图8中变量右上角用“F”表示)中的量变换到两相静止d-q坐标(图8中变量右上角用“S”表示)中,将测量到悬浮力和电机绕组中的量经过从两相静止d-q坐标到两相旋转D-Q坐标变换即可以实现动态解耦控制。对位置控制子系统,两相旋转D-Q坐标系相对于两相静止d-q坐标系之间的夹角γB=γ+B;对速度控制子系统,两相旋转D-Q坐标系相对于两相静止d-q坐标系之间夹角γM=γ+M,B,M分别是悬浮力绕组A相绕组轴线和电机绕组A相绕组轴线与静止d轴之间的电角度。具体解耦方法是在位置环控制子系统中,将检测到的转子径向位移量X和Y与给定的命令值X*和Y*比较,经过PID控制器(61,62)产生电流的命令值
将测量到悬浮力绕组两相电流实际值i2u(s)、i2v(s)
→计算
→Clark变换→Park变换→再与两相旋转D-Q坐标系中电流的命令值
比较→经过PI控制器(71,72)产生电压命令值
→逆Clark变换→逆Park变换产生三相电压命令值 和
→经过电压型三相逆变器(91)产生三相悬浮力绕组驱动电压
和
→实现转子稳定悬浮在平衡位置。根据检测的转子磁场位置角γ,计算出电机实际角速度ωm,与角速度命令值
比较后,经过PI控制器(64)产生电流命令值
采用磁场定向控制
8.构建DSP控制器(110)。采用TI公司的TMS320LF2407 DSP数字信号处理器作为DSP控制器的CPU。该款CPU具有运算速度快,单条指令只需33ns时间,自带有内置采样/保持电路的10位高速A/D转换器,PWM信号事件管理模块,通过扩展D/A转换器,能满足磁轴承控制要求。8. Build the DSP controller (110). TI's TMS320LF2407 DSP digital signal processor is used as the CPU of the DSP controller. This CPU has a fast calculation speed, a single instruction only takes 33ns, a 10-bit high-speed A/D converter with a built-in sample/hold circuit, and a PWM signal event management module. By expanding the D/A converter, it can meet the magnetic Bearing control requirements.
对磁轴承控制部分:DSP控制器通过软件编程实现对径向-轴向3自由度位移传感器信号的采集、线性闭环控制器运算处理,输出相应控制信号,实现对三自由度径向-轴向混合磁轴承的闭环控制。Magnetic bearing control part: DSP controller realizes the acquisition of radial-axial 3-degree-of-freedom displacement sensor signals through software programming, linear closed-loop controller operation processing, and outputs corresponding control signals to realize three-degree-of-freedom radial-axial Closed-loop control of hybrid magnetic bearings.
对二自由度无轴承永磁同步电机部分:DSP控制器通过软件编程实现径向二自由度位移、悬浮力和电机绕组电流、电机转速的信号采集,对位置子系统来讲,经过位置PID控制器(61,62)运算、坐标变换(81)运算、电流闭环控制器(71,72)运算、坐标变换(82)运算和处理,输出PWM信号至悬浮力绕组电压型三相逆变器(91)。对转速子系统来讲,经过速度PI控制器(64)运算、坐标变换(83)运算、电流闭环控制器(75,76)运算、坐标变换(84)运算和处理,输出PWM信号至悬浮力绕组电压型三相逆变器(92)。For the part of the two-degree-of-freedom bearingless permanent magnet synchronous motor: the DSP controller realizes the radial two-degree-of-freedom displacement, levitation force, motor winding current, and signal acquisition of the motor speed through software programming. For the position subsystem, through the position PID control (61, 62) operation, coordinate transformation (81) operation, current closed-loop controller (71, 72) operation, coordinate transformation (82) operation and processing, output PWM signal to suspension force winding voltage type three-phase inverter ( 91). For the rotational speed subsystem, after speed PI controller (64) calculation, coordinate transformation (83) calculation, current closed-loop controller (75, 76) calculation, coordinate transformation (84) calculation and processing, the PWM signal is output to the suspension force A winding voltage type three-phase inverter (92).
9.控制参数调整。9. Control parameter adjustment.
1)磁轴承电流PI控制器采用线性理论中的比例积分控制器PI、极点配置或二次型指标最优等方法来设计。调整2个电流PI控制器参数,实现内环电流闭环控制。磁轴承位置PID控制器采用线性理论中的比例积分微分控制器PID、极点配置或二次型指标最优等方法来设计,调整3个位置PID控制器参数,实现磁轴承悬浮。1) The magnetic bearing current PI controller is designed by using the proportional-integral controller PI in linear theory, pole configuration or quadratic index optimization. Adjust the parameters of two current PI controllers to realize the closed-loop control of the inner loop current. The magnetic bearing position PID controller is designed by the method of proportional integral differential controller PID in linear theory, pole configuration or quadratic index optimization, and adjusts the parameters of the three position PID controllers to realize the magnetic bearing suspension.
2)二自由度无轴承永磁同步电机控制系统中PI控制器采用线性理论中的比例积分PI,极点配置或二次型指标最优等方法来设计。在调整位置子系统稳定悬浮后,调速度子系统的内环电流PI控制器参数,再调速度外环PI控制器参数,实现二自由度无轴承永磁同步电机稳定悬浮和旋转。2) The PI controller in the two-degree-of-freedom bearingless permanent magnet synchronous motor control system is designed by using the proportional-integral PI in linear theory, pole configuration or quadratic index optimization. After adjusting the stable suspension of the position subsystem, the parameters of the inner loop current PI controller of the speed subsystem are adjusted, and then the parameters of the outer loop PI controller of the speed are adjusted to realize the stable suspension and rotation of the two-degree-of-freedom bearingless permanent magnet synchronous motor.
以上所述,仅用于说明本发明,而不用于限制。The above description is only used to illustrate the present invention, not to limit it.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100400645A CN100536287C (en) | 2005-05-18 | 2005-05-18 | Digital-control servo system and its control for permanent magnet synchronous motor without bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100400645A CN100536287C (en) | 2005-05-18 | 2005-05-18 | Digital-control servo system and its control for permanent magnet synchronous motor without bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1713490A true CN1713490A (en) | 2005-12-28 |
CN100536287C CN100536287C (en) | 2009-09-02 |
Family
ID=35718977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100400645A Expired - Fee Related CN100536287C (en) | 2005-05-18 | 2005-05-18 | Digital-control servo system and its control for permanent magnet synchronous motor without bearing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100536287C (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100401621C (en) * | 2006-04-30 | 2008-07-09 | 南京航空航天大学 | High-speed motor system with multiple redundant functions |
CN100409545C (en) * | 2006-04-30 | 2008-08-06 | 南京航空航天大学 | Ultra-high-speed and high-power magnetic levitation spindle motor |
CN101355281B (en) * | 2008-03-10 | 2010-12-08 | 江苏大学 | Analysis Method of Magnetic Field Equivalent Air Gap Virtual Winding Current in Bearingless Motor |
CN101958685A (en) * | 2010-03-04 | 2011-01-26 | 江苏大学 | Nonlinear Inverse Decoupling Controller for Bearingless Synchronous Reluctance Motor and Its Construction Method |
CN102027659A (en) * | 2008-05-15 | 2011-04-20 | Sn泰科有限公司 | Motor with magnetic sensors |
CN102075136A (en) * | 2011-01-10 | 2011-05-25 | 江苏大学 | Soft measurement method for magnetic flux linkage of bearingless permanent magnet synchronous motor |
CN101490927B (en) * | 2006-07-12 | 2011-10-12 | 西门子公司 | Synchronous machine having magnetic bearing excited by the rotor |
CN102780243A (en) * | 2012-06-14 | 2012-11-14 | 范承 | Electromechanical device for battery charging and discharging balancing and braking energy recovery |
CN101877524B (en) * | 2009-04-30 | 2013-03-20 | 浙江中科德润科技有限公司 | Integrated hub motor |
CN103956877A (en) * | 2014-05-21 | 2014-07-30 | 北京明正维元电机技术有限公司 | Permanent magnet synchronous servo motor and rotor block |
CN104343820A (en) * | 2014-11-17 | 2015-02-11 | 南京磁谷科技有限公司 | Installation structure and installation method of radial magnetic bearing and radial sensor |
CN105003438A (en) * | 2015-06-30 | 2015-10-28 | 深圳市沃森空调技术有限公司 | Rotating-shaft magnetic-suspension variable-frequency air-condition compressor |
CN105720732A (en) * | 2016-03-31 | 2016-06-29 | 苏州工业园区职业技术学院 | Magnetic levitation motor suitable for multiple turnover movements |
CN105922264A (en) * | 2016-06-12 | 2016-09-07 | 江苏若博机器人科技有限公司 | Wireless transmission four-core and eight-axis crawler belt type rapid natural gas pipeline robot control system |
CN105945959A (en) * | 2016-06-14 | 2016-09-21 | 江苏若博机器人科技有限公司 | Overloaded five-core quick joint robot control system |
CN105945960A (en) * | 2016-06-14 | 2016-09-21 | 江苏若博机器人科技有限公司 | Overloaded five-core high-speed joint robot control system |
CN105945958A (en) * | 2016-06-14 | 2016-09-21 | 江苏若博机器人科技有限公司 | Heavy-load wireless-transmission quad-core constant-speed joint robot control system |
CN105945957A (en) * | 2016-06-14 | 2016-09-21 | 江苏若博机器人科技有限公司 | Light-load wireless-transmission control system for quad-core fast joint robot |
CN105945951A (en) * | 2016-06-13 | 2016-09-21 | 江苏若博机器人科技有限公司 | Tri-core eight-shaft crawler-type fast control system for natural gas pipeline robot |
CN106214192A (en) * | 2016-08-30 | 2016-12-14 | 姜文晓 | A kind of motion Medical joint videoendoscopic surgery equipment |
CN106655643A (en) * | 2016-10-18 | 2017-05-10 | 常州工学院 | Stabilizing device for aiming at active magnetic bearing quick-response intelligent PID controller |
CN107769504A (en) * | 2017-11-06 | 2018-03-06 | 江苏大学 | A kind of bearing-free permanent magnet synchronous motor of asynchronous starting |
CN109842245A (en) * | 2019-01-22 | 2019-06-04 | 上海拓为汽车技术有限公司 | A kind of permanent magnet machine rotor position-measurement device and method |
CN111181307A (en) * | 2020-02-05 | 2020-05-19 | 上海英威腾工业技术有限公司 | An air spinning high-speed motor |
CN111762654A (en) * | 2020-08-11 | 2020-10-13 | 江苏安全技术职业学院 | Elevator detection device with remote control function |
CN112198344A (en) * | 2020-10-19 | 2021-01-08 | 华中科技大学 | A full degree of freedom bearingless motor test platform |
CN113865473A (en) * | 2021-10-25 | 2021-12-31 | 珠海格力电器股份有限公司 | Magnetic suspension motor system and rotor displacement detection device and method thereof |
CN114039460A (en) * | 2021-12-01 | 2022-02-11 | 图达通智能科技(苏州)有限公司 | Laser radar outer rotor motor with rotating speed monitoring function and laser radar |
CN114050702A (en) * | 2021-04-27 | 2022-02-15 | 四川大学华西医院 | Self-balancing system of lower extremity exoskeleton scaffold based on permanent magnet bearingless motor |
CN114123902A (en) * | 2021-11-25 | 2022-03-01 | 南京航空航天大学 | Hall sensor-based bearingless permanent magnet sheet motor rotor displacement-free method |
CN114454701A (en) * | 2022-02-28 | 2022-05-10 | 奇瑞汽车股份有限公司 | New energy automobile power assembly |
CN115566967A (en) * | 2022-11-11 | 2023-01-03 | 天津飞旋科技股份有限公司 | Bearing-free magnetic suspension motor power-on self-checking device and method |
EP4299931A4 (en) * | 2021-03-22 | 2025-03-12 | Daikin Ind Ltd | ELECTRIC MOTOR SYSTEM, TURBOCOOPER AND COOLING DEVICE |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106515406A (en) * | 2016-11-18 | 2017-03-22 | 精进电动科技股份有限公司 | Coaxial multi-motor driving system and vehicle comprising same |
-
2005
- 2005-05-18 CN CNB2005100400645A patent/CN100536287C/en not_active Expired - Fee Related
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100409545C (en) * | 2006-04-30 | 2008-08-06 | 南京航空航天大学 | Ultra-high-speed and high-power magnetic levitation spindle motor |
CN100401621C (en) * | 2006-04-30 | 2008-07-09 | 南京航空航天大学 | High-speed motor system with multiple redundant functions |
CN101490927B (en) * | 2006-07-12 | 2011-10-12 | 西门子公司 | Synchronous machine having magnetic bearing excited by the rotor |
CN101355281B (en) * | 2008-03-10 | 2010-12-08 | 江苏大学 | Analysis Method of Magnetic Field Equivalent Air Gap Virtual Winding Current in Bearingless Motor |
CN102027659B (en) * | 2008-05-15 | 2013-03-20 | Sn泰科有限公司 | Motor with magnetic sensors and method for operating motor |
CN102027659A (en) * | 2008-05-15 | 2011-04-20 | Sn泰科有限公司 | Motor with magnetic sensors |
CN101877524B (en) * | 2009-04-30 | 2013-03-20 | 浙江中科德润科技有限公司 | Integrated hub motor |
CN101958685A (en) * | 2010-03-04 | 2011-01-26 | 江苏大学 | Nonlinear Inverse Decoupling Controller for Bearingless Synchronous Reluctance Motor and Its Construction Method |
CN101958685B (en) * | 2010-03-04 | 2012-12-19 | 江苏大学 | Nonlinear inverse decoupling controller for bearingless synchronous reluctance motor and construction method thereof |
CN102075136A (en) * | 2011-01-10 | 2011-05-25 | 江苏大学 | Soft measurement method for magnetic flux linkage of bearingless permanent magnet synchronous motor |
CN102075136B (en) * | 2011-01-10 | 2013-04-17 | 江苏大学 | Soft measurement method for magnetic flux linkage of bearingless permanent magnet synchronous motor |
CN102780243A (en) * | 2012-06-14 | 2012-11-14 | 范承 | Electromechanical device for battery charging and discharging balancing and braking energy recovery |
CN102780243B (en) * | 2012-06-14 | 2014-12-10 | 范承 | Electromechanical device for battery charging and discharging balancing and braking energy recovery |
CN103956877A (en) * | 2014-05-21 | 2014-07-30 | 北京明正维元电机技术有限公司 | Permanent magnet synchronous servo motor and rotor block |
CN104343820A (en) * | 2014-11-17 | 2015-02-11 | 南京磁谷科技有限公司 | Installation structure and installation method of radial magnetic bearing and radial sensor |
CN105003438A (en) * | 2015-06-30 | 2015-10-28 | 深圳市沃森空调技术有限公司 | Rotating-shaft magnetic-suspension variable-frequency air-condition compressor |
CN105720732A (en) * | 2016-03-31 | 2016-06-29 | 苏州工业园区职业技术学院 | Magnetic levitation motor suitable for multiple turnover movements |
CN105720732B (en) * | 2016-03-31 | 2018-05-04 | 苏州工业园区职业技术学院 | A kind of magnetic suspension motor suitable for a variety of flip-flop movements |
CN105922264A (en) * | 2016-06-12 | 2016-09-07 | 江苏若博机器人科技有限公司 | Wireless transmission four-core and eight-axis crawler belt type rapid natural gas pipeline robot control system |
CN105945951B (en) * | 2016-06-13 | 2018-11-13 | 江苏若博机器人科技有限公司 | A kind of quick natural gas line robot control system of three core, eight axis crawler type |
CN105945951A (en) * | 2016-06-13 | 2016-09-21 | 江苏若博机器人科技有限公司 | Tri-core eight-shaft crawler-type fast control system for natural gas pipeline robot |
CN105945958A (en) * | 2016-06-14 | 2016-09-21 | 江苏若博机器人科技有限公司 | Heavy-load wireless-transmission quad-core constant-speed joint robot control system |
CN105945957A (en) * | 2016-06-14 | 2016-09-21 | 江苏若博机器人科技有限公司 | Light-load wireless-transmission control system for quad-core fast joint robot |
CN105945960A (en) * | 2016-06-14 | 2016-09-21 | 江苏若博机器人科技有限公司 | Overloaded five-core high-speed joint robot control system |
CN105945959A (en) * | 2016-06-14 | 2016-09-21 | 江苏若博机器人科技有限公司 | Overloaded five-core quick joint robot control system |
CN105945957B (en) * | 2016-06-14 | 2018-11-13 | 江苏若博机器人科技有限公司 | A kind of underloading wireless transmission quick articulated robot control system of four cores |
CN106214192A (en) * | 2016-08-30 | 2016-12-14 | 姜文晓 | A kind of motion Medical joint videoendoscopic surgery equipment |
CN106655643A (en) * | 2016-10-18 | 2017-05-10 | 常州工学院 | Stabilizing device for aiming at active magnetic bearing quick-response intelligent PID controller |
CN107769504A (en) * | 2017-11-06 | 2018-03-06 | 江苏大学 | A kind of bearing-free permanent magnet synchronous motor of asynchronous starting |
CN109842245A (en) * | 2019-01-22 | 2019-06-04 | 上海拓为汽车技术有限公司 | A kind of permanent magnet machine rotor position-measurement device and method |
CN111181307A (en) * | 2020-02-05 | 2020-05-19 | 上海英威腾工业技术有限公司 | An air spinning high-speed motor |
CN111762654A (en) * | 2020-08-11 | 2020-10-13 | 江苏安全技术职业学院 | Elevator detection device with remote control function |
CN112198344A (en) * | 2020-10-19 | 2021-01-08 | 华中科技大学 | A full degree of freedom bearingless motor test platform |
EP4299931A4 (en) * | 2021-03-22 | 2025-03-12 | Daikin Ind Ltd | ELECTRIC MOTOR SYSTEM, TURBOCOOPER AND COOLING DEVICE |
CN114050702A (en) * | 2021-04-27 | 2022-02-15 | 四川大学华西医院 | Self-balancing system of lower extremity exoskeleton scaffold based on permanent magnet bearingless motor |
CN113865473A (en) * | 2021-10-25 | 2021-12-31 | 珠海格力电器股份有限公司 | Magnetic suspension motor system and rotor displacement detection device and method thereof |
CN113865473B (en) * | 2021-10-25 | 2022-10-11 | 珠海格力电器股份有限公司 | Magnetic suspension motor system and rotor displacement detection device and method thereof |
CN114123902A (en) * | 2021-11-25 | 2022-03-01 | 南京航空航天大学 | Hall sensor-based bearingless permanent magnet sheet motor rotor displacement-free method |
CN114123902B (en) * | 2021-11-25 | 2023-12-19 | 南京航空航天大学 | A non-displacement method for the rotor of bearing-less permanent magnet lamella motor based on Hall sensor |
CN114039460A (en) * | 2021-12-01 | 2022-02-11 | 图达通智能科技(苏州)有限公司 | Laser radar outer rotor motor with rotating speed monitoring function and laser radar |
CN114454701A (en) * | 2022-02-28 | 2022-05-10 | 奇瑞汽车股份有限公司 | New energy automobile power assembly |
CN115566967A (en) * | 2022-11-11 | 2023-01-03 | 天津飞旋科技股份有限公司 | Bearing-free magnetic suspension motor power-on self-checking device and method |
CN115566967B (en) * | 2022-11-11 | 2023-03-24 | 天津飞旋科技股份有限公司 | Bearing-free magnetic suspension motor power-on self-checking device and method |
Also Published As
Publication number | Publication date |
---|---|
CN100536287C (en) | 2009-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100536287C (en) | Digital-control servo system and its control for permanent magnet synchronous motor without bearing | |
CN100432461C (en) | AC-DC radial-axial mixed magnetic bearing having three degrees of freedom and method for controlling the same | |
Pei et al. | Review of bearingless synchronous motors: Principle and topology | |
Gan et al. | Tilting torque calculation of a novel tiered type permanent magnet spherical motor | |
Noh et al. | Homopolar bearingless slice motor with flux-biasing halbach arrays | |
CN105024507B (en) | A kind of axial block form mixed structure bearing-free switch reluctance motor and control method | |
CN101392795B (en) | External rotor radial-axial three freedom degree mixed magnetic bearing | |
CN106655666B (en) | A conical magnetic levitation dual-channel switched reluctance motor and control method | |
CN100491753C (en) | Three degrees of freedom AC hybrid magnetic bearing | |
CN101414772A (en) | High speed electric principal shaft system supported by five-freedom-degree AC magnetic bearing | |
CN101465576A (en) | High speed electric principal shaft supported by AC mixing magnetic bearing | |
CN1852005A (en) | Super-high-speed high-power magnetic-suspension main-shaft motor | |
CN105406784B (en) | The torque of simplex winding bearing-free motor and suspending power self-operated controller and building method | |
CN104201965B (en) | Rotor suspension control method for stator permanent magnet type bearingless synchronous motor | |
CN100573370C (en) | Based on neural network inverse control system for permanent-magnet synchronous motor with five degrees of freedom without bearing and control method | |
Zhang et al. | Electromagnetic performance analysis on the bearingless permanent magnet synchronous motor with Halbach magnetized rotor | |
CN103427755B (en) | A kind of building method of bearing-free permanent magnet thin-sheet motor rotor radial displacement controller | |
CN201307808Y (en) | High-speed electric main shaft supported by alternating current hybrid magnetic bearing | |
CN103414428A (en) | Bearingless synchronous reluctance motor rotor eccentric displacement controller and construction method thereof | |
CN1885708A (en) | Constructing method for bearingless synchronous reluctance motor feedforward compensation controller | |
CN104201966B (en) | A drive control method for a three-phase single-winding bearingless motor | |
CN103023265A (en) | Bearingless permanent magnet slice motor | |
CN106936338B (en) | A kind of four-degree-of-freedom composite construction bearing-free switch reluctance motor and control method | |
Kumashiro et al. | Investigation of a combined electro magnetic structure of bearingless motor and magnetic gear | |
CN102013870A (en) | Inverse system decoupling controller of five-degree-of-freedom bearingless synchronous reluctance motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090902 Termination date: 20140518 |