CN1671946A - 就地分析岩层参数的方法 - Google Patents

就地分析岩层参数的方法 Download PDF

Info

Publication number
CN1671946A
CN1671946A CNA038173581A CN03817358A CN1671946A CN 1671946 A CN1671946 A CN 1671946A CN A038173581 A CNA038173581 A CN A038173581A CN 03817358 A CN03817358 A CN 03817358A CN 1671946 A CN1671946 A CN 1671946A
Authority
CN
China
Prior art keywords
pressure
fluid
time
volume
relevant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038173581A
Other languages
English (en)
Other versions
CN100402797C (zh
Inventor
斯文·克吕格
埃利克·尼迈尔
马蒂亚斯·迈斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of CN1671946A publication Critical patent/CN1671946A/zh
Application granted granted Critical
Publication of CN100402797C publication Critical patent/CN100402797C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/008Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor

Landscapes

  • Mining & Mineral Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Earth Drilling (AREA)
  • Measuring Fluid Pressure (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种用压力和岩层流量数据进行岩层分析的方法。在从岩层中采出流体时,测量压力和流量的数据。要计算系统的可变容积。运用多元线性回归方法使压力和流量数据相互关联。运用求和法修匀与压力和流量相关的时间导数,从而提供比直接采用时间导数更好的相互关系。包括岩层渗透率、岩层压力和流体压缩系数的岩层参数可由相互关系确定。

Description

就地分析岩层参数的方法
技术领域
本发明涉及对地下岩层或储层的测试。更具体地说,本发明涉及一种通过解析流体压力和流量测量来确定地球岩层性质的方法。
背景技术
为获取例如油气这类碳氢化合物,通过转动装在钻柱端部的钻头进行钻井。当前大部分钻井工作是定向钻井,即钻偏斜井眼和水平井眼,以提高地球岩层碳氢化合物的产量和/或采出额外的碳氢化合物。现代定向钻井系统一般采用具有底部钻具组合(BHA)的钻柱以及位于该钻柱端部的钻头,通过钻井马达(泥浆马达)和/或转动该转杆来转动该钻头。设置在极为接近钻头的大量井下装置测量与钻柱相关的某些井下操作参数。这些装置通常包括用于测量井下温度和压力的传感器、方位和斜度测量仪以及用于确定是否存在碳氢化合物和水的电阻率测井仪。称为随钻测井(LWD)工具的辅助井下仪器经常与钻柱连接,以确定在钻井操作过程中岩层地质和岩层流体状况。
将钻井液(通常称为“泥浆”或“钻井泥浆”)泵入钻管内,以转动钻井马达,为包括钻头在内的钻柱的各种部件提供润滑以及除去由该钻头产生的钻屑。钻管由原动机例如马达来转动,以便于定向钻井以及钻出垂直井眼。钻头通常与具有传动轴的轴承组件连接,该传动轴再转动与其连接的钻头。轴承组件内的径向及轴向轴承为钻头的径向和轴向力提供支承。
通常沿着预定路径钻井眼,且一般井眼的钻孔作业要通过各种岩层。钻井操作者通常对地面控制钻井参数例如钻压、流经钻管的钻井液流量、钻柱的转速以及钻井液的密度和粘度进行控制,以优化钻井作业。井下作业条件不断发生变化,操作者必须反应这种变化并调节地面控制参数,以优化钻井作业。为了在未开采的区域钻井眼,操作者通常要具有地震测量图,该图提供井下岩层的宏观图像以及预先规划的井眼路径。为了在同一岩层钻多个井眼,操作者还要拥有与先前在同一岩层内所钻井眼有关的信息。
通常,在钻井过程中提供给操作者的信息包括井眼压力和温度以及钻井参数,例如钻压(WOB)、钻头和/或钻柱的转速、以及钻井液的流量。在某些情况下,钻井操作者还具有与底部钻具组合条件(参数)相关的选择信息,例如,转矩、泥浆马达的压差、转矩、钻头跳动和旋转等。
井下传感器数据通常在井下作一定程度地处理,然后通过钻柱发送信号或者通过泥浆脉冲遥测仪远距离测量井口,该泥浆脉冲遥测仪通过循环钻井液传输压力脉冲。尽管泥浆脉冲遥测仪比较普遍采用,但这种系统每秒仅能传输几(1-4)位信息。由于如此低的传输速率,工业上已经趋向于尝试在井下处理更大量的数据,然后向井口传输选定的计算结果或“答复”,以供司钻使用来控制钻井作业。
油气田的商业性开发需要相当大量的资金。在油田开发之前,操作者希望获取尽可能多的数据,以评估储层的商业可行性。尽管在使用MWD系统钻井的过程中预先进行数据采集,但常常有必要对油气层作进一步的测试以获取额外数据。因此,在井孔钻出之后,往往利用其它测试设备对油气层进行测试。
一种钻后测试涉及自储层采出流体、关井、用探头或双管封隔器收集试样、降低测试容积的压力、以及使压力能恢复至静态水平。可在单个储层内若干不同深度或不同点和/或在给定井眼内若干不同储层重复上述程序若干次。在该测试过程中所收集数据的一个重要方面是在压力下降之后所采集的压力恢复信息。从这些数据中可推导出有关渗透率以及储层大小的信息。此外,必须获取储层流体的实际试样,而且必须对这些试样进行测试,以采集压力-体积-温度数据以及流体性质例如密度、粘度和成分。
为进行这些重要测试,某些系统需要自井眼中收回钻柱。随后,将设计用于测试的各种工具下入井眼内。通常使用测井电缆(wireline)把测试工具下入井眼内。有时,测试工具利用封隔器将储层隔离。已经设计大量通信设备用以操纵测试组件,或者用以自测试组件传输数据。这些设计中有一些包括向位于测试组件内或与其连接的井下微处理器或从该井下微处理器传输数据的泥浆脉冲遥测仪。另一方面,可将测井电缆自地面下入位于测试组件内的联顶接受器(landingreceptacle)中,建立地面与该测试组件之间的电信号通信。不管当前使用的测试设备类型如何,也不管所使用通信系统的型式怎样,收回钻柱,再将第二测试装置下入井眼内所需要的时间与金钱数量是巨大的。此外,若井眼的高度偏斜,则不能采用测井电缆进行测试,因为测试工具无法进入深到足以到达所需岩层的井眼。
一种更新的系统公开在Berger等人的美国专利No.5,803,186中。′186专利提供了这样一种MWD系统,其包括用于该MWD系统的压力和电阻率传感器,以使这些测量结果能实时数据传输。′186装置使工作管柱例如钻柱处于适当位置的情况下能获取静压力、压力恢复和压力下降。同时,可根据压力测量结果计算渗透率和其它储层参数,而不需要抽钻柱。
与采用测井电缆相比,′186专利中所述的系统缩短了进行测试所需要的时间。但′186专利未提高装置的效率,采用测井电缆仍然是可取的。压力梯度测试是这样一种测试,其中,在测井电缆向下经过井眼运送测试装置时,进行多次压力测试。测试目的是当单个储层内存在这些流体时就地确定流体密度以及气、油和水之间的界面或接触点。
Robert Desbrandes发表的美国专利No.5,233,866中描述了另一种用于测量岩层压力和渗透率的装置和方法,以下简称′866专利。图1是′866专利的复制图,该图示出用于确定岩层压力和渗透率的压降试井方法。
参照图1,该方法包括降低井壁流体通道出油管内的压力。在步骤2中,利用活塞增大出油管容积,从而降低该出油管的压力。在其它方法中,利用泵自岩层采出流体,例如美国专利No.5,377,755中Michaels等人所描述的,在此引入以供参考。压力降低速率是进入出油管的岩层流体与离开该出油管的流体相结合以产生基本为线性的压力降低。采用“最佳直线拟合”限定确定预定可接收偏差的直线参考。所示可接受偏差是距直线2σ。一旦确定了直线参考,容积膨胀便被保持在稳定速率。在时间t1时,压力超过2σ的极限,便假定处于岩层压力以下的出油管压力发生偏差。在t1时,压降停止,使得该压力稳定在步骤3。在t2时,开始另一压降循环,其可包括采用新的直线参考。重复压降循环,直至出油管再次稳定在一定压力下。步骤5开始于t4且示出用于确定岩层渗透率的最终压降循环。步骤5终止于t5,这时出油管压力恢复至井眼压力Pm。由于出油管压力等于井眼压力,故钻具卡住的可能性减少。因此该工具可以移至新的测试位置或者移出井眼。
′866专利的缺点是在“微压力恢复循环(mini-buildup cycles)”过程中因稳定时间造成测试所需的时间太长。在岩层渗透率低的情况下,在实现稳定之前,该稳定化过程要花费从几十分钟甚至到数天的时间。在第一循环之后一次或多次循环只有增加时间问题。
无论采用测井电缆还是MWD,上述岩层压力及渗透率测量系统都是通过下述方式测量压力的,即在一个步骤中对低于预期岩层压力的一点降低一部分井眼的压力至远低于预期岩层压力的预定点或者以既定速率继续降低压力直至进入工具的岩层流体使工具压力稳定为止。然后,通过停止压降使得压力上升并稳定。可重复压降循环,以确保测出有效岩层压力,在某些情况下,损失数据或数据有误需要重复测试。这是一种费时的测量过程。
一种由此数据测量岩层及流体渗透率和其它参数的方法描述在Ekrem Kasap发表并转让给Western Atlas的美国专利No.5,708,204中,以下简称′204专利,在此引入以供参考。′204专利描述了一种用于测井电缆岩层测试工具的流体流量分析方法,利用该方法可快速地确定井眼附近的渗透率、岩层压力(p*)以及岩层流体的压缩系数。当利用活塞抽取岩层流体进行岩层速率分析时,利用多元线性回归方法对作为时间函数的压力和活塞位移测量结果进行分析,该多元线性回归方法的一般形式:
y=a0+a1·X1+a2·x2                               (1)
通常,多元线性回归按照以下方式用于下面的微分方程:
Figure A0381735800091
(参见用于定义符号的符号说明部分)
压降单元内的压力p(t)和压降活塞的位移x(t)可用作测量数据的时间序列。用这些数据计算用在方程(2)中的导数dp/dt和dx/dt。注意,对于用泵采出岩层流体的系统,项A活塞·dx/dt要用该泵的容积流量q替换。
采用普通多元线性回归方法,可求出系数a0,a1和a2,这些系数是岩层速率分析计算结果,因为这些系数包含了有关该岩层的全部所需信息。从测出的p(t)和x(t)数据,数字计算导数dp/dt和dx/dt,即在多数情况下,该p(t)和x(t)数据受到噪音污染。这种噪音基本就是造成分析结果恶化的问题所在。
本发明方法通过提供一种全新的方法来克服前述现有技术的缺点,该方法用以对测量数据进行多元线性回归分析,以提供基本更准确的数据相互关系。
发明内容
本发明设想一种确定井眼周围岩层至少一个重要参数的方法。该方法包括把一种工具送入井眼内,该井眼在压力下横穿含有岩层流体的地下岩层。把探头自工具延伸到岩层,形成该岩层与工具内取样室容积之间的水力连通。通过用容积控制装置增大取样室的容积,自岩层采出流体。测量作为时间函数的流体压力及取样室容积的数据组。对于每个数据组,计算测量压力和测量容积的时间导数。生成一组方程,该方程包括每个数据组测量压力与有关压力时间导数的第一项和有关容积时间导数的第二项相关联的多元线性方程。对于每个数据组,测量压力包括加到所有以前数据组测量压力总和的相应测量压力;第一项包括加到所有以前数据组压力时间导数总和的相应压力时间导数;以及第二项包括加到所有以前数据组容积时间导数总和的相应容积时间导数。通过该方程组进行多元线性回归,确定截距(intercept)项、与第一项相关的第一斜率(slope)项以及与第二项相关的第二斜率项。岩层渗透率、岩层压力和流体压缩系数可由相关数据确定。
因此,已经相当充分地概述了本发明较为重要特征的示例,以便更好地理解以下本发明的详细说明及领会对本技术领域的贡献。当然,本发明还有另外的特征将在下文中描述并形成所附权利要求书的主体。
附图说明
为了详细理解本发明,应结合附图参考以下优选实施例的详细说明,在附图中,相同部件标出相同的编号,其中:
图1是采用特殊现有技术方法的岩层压力测试定性图表;
图2是依照本发明一个实施例的海上钻井系统的正视图;
图3表示采用本发明的钻柱一部分;
图4是本发明的系统示意图;以及
图5是依照本发明的测井电缆实施例正视图。
具体实施方式
图2是依照本发明一个实施例的钻井装置。本领域的普通技术人员都能很好理解,这里所示是一种典型钻井装置202以及自该钻井装置202延伸的井眼204。钻井装置202具有工作管柱206,在所示实施例中,该工作管柱206是钻柱。钻柱206具有与其连接且用于钻井眼204的钻头208。本发明也可用于其它类型的工作管柱,其可与测井电缆、连接油管、挠性油管或其它小直径工作管柱,例如强行下入油管(snubbing pipe)一起使用。所示钻井装置202设在钻井船222上,该钻井船222具有从其延伸至海底220的立管224。但是,任何钻井装置构造例如陆地钻井装置都适于实施本发明。
如能适用,钻柱206可具有井下钻井马达210。一种典型的测试单元装在钻柱206内且位于钻头208之上,该测试单元可具有至少一个用于检测井眼、钻头以及储层井下特性的传感器214,这种传感器在现有技术中人所共知。传感器214的有效用途是采用加速度计或类似传感器来确定钻柱206的方向、方位及取向。BHA也包括下文将要更加详细说明的本发明岩层测试装置216。遥测系统212位于工作管柱206上的适当位置,例如测试装置216的上方。遥测系统212用于地面与测试装置216之间的指令和数据通信。
图3是体现本发明钻柱206的一部分。工具部分优选位于靠近钻头(未示出)的BHA内。工具包括用于与地面双向通信且向井下部件供电的通信单元及电源320。在该优选实施例中,该工具需要来自地面且仅用于启动测试的信号。井下控制器及处理器(未示出)执行随后的所有控制。电源可以是由泥浆马达(未示出)驱动的发电机,或者可以是任何其它适当电源。另外还包括用于稳定钻柱206工具部分的复合稳定器308和310,以及用于密封环空(annulus)部分的封隔器304和306。优选设在上封隔器304上方的循环阀用于在钻头停止转动的同时能使封隔器304和306上方的钻井泥浆继续循环。单独的排出口或平衡阀(未示出)用于把流体从封隔器304和306之间的测试容积中排至上环空。这种排出降低了测试容积压力,而这是压降试井所需要的。另外还设想,可通过把流体抽入系统或者将该流体排至下环空来降低封隔器304和306之间的压力,但无论如何都将需要某种增大中间环空容积来降低压力的方法。
在本发明的一个实施例中,一种用于与井壁4接合且可延伸的垫式密封件302(图1)设在封隔器304和306之间的测试装置216上。可仅采用垫式密封件302,而无封隔器304和306,因为仅用该垫302就能保持与井壁的足够密封。若不采用封隔器304和306,就需要有反力使垫302能够保持与井眼壁204的密封接合。这种密封产生了位于垫密封处且仅在工具内延伸至泵的测试容积,而不是采用封隔器件之间的容积。
一种确保保持密封的方法是确保钻柱206有较大的稳定性。可选择延伸的夹紧件312和314可装在钻柱206内,以在测试过程中固定该钻柱206。在此实施例中,所示夹具312和314装在稳定器308和310内。该夹具312和314可具有用于与井壁接合的粗糙端面,以防止软性部件例如垫式密封件302及封隔器304和306由于工具移动而受到损坏。夹具312特别理想是用在如图2所示的海上系统中,因为由波动导致的移动会过早地磨损密封部件。
图4示意示出图3所示工具及内部井眼和地面部件。可选择延伸的夹紧件312与井眼壁204接合,以固定钻柱206。现有技术人所共知的封隔器件304和306延伸,以接合井眼壁204。延伸的封隔器把井环空分成三个部分,即上环空402、中环空404和下环空406。密封环形部分404(或简称密封部分)邻近岩层218。可选择延伸的垫式密封件302装在钻柱206上,且可伸入密封部分404内。所示在原始岩层流体408与工具传感器,例如压力传感器424之间形成流体通道的流体管线贯穿垫件302以在密封环空404内形成孔口420。确保原始流体被测试或抽样的优选构造是使封隔器304和306密封推向壁204,从而在该壁与可延伸件302之间形成密封关系。在垫302接合之前降低密封部分404内的压力将促使流体自岩层流入该密封部分404。由于可延伸件302与壁接合时岩层自喷(formation flowing),贯穿垫320的孔口420将暴露在原始流体408中。当钻偏斜或水平井时,控制可延伸件302的取向是非常需要的。优选取向是朝向井眼壁的上部。可用传感器214,如加速度计检测可延伸件302的取向。然后,可用现有技术人所共知的方法和未示出部件,如弯接头(bend-sub)定向钻井,使该可延伸件朝向所需方向。例如,钻井装置可包括用地面旋转驱动器(未示出)转动的钻柱206。可用井下泥浆马达(参见图2的210)单独转动钻头。因此,可转动该钻柱,直至可延伸件朝向由传感器214所示的需要方向。停止地面旋转驱动器以在测试过程中停止转动钻柱206,而利用所需泥浆马达继续转动钻头。
最好用井下控制器418控制测试。该控制器418与至少一个系统容积控制装置(泵)426连接。该泵426最好是由滚珠丝杠和步进马达或其它变速控制马达驱动的小活塞,因为这可反复改变系统的容积。泵426还可以是连续空腔泵(progressive cavity pump)。当采用其它类型泵时,还应包括流量计。用于控制至泵426流体流量的阀430设在压力传感器424与泵426之间的流体管线422上。测试容积405是位于泵426缩回活塞以下的容积且包括流体管线422。利用压力传感器检测测试容积404内的压力。传感器424与控制器418连接,以提供闭环控制系统所需的反馈数据。该反馈用于调节参数设定值,例如随后容积变化的压力极限。井下控制器应包括处理器(未单独示出),以进一步缩短测试时间,还可包括任选数据库及存储系统以储存数据作进一步分析以及提供默认设定值。
当密封部分404压降时,流体就经由平衡阀419排到上环空402。泵426与平衡阀419连接的导管427包含可选择的内阀432。如果需要流体取样,就可通过内阀432,433a以及433b把该流体引至任选储样罐428,而不是经由平衡阀419排出。典型的流体取样是将容纳在罐428内的流体从井内取出以供分析。
用于测试低流度(致密)岩层的优选实施例包括至少一个除所示泵426之外的泵(未单独示出)。第二泵的内容积应大大小于第一泵426的内容积。第二泵的推荐容积是第一泵容积的1/100。可用具有受井下控制器418控制的选择阀的典型“T”连接器连接两台泵与流体管线422。
在致密岩层中,第一泵用于启动压降。控制器切换到第二泵,以在岩层压力以下进行作业。具有小内容积第二泵的优点是压力恢复时间快于具有较大容积的泵。
经井下处理的数据结果可发送到地面,以便为钻井操作者提供井下条件或者确认测试结果。控制器把处理的数据发送给设在井下的双向数据通信系统416。井下系统416向地面通信系统412发送数据信号。现有技术中已知有几种适于发送数据的方法和装置。任何适当系统都足以达到本发明的目的。一旦地面接收到信号,地面控制器及处理器410便将数据转换并传输至适当的输出或存储设备414。如前所述,也可用地面控制器410和地面通信系统412发送测试启动指令。
图5是按照本发明的测井电缆实施例。所示井502横穿岩层504,该岩层504包含具有气506、油508和水510层的储层。由铠装电缆514支承的测井电缆工具512设在邻近岩层504的井502内。用于稳定工具512的任选夹具312自该工具512延伸。两个可伸展封隔器304和306设在工具512上,且能把井眼502环空分成上环空402、密封中环空404和下环空406。可选择延伸的垫件302设在工具512上。夹具312、封隔器304和306以及可延伸垫件302均与图3和4中所描述的基本相同,因此这里不再重复详述。
用于测井电缆实施例的遥测装置是经由铠装电缆514内一根或多根导体520与地面双向通信单元518连接的井下双向通信单元516。地面通信单元518装在包含有处理器412和输出装置414的地面控制器内,如图4所述。典型的电缆绞轮522用于把铠装电缆514导入井眼502内。工具512包括用于按照后面将要详细描述的方法控制岩层测试的井下处理器418。
图5所示实施例最好用于确定气506与油508以及油508与水510之间的接触点538和540。为说明这种用途,把压力—深度曲线542附加表示在岩层504上。如上面对图4所示实施例描述的,井下工具512包括泵426、多个传感器424以及任选样品罐428。这些部件用于测量在井眼502内不同深度的岩层压力。如图所示绘制的压力表现出一种流体与下一流体截然不同的液体或气体密度。因此,进行多次压力测量M1-Mn可提供确定接触点538和540所需的数据。
如前所述,通常利用多元线性回归的一般形式分析由上述典型工具采集的数据,例如:
y=a0+a1·x1+a2·x2                              (1)
再把该数据应用于所示方程(2),式中,方程(2)建立工具压力p(t)与岩层性质及岩层流量的关系式:
注意:dp/dt,dx/dt和V仅是方程2右侧的不定变量,多元线性回归方法可用于同时求出两个斜率a1和a2以及截距a0。当已知流体粘度η时,可从dx/dt项的斜率a2计算出岩层渗透率k。另一方面,如果岩层渗透率已知,则可从斜率a2确定流体粘度η。压力导数项的斜率a1用于计算系统压缩系数C。每次测试都计算压缩系数,因为每次测试各不相同。这是由于方程2中的C是工具内而不是岩层内的流体压缩系数,工具的流体含量会随着重复测试而迅速变化。截距a0提供岩层压力p*的估计量。注意:容积V是由活塞运动x(t)和活塞面积A活塞算出且随时间变化的系统容积。
当把来自取样工具的时序数据p(t)和x(t)应用于方程2时,就产生了表示每个数据组的一组方程,例如:
数据组
式中,方程组是多元线性回归的输入式。用于完成多元线性回归的方法人所共知因而这里不再描述。回归分析可编程到用作分析的地面处理器内。另一方面,回归方法可编程到用作取样过程井下控制的井下处理器内。如本领域技术人员已知的,没有必要把所有数据点都储存在存储器内,然后进行分析。每个新数据组可适当加到储存的中间结果,以将对井下存储数据的需求降至最小程度。
系统误差和统计误差在基本上所有测量系统中都是正常的,且会导致一定量的数据从预期结果散开。这种数据散开例如可从图1的步骤2中看到,在图1中,线性物理过程中的数据点在最佳拟合直线周围散开。众所周知,这种散开的时序数据微分使问题加重。图6示出位置x(t)相对于时间求微分的dx/dt结果,图中曲线601表示dx/dt对时间的曲线。当压力相对于时间求微分时,可预料到类似结果。导数项中增大散开或不确定性通过多元线性回归方法分布,导致由该多元线性回归计算的常数a0,a1和a2的不确定性增大。但是,准确确定常数是分析的目标,因为如前所述岩层和流体的性质及压力由这些常数确定。
如下所述,本发明提供一种使导数结果平滑、也称为过滤导数结果的方法,以便降低所计算常数的不确定性,并更好地确定岩层和流体的性质。
该方法基于假定:如果以下两个方程准确,那么两个方程的总和也必定准确。
Figure A0381735800161
因此,采用以下方程组,而不是像对方程(3)所述那样应用多元线性回归:
#数据组(p,x):
Figure A0381735800162
Figure A0381735800171
式中,方程组(5)的一般形式是:
Σ i = 1 n y i = n · a 0 + a 1 · Σ i = 1 n x 1 , i + a 2 · Σ i = 1 n x 2 , i - - - ( 6 )
图7表示所绘 项相对于时间的曲线701。曲线701实质上比图6中dx/dt项的曲线601要平滑。较平滑曲线导致实质上更好的多元线性回归且系数的不确定性较小。这获得更好的相互关系,使能从压力及流量数据中更好地预测流体和岩层的性质。
前述说明书旨在说明和解释本发明的特定实施例。但对本领域技术人员显而易见的是可对上述实施例做出许多改进和变更而不脱离本发明的范围。以下权利要求书用来解释为包括了所有这些改进和变更。
                          符号说明
C        压缩因数,l/psi
G0      几何因子
k        渗透率,mD
p        压力,psi
p*      原状岩层压力,psi
q        容积流量,cm3/s
ri      探头半径,cm
t        时间,s
V        系统容积,cm3
η               流体粘度,cp
x        压降活塞位移,cm
A活塞   压降活塞面积,cm2

Claims (16)

1.一种确定至少一个岩层重要参数的方法,包括:
a.利用具有取样室和流体取样器的工具自岩层中采出流体试样;
b.确定随时间变化对应工具容积内的随时间变化的压力;
c.确定作为时间函数的所述岩层流体的相应的采出率;以及
d.使用所述工具容积压力的和、所述工具容积压力的时间导数的和以及所述采出率的和,用作回归分析的输入数据,其中,所述回归分析的输出值表示至少一个岩层重要参数。
2.权利要求1所述的方法,其特征在于,所述至少一个重要参数选自包括(i)岩层渗透率、(ii)流体压缩系数、(iii)流体粘度以及(iv)岩层压力的组项。
3.权利要求1所述的方法,其特征在于,所述采出率与所述取样室内的活塞运动有关。
4.权利要求1所述的方法,其特征在于,所述采出率与至少一个容积式泵的排量有关。
5.权利要求1所述的方法,其特征在于,所述回归分析是使所述工具压力与有关压力时间导数的第一项和有关容积时间导数的第二项相关联的多元线性回归分析,所述回归确定截距项、与所述第一项相关的第一斜率项以及与所述第二项相关的第二斜率项。
6.权利要求2所述的方法,其特征在于,所述岩层渗透率由所述第二斜率项确定。
7.权利要求2所述的方法,其特征在于,所述流体压缩系数由所述第一斜率项确定。
8.权利要求2所述的方法,其特征在于,所述岩层压力由所述截距项确定。
9.一种确定井眼周围的岩层的至少一个重要参数的方法,所述方法包括:
a.把一种工具送入所述井眼内,所述井眼在压力下横穿含有岩层流体的地下岩层;
b.把探头自所述工具延伸到所述岩层,形成所述岩层与所述工具内取样室容积之间的水力连通;
c.通过用容积控制装置增大所述取样室的容积,来自所述岩层采出所述流体;
d.多次测量作为时间函数的所述流体压力及所述取样室的相应容积,在所述多次测量的每次都要产生压力和容积的数据组;
e.在所述多次测量的每次,都要计算所述测量压力和所述测量容积的相应时间导数;
f.生成一组方程,其包括每个所述数据组所述测量压力与有关压力时间导数的第一项和有关容积时间导数的第二项相关联的多元线性方程;对于每个所述数据组,所述测量压力包括加到所有以前数据组测量压力总和的所述相应测量压力;所述第一项包括加到所有以前数据组压力时间导数总和的所述相应压力时间导数;以及所述第二项包括加到所有以前数据组容积时间导数总和的所述相应容积时间导数;以及
g.通过所述方程组进行多元线性回归,确定截距项、与所述第一项相关的第一斜率项以及与所述第二项相关的第二斜率项。
10.权利要求9所述的方法,其特征在于,所述至少一个重要参数选自包括(i)岩层渗透率、(ii)流体压缩系数、(iii)流体粘度以及(iv)岩层压力的组项。
11.权利要求10所述的方法,其特征在于,所述岩层渗透率由所述第二斜率项确定。
12.权利要求10所述的方法,其特征在于,所述流体压缩系数由所述第一斜率项确定。
13.权利要求10所述的方法,其特征在于,所述岩层压力由所述截距项确定。
14.权利要求9所述的方法,其特征在于,所述容积控制装置包括至少一台泵。
15.权利要求9所述的方法,其特征在于,所述容积控制装置包括可动活塞。
16.权利要求14所述的方法,其特征在于,所述至少一台泵是容积式泵。
CNB038173581A 2002-06-06 2003-06-06 就地分析岩层参数的方法 Expired - Fee Related CN100402797C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/164,970 2002-06-06
US10/164,970 US6672386B2 (en) 2002-06-06 2002-06-06 Method for in-situ analysis of formation parameters

Publications (2)

Publication Number Publication Date
CN1671946A true CN1671946A (zh) 2005-09-21
CN100402797C CN100402797C (zh) 2008-07-16

Family

ID=29710320

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038173581A Expired - Fee Related CN100402797C (zh) 2002-06-06 2003-06-06 就地分析岩层参数的方法

Country Status (11)

Country Link
US (1) US6672386B2 (zh)
EP (1) EP1509669B1 (zh)
CN (1) CN100402797C (zh)
AU (1) AU2003245418A1 (zh)
BR (1) BR0311823B1 (zh)
CA (1) CA2488783C (zh)
DE (1) DE60320101T2 (zh)
DK (1) DK1509669T3 (zh)
NO (1) NO20045465L (zh)
RU (1) RU2317414C2 (zh)
WO (1) WO2003104602A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335928A (zh) * 2013-05-30 2013-10-02 中国石油天然气集团公司 一种测量孔隙岩石渗透率的方法和装置
WO2020199495A1 (zh) * 2019-04-01 2020-10-08 中国矿业大学 岩层参数的确定方法及装置
RU2762675C9 (ru) * 2019-04-01 2022-08-04 Чайна Юниверсити Оф Майнинг Энд Текнолоджи Способ и устройство для определения параметров пласта горной породы

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871713B2 (en) * 2000-07-21 2005-03-29 Baker Hughes Incorporated Apparatus and methods for sampling and testing a formation fluid
CN1256503C (zh) * 2001-01-18 2006-05-17 国际壳牌研究有限公司 测量地层现场静态温度的方法
US7162918B2 (en) * 2001-05-15 2007-01-16 Baker Hughes Incorporated Method and apparatus for downhole fluid characterization using flexural mechanical resonators
BR0310098A (pt) * 2002-05-17 2005-02-15 Halliburton Energy Serv Inc Método para comprimir dados coletados em um furo de poço de uma formação, conjunto de controle para uso em um aparelho de teste de formação durante perfuração, e, aparelho de teste de formação durante perfuração
US6932167B2 (en) * 2002-05-17 2005-08-23 Halliburton Energy Services, Inc. Formation testing while drilling data compression
US6832515B2 (en) * 2002-09-09 2004-12-21 Schlumberger Technology Corporation Method for measuring formation properties with a time-limited formation test
RU2349751C2 (ru) 2003-03-10 2009-03-20 Бейкер Хьюз Инкорпорейтед Способ и устройство для контроля качества откачки флюида с помощью анализа скорости притока флюида из породы
EP1649140B1 (en) * 2003-06-20 2008-02-13 Baker Hughes Incorporated Improved downhole pv tests for bubble point pressure
GB2403488B (en) * 2003-07-04 2005-10-05 Flight Refueling Ltd Downhole data communication
US7379819B2 (en) * 2003-12-04 2008-05-27 Schlumberger Technology Corporation Reservoir sample chain-of-custody
GB2410550B8 (en) * 2003-12-04 2008-10-01 Schlumberger Holdings Fluids chain-of-custody
CA2556937C (en) * 2004-03-01 2010-09-21 Halliburton Energy Services, Inc. Methods for measuring a formation supercharge pressure
US7603897B2 (en) * 2004-05-21 2009-10-20 Halliburton Energy Services, Inc. Downhole probe assembly
GB2433952B (en) * 2004-05-21 2009-09-30 Halliburton Energy Serv Inc Methods and apparatus for using formation property data
US7260985B2 (en) * 2004-05-21 2007-08-28 Halliburton Energy Services, Inc Formation tester tool assembly and methods of use
GB2429484B (en) * 2004-05-21 2009-10-28 Halliburton Energy Serv Inc Methods and apparatus for measuring formation properties
US7216533B2 (en) * 2004-05-21 2007-05-15 Halliburton Energy Services, Inc. Methods for using a formation tester
US20050270903A1 (en) * 2004-06-04 2005-12-08 Schlumberger Technology Corporation Method for continuous interpretation of monitoring data
US7231818B2 (en) * 2004-08-26 2007-06-19 Baker Hughes Incorporated Determining horizontal and vertical permeabilities by analyzing two pretests in a horizontal well
US7448262B2 (en) * 2004-08-26 2008-11-11 Baker Hughes Incorporated Determination of correct horizontal and vertical permeabilities in a deviated well
US7181960B2 (en) * 2004-08-26 2007-02-27 Baker Hughes Incorporated Determination of correct horizontal and vertical permeabilities in a deviated well
EP1896876B1 (en) * 2005-06-03 2013-04-17 Baker Hughes Incorporated Pore-scale geometric models for interpretation of downhole formation evaluation data
US7363161B2 (en) * 2005-06-03 2008-04-22 Baker Hughes Incorporated Pore-scale geometric models for interpretation of downhole formation evaluation data
US7825659B2 (en) * 2005-06-03 2010-11-02 Baker Hughes Incorporated Pore-scale geometric models for interpretation of downhole formation evaluation data
US7257490B2 (en) * 2005-06-03 2007-08-14 Baker Hughes Incorporated Pore-scale geometric models for interpretation of downhole formation evaluation data
US7356413B2 (en) * 2005-06-03 2008-04-08 Baker Hughes Incorporated Pore-scale geometric models for interpretation of downhole formation evaluation data
US7735568B2 (en) * 2006-03-29 2010-06-15 Schlumberger Technology Corporation Packer cup systems for use inside a wellbore
US7445934B2 (en) * 2006-04-10 2008-11-04 Baker Hughes Incorporated System and method for estimating filtrate contamination in formation fluid samples using refractive index
EA012675B1 (ru) * 2006-12-01 2009-12-30 Шлюмбергер Текнолоджи Б.В. Системы пакерной манжеты для использования в стволе скважины
US7594541B2 (en) * 2006-12-27 2009-09-29 Schlumberger Technology Corporation Pump control for formation testing
CA2572755A1 (en) * 2007-01-03 2008-07-03 Ken Shipalesky Wire-line connection system
US7717172B2 (en) * 2007-05-30 2010-05-18 Schlumberger Technology Corporation Methods and apparatus to sample heavy oil from a subteranean formation
US7708076B2 (en) * 2007-08-28 2010-05-04 Baker Hughes Incorporated Method of using a drill in sand control liner
US8086431B2 (en) * 2007-09-28 2011-12-27 Schlumberger Technology Corporation Method and system for interpreting swabbing tests using nonlinear regression
US20090132169A1 (en) * 2007-11-19 2009-05-21 Schlumberger Technology Corporation Methods and systems for evaluating fluid movement related reservoir properties via correlation of low-frequency part of seismic data with borehole measurements
US8136395B2 (en) 2007-12-31 2012-03-20 Schlumberger Technology Corporation Systems and methods for well data analysis
CA2713995C (en) * 2008-01-28 2013-10-01 Schlumberger Canada Limited Method for evaluating subterranean formation fluid
US20090204329A1 (en) * 2008-02-12 2009-08-13 Precision Energy Services, Inc. Simultaneous analysis of two data sets from a formation test
US8616277B2 (en) * 2008-04-14 2013-12-31 Baker Hughes Incorporated Real time formation pressure test and pressure integrity test
US8191416B2 (en) * 2008-11-24 2012-06-05 Schlumberger Technology Corporation Instrumented formation tester for injecting and monitoring of fluids
US8371161B2 (en) * 2009-03-06 2013-02-12 Baker Hughes Incorporated Apparatus and method for formation testing
US8708042B2 (en) * 2010-02-17 2014-04-29 Baker Hughes Incorporated Apparatus and method for valve actuation
CN105240007B (zh) * 2010-06-17 2018-10-12 哈里伯顿能源服务公司 用于测试流体试样的方法和系统
GB2504197B (en) * 2012-05-25 2019-04-10 Schlumberger Holdings Automatic fluid coding and hydraulic zone determination
WO2013187890A1 (en) 2012-06-13 2013-12-19 Halliburton Energy Services, Inc. Apparatus and method for pulse testing a formation
ES2900654T3 (es) 2013-03-15 2022-03-17 Hayward Ind Inc Sistema de control modular de piscina/hidromasaje
CN104131813B (zh) * 2014-08-06 2017-02-08 中国科学技术大学 一种非常规气藏地层参数的获取方法及系统
CN104695952B (zh) * 2015-03-16 2018-04-27 合肥工业大学 非常规气藏地层参数的解释方法及解释系统
US11096862B2 (en) 2016-01-22 2021-08-24 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US11720085B2 (en) 2016-01-22 2023-08-08 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
NL2017006B1 (en) * 2016-06-20 2018-01-04 Fugro N V a method, a system, and a computer program product for determining soil properties
DE102016014685A1 (de) * 2016-12-12 2018-06-14 Tracto-Technik Gmbh & Co. Kg Verfahren und System zum Ermitteln einer Bodenklasse sowie Verwendung beim Ermitteln einer Bodenklasse
US11761332B2 (en) 2018-12-04 2023-09-19 Halliburton Energy Services, Inc. Methods to perform an in-situ determination of a formation property of a downhole formation and in-situ formation property measurement tools
CN111005717B (zh) * 2019-11-28 2022-05-20 中海石油(中国)有限公司深圳分公司 地层流体泵抽方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423625A (en) * 1981-11-27 1984-01-03 Standard Oil Company Pressure transient method of rapidly determining permeability, thickness and skin effect in producing wells
US4483187A (en) * 1982-12-29 1984-11-20 Halliburton Company Surface readout drill stem test control apparatus
US4773264A (en) * 1984-09-28 1988-09-27 Schlumberger Technology Corporation Permeability determinations through the logging of subsurface formation properties
US4752882A (en) * 1986-05-05 1988-06-21 Mobil Oil Corporation Method for determining the effective water saturation in a low-resistivity hydrocarbon-bearing rock formation based upon rock matrix conductance
US4890487A (en) * 1987-04-07 1990-01-02 Schlumberger Technology Corporation Method for determining horizontal and/or vertical permeability of a subsurface earth formation
US4836210A (en) * 1987-06-15 1989-06-06 Fujitsu Limited Ultrasonic analyzer
US5056595A (en) * 1990-08-13 1991-10-15 Gas Research Institute Wireline formation test tool with jet perforator for positively establishing fluidic communication with subsurface formation to be tested
US5233866A (en) 1991-04-22 1993-08-10 Gulf Research Institute Apparatus and method for accurately measuring formation pressures
US5587525A (en) * 1992-06-19 1996-12-24 Western Atlas International, Inc. Formation fluid flow rate determination method and apparatus for electric wireline formation testing tools
US5708204A (en) 1992-06-19 1998-01-13 Western Atlas International, Inc. Fluid flow rate analysis method for wireline formation testing tools
US5303582A (en) * 1992-10-30 1994-04-19 New Mexico Tech Research Foundation Pressure-transient testing while drilling
US5377755A (en) 1992-11-16 1995-01-03 Western Atlas International, Inc. Method and apparatus for acquiring and processing subsurface samples of connate fluid
US6157893A (en) * 1995-03-31 2000-12-05 Baker Hughes Incorporated Modified formation testing apparatus and method
EP0777813B1 (en) 1995-03-31 2003-09-10 Baker Hughes Incorporated Formation isolation and testing apparatus and method
US5703286A (en) * 1995-10-20 1997-12-30 Halliburton Energy Services, Inc. Method of formation testing
US6343507B1 (en) * 1998-07-30 2002-02-05 Schlumberger Technology Corporation Method to improve the quality of a formation fluid sample
EP1301688A1 (en) * 2000-07-20 2003-04-16 Baker Hughes Incorporated Method for fast and extensive formation evaluation
US6585045B2 (en) * 2000-08-15 2003-07-01 Baker Hughes Incorporated Formation testing while drilling apparatus with axially and spirally mounted ports

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335928A (zh) * 2013-05-30 2013-10-02 中国石油天然气集团公司 一种测量孔隙岩石渗透率的方法和装置
CN103335928B (zh) * 2013-05-30 2015-03-04 中国石油天然气集团公司 一种测量孔隙岩石渗透率的方法和装置
WO2020199495A1 (zh) * 2019-04-01 2020-10-08 中国矿业大学 岩层参数的确定方法及装置
RU2762675C1 (ru) * 2019-04-01 2021-12-21 Чайна Юниверсити Оф Майнинг Энд Текнолоджи Способ и устройство для определения параметров пласта горной породы
RU2762675C9 (ru) * 2019-04-01 2022-08-04 Чайна Юниверсити Оф Майнинг Энд Текнолоджи Способ и устройство для определения параметров пласта горной породы

Also Published As

Publication number Publication date
CN100402797C (zh) 2008-07-16
EP1509669A2 (en) 2005-03-02
CA2488783A1 (en) 2003-12-18
US20030226663A1 (en) 2003-12-11
NO20045465L (no) 2005-03-03
RU2317414C2 (ru) 2008-02-20
US6672386B2 (en) 2004-01-06
WO2003104602A2 (en) 2003-12-18
DE60320101D1 (de) 2008-05-15
CA2488783C (en) 2009-09-29
AU2003245418A1 (en) 2003-12-22
BR0311823B1 (pt) 2013-03-05
BR0311823A (pt) 2005-04-05
DE60320101T2 (de) 2009-05-14
RU2004139037A (ru) 2005-09-10
EP1509669B1 (en) 2008-04-02
DK1509669T3 (da) 2008-08-04
WO2003104602A3 (en) 2004-03-25
AU2003245418A8 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
CN100402797C (zh) 就地分析岩层参数的方法
US6568487B2 (en) Method for fast and extensive formation evaluation using minimum system volume
CN100347406C (zh) 现场确定地层参数的装置和方法
US6478096B1 (en) Apparatus and method for formation testing while drilling with minimum system volume
EP1676976B1 (en) Drawdown apparatus and method for in-situ analysis of formation fluids
US6871713B2 (en) Apparatus and methods for sampling and testing a formation fluid
EP3385497B1 (en) Method of optimizing drilling operation using empirical data
US6923052B2 (en) Methods to detect formation pressure
US7266983B2 (en) Methods to detect formation pressure
US6157893A (en) Modified formation testing apparatus and method
RU2556583C2 (ru) Направленный отбор образцов пластовых флюидов
CN1624295A (zh) 井下流体泵送装置和方法
US7954252B2 (en) Methods and apparatus to determine and use wellbore diameters
US8826977B2 (en) Remediation of relative permeability blocking using electro-osmosis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080716

Termination date: 20150606

EXPY Termination of patent right or utility model