CN1657876A - Light and small three-axis integrated fiber optic gyroscope - Google Patents
Light and small three-axis integrated fiber optic gyroscope Download PDFInfo
- Publication number
- CN1657876A CN1657876A CN 200510063052 CN200510063052A CN1657876A CN 1657876 A CN1657876 A CN 1657876A CN 200510063052 CN200510063052 CN 200510063052 CN 200510063052 A CN200510063052 A CN 200510063052A CN 1657876 A CN1657876 A CN 1657876A
- Authority
- CN
- China
- Prior art keywords
- axis
- light source
- optical
- optical fiber
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 40
- 239000013307 optical fiber Substances 0.000 claims description 60
- 230000003287 optical effect Effects 0.000 claims description 37
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 230000011664 signaling Effects 0.000 claims 1
- 230000004807 localization Effects 0.000 abstract 1
- 238000009434 installation Methods 0.000 description 28
- 238000013461 design Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000003321 amplification Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Gyroscopes (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种三维角速度测量装置,具体地说是指一种建立在光学SAGNAC效应基础上的,能够共用光源、共用检测电路、一体化结构设计的轻小型数字闭环三轴一体的光纤陀螺。The invention relates to a three-dimensional angular velocity measuring device, specifically a light and small digital closed-loop three-axis integrated optical fiber gyroscope based on the optical SAGNAC effect, which can share a light source, a common detection circuit, and an integrated structure design.
背景技术Background technique
光纤陀螺是基于萨格奈克(Sagnac)效应,在惯性空间通常萨格奈克效应可以描述为:“在同一闭合回路中,沿顺时针方向(CW)和逆时针方向(CCW)传播的两束光,围绕垂直于回路的轴的转动将引起两束光之间相位差的变化,该相位差的大小与光回路旋转速率成比例关系”。Sagnac效应的原理图如图1所示,图中,圆环代表光纤环,点S为两束相向传输的光注入点,Ω为顺时针旋转角速度。在惯性空间,当光纤环静止时,两束光回到S点时所经历的光程相同,因此不会产生相位差;当光纤环以角速度Ω顺时针旋转时,注入点S转到了S′处,沿顺时针方向传播的光束将比沿逆时针方向传播的光束经历的光程要长,因此会产生相位差。而此相位差Δφ与光纤环旋转角速度Ω成比例关系:
光纤陀螺是一种新型的角速率传感器,与机械陀螺相比,具有全固态、对重力不敏感、启动快等优点;与环形激光陀螺相比,无高电压电源、无机械抖动;另外,还具有重量轻、寿命长、成本低的优势。在航空、航天、航海等军用领域及地质、石油勘探等民用领域具有广阔的应用前景。目前的典型结构形式为:以三个独立的单轴光纤陀螺子系统来实现对三个正交的空间坐标系的旋转轴角速度或位置进行测量,每个光纤陀螺子系统都包括一个光源、一个光电探测器和一个处理电路。随着应用领域需要的发展,目前对光纤陀螺体积和重量的提出了更高的要求。同时在很多应用领域都涉及三维测量,因此,轻小型三轴陀螺的研究引起了国际上广泛的关注。Fiber optic gyroscope is a new type of angular rate sensor. Compared with mechanical gyroscopes, it has the advantages of all solid state, insensitivity to gravity, and fast startup. Compared with ring laser gyroscopes, it has no high-voltage power supply and no mechanical jitter; It has the advantages of light weight, long life and low cost. It has broad application prospects in military fields such as aviation, aerospace, and navigation, as well as civil fields such as geology and oil exploration. The current typical structural form is: three independent single-axis fiber optic gyro subsystems are used to measure the angular velocity or position of the rotation axis of three orthogonal space coordinate systems. Each fiber optic gyro subsystem includes a light source, a photodetectors and a processing circuit. With the development of application fields, higher requirements are put forward for the size and weight of fiber optic gyroscopes. At the same time, three-dimensional measurement is involved in many application fields. Therefore, the research of light and small three-axis gyroscope has attracted extensive attention in the world.
发明内容Contents of the invention
本发明的目的是提供一种轻小型三轴一体光纤陀螺,该光纤陀螺为了减小光纤陀螺系统的尺寸和重量,对机械骨架进行了结构优化设计,对控制电路进行了优化组合设计。在本发明中采用一体化结构设计、共用一个光源和处理电路,这样不仅节省了元器件、减小体积、降低成本,而且也有利于提高系统的可靠性。采用共用信号处理电路的方法来简化光纤陀螺系统结构,缩小体积,降低成本和功耗。The object of the present invention is to provide a light and small three-axis integrated fiber optic gyroscope. In order to reduce the size and weight of the fiber optic gyroscope system, the structure of the fiber optic gyroscope is optimized and the control circuit is optimized and combined. In the present invention, an integrated structure design is adopted, and a light source and a processing circuit are shared, which not only saves components, reduces volume, and reduces cost, but also helps to improve system reliability. The method of sharing the signal processing circuit is adopted to simplify the structure of the fiber optic gyro system, reduce the volume, reduce the cost and power consumption.
本发明的一种轻小型三轴一体光纤陀螺,包括光源组件、光纤组件、控制电路板、机械骨架和以及用于同外部产生信息联络的外部接口,光源组件安装在机械骨架的顶端,X轴光纤组件、Y轴光纤组件和Z轴光纤组件分别安装在机械骨架的X轴凸台体、Y轴安装壁和Z轴安装壁的定位面上,外部接口安装在机械骨架的法兰盘上,控制电路板安装在机械骨架底部的固紧装置上并嵌入机械骨架底部的大凹腔内;所述机械骨架为符合右手坐标系规则的一体结构,X轴凸台体设在法兰盘上,X轴凸台体的第一侧面上垂直设有Y轴安装壁,X轴凸台体的第二侧面上垂直设有Z轴安装壁,Y轴安装壁和Z轴安装壁的共面垂直;所述机械骨架的X轴凸台体的中心是一空腔,空腔内设有供X轴光纤组件固定用的定位面,X轴凸台体与共面的对角处设有安装台;所述机械骨架的Y轴安装壁的中心是一空腔,Y轴安装壁的背部设有凹腔,凹腔内设有凸起的定位面;所述机械骨架的Z轴安装壁的中心是一空腔,Z轴安装壁的背部设有凹腔,凹腔内设有凸起的定位面;所述机械骨架11的法兰盘上设有通孔和用于安装部件的多个安装孔,各个安装孔按照120°角均匀分布,法兰盘的背部设有供控制电路板固紧用的固紧装置和大凹腔,法兰盘背部的连接盘上设有安装台。A light and small three-axis integrated fiber optic gyroscope of the present invention includes a light source component, an optical fiber component, a control circuit board, a mechanical frame, and an external interface for generating information with the outside. The light source component is installed on the top of the mechanical frame, and the X-axis The optical fiber assembly, the Y-axis optical fiber assembly and the Z-axis optical fiber assembly are respectively installed on the positioning surfaces of the X-axis boss body, the Y-axis installation wall and the Z-axis installation wall of the mechanical skeleton, and the external interface is installed on the flange of the mechanical skeleton. The control circuit board is installed on the fastening device at the bottom of the mechanical frame and embedded in the large concave cavity at the bottom of the mechanical frame; the mechanical frame is an integrated structure conforming to the rules of the right-handed coordinate system, and the X-axis boss body is set on the flange. The first side of the X-axis boss body is vertically provided with a Y-axis installation wall, the second side of the X-axis boss body is vertically provided with a Z-axis installation wall, and the coplanarity of the Y-axis installation wall and the Z-axis installation wall is vertical; The center of the X-axis boss body of the mechanical skeleton is a cavity, and a positioning surface for fixing the X-axis optical fiber assembly is provided in the cavity, and a mounting platform is provided at the opposite corner of the X-axis boss body and the same plane; The center of the Y-axis installation wall of the mechanical skeleton is a cavity, the back of the Y-axis installation wall is provided with a concave cavity, and a raised positioning surface is provided in the concave cavity; the center of the Z-axis installation wall of the mechanical skeleton is a cavity, The back of the Z-axis mounting wall is provided with a cavity, and a raised positioning surface is provided in the cavity; the flange of the
所述的光源组件,由光源、第一分光器、第二分光器、光源驱动和光源底板组成,光源底板上设有扇形凸台,扇形凸台上安装有光源,光源底板的两对角上分别设有第一分光器和第二分光器,光源底板的安装柱上安装有光源驱动;光源组件安装在机械骨架上部的Y轴安装壁和Z轴安装壁顶端。The light source assembly is composed of a light source, a first beam splitter, a second beam splitter, a light source drive and a light source base plate. A fan-shaped boss is arranged on the light source base plate, and a light source is installed on the fan-shaped boss. On two opposite corners of the light source base plate The first beam splitter and the second beam splitter are respectively provided, and the light source driver is installed on the mounting column of the light source base plate; the light source assembly is installed on the top of the Y-axis installation wall and the Z-axis installation wall on the upper part of the mechanical skeleton.
所述的Y轴光纤组件,由环骨架、光纤、探测器、前放电路、调制器、耦合器组成,环骨架上缠绕有光纤,环骨架的上部安装有调制器和耦合器,探测器安装在前放电路上,前放电路安装在环骨架上的螺纹柱上;Y轴光纤组件安装在机械骨架的Y轴安装壁的定位面上。The Y-axis optical fiber assembly is composed of a ring skeleton, an optical fiber, a detector, a pre-amplifier circuit, a modulator, and a coupler. The ring skeleton is wound with an optical fiber, and the upper part of the ring skeleton is equipped with a modulator and a coupler. The detector is installed On the pre-amplifier circuit, the pre-amplifier circuit is installed on the threaded column on the ring frame; the Y-axis optical fiber assembly is installed on the positioning surface of the Y-axis installation wall of the mechanical frame.
所述控制电路板至少包括FPGA、信号转换电路、调制器驱动电路,FPGA接收经由X轴光纤组件、Y轴光纤组件和Z轴光纤组件中探测器输出的光强电压信号经三轴的前放电路放大、经A/D转换器转换输出的数字信号,FPGA对接收的数字信号经时序控制处理后输出相位补偿电压信号给D/A转换器、三轴调制器的调制驱动电路,经调制驱动电路解调后输出电压信号控制三轴的调制器进行相位调制保持干涉光强恒定。The control circuit board includes at least an FPGA, a signal conversion circuit, and a modulator drive circuit. The FPGA receives the light intensity and voltage signals output by the detectors in the X-axis optical fiber assembly, the Y-axis optical fiber assembly, and the Z-axis optical fiber assembly through a three-axis preamplifier. The digital signal is amplified by the circuit and converted and output by the A/D converter. The FPGA outputs the phase compensation voltage signal to the D/A converter and the modulation drive circuit of the three-axis modulator after the timing control and processing of the received digital signal. After demodulation, the output voltage signal controls the three-axis modulator to perform phase modulation to keep the interference light intensity constant.
所述的轻小型三轴一体光纤陀螺的控制方式采用全数字式闭环控制。The light and small three-axis integrated fiber optic gyroscope is controlled in an all-digital closed-loop control mode.
本发明的优点:(1)三轴陀螺的一体化结构设计,不仅有效地利用了空间,降低了重量和减少了机械组件。另外由于该设计减少了陀螺安装的中间环节,更有利于保障陀螺的安装定位精度;(2)共享大功率光源,节省了光学器件,降低了成本。有利于提高产品的一致性和可靠性;(3)共用一个FPGA的三轴全数字闭环信号处理电路;共用信号处理电路,有效节省了电路板面积,利于小型化和集成化。同时全数字闭环控制电路有效提高了抗干扰能力和陀螺测试动态范围;(4)标准外部接口,有利于用户的实用方便。The advantages of the present invention: (1) The integrated structural design of the three-axis gyroscope not only effectively utilizes the space, but also reduces the weight and mechanical components. In addition, because the design reduces the intermediate links of gyro installation, it is more conducive to ensuring the installation and positioning accuracy of the gyro; (2) sharing high-power light sources saves optical components and reduces costs. It is conducive to improving the consistency and reliability of products; (3) sharing a three-axis all-digital closed-loop signal processing circuit of FPGA; sharing the signal processing circuit effectively saves the area of the circuit board, which is beneficial to miniaturization and integration. At the same time, the all-digital closed-loop control circuit effectively improves the anti-interference ability and the dynamic range of the gyro test; (4) The standard external interface is beneficial to the user's practicality and convenience.
附图说明Description of drawings
图1是萨格奈克效应原理图。Figure 1 is a schematic diagram of the Sagnac effect.
图2是本发明光纤陀螺整体结构示意图。Fig. 2 is a schematic diagram of the overall structure of the fiber optic gyroscope of the present invention.
图3是本发明光纤陀螺的一侧视图。Fig. 3 is a side view of the fiber optic gyroscope of the present invention.
图4是本发明机械骨架结构示意图。Fig. 4 is a schematic diagram of the structure of the mechanical skeleton of the present invention.
图5是本发明机械骨架的一侧视图。Fig. 5 is a side view of the mechanical skeleton of the present invention.
图6是本发明法兰盘的仰视图。Fig. 6 is a bottom view of the flange of the present invention.
图7是本发明光源组件爆炸图。Fig. 7 is an exploded view of the light source assembly of the present invention.
图8是本发明光纤组件爆炸图。Fig. 8 is an exploded view of the optical fiber assembly of the present invention.
图9是本发明光路电路的处理电路结构示意图。FIG. 9 is a schematic diagram of the processing circuit structure of the optical circuit of the present invention.
图10是本发明电路控制的电路原理图。Fig. 10 is a circuit schematic diagram of the circuit control of the present invention.
图中: 11.机械骨架 1.X轴凸台体 101.空腔 102.定位面103.安装台 104.第一侧面 105.第二侧面 106.共面 2.Y轴安装壁201.空腔 202.定位面 203.凹腔 3.Z轴安装壁 301.空腔4.法兰盘 401.固紧装置 402.平截面 403.安装台 404.安装孔405.通孔 406.大凹腔 407.连接盘 12.Y轴光纤组件13.外部接口 14.光源组件 15.控制电路板 16.X轴光纤组件17.Z轴光纤组件 501.光源底板 502.第一分光器503.扇形凸台 504.光源驱动 505.光源 506.第二分光器507.螺纹柱 601.控测器 602.环骨架 603.光纤 604.控制器605.前放电路 606.耦合器 607.螺纹柱In the figure: 11.
具体实施方式Detailed ways
下面将结合附图对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
本发明中的轻小型三轴一体光纤陀螺,其三轴为一体化设计,即机械骨架11的结构(如图4所示)为一体化设计。由于机械骨架11的设计方案减轻了整体光纤陀螺的重量,同时也使X轴光纤组件16、Y轴光纤组件12和Z轴光纤组件17和光源组件14共亨同一块控制电路板15,节约了资源和功率的消耗。The light and small three-axis integrated fiber optic gyroscope in the present invention has an integrated design for its three axes, that is, the structure of the mechanical skeleton 11 (as shown in FIG. 4 ) is an integrated design. Because the design of the
请参见图2~图8所示,本发明是一种轻小型三轴一体光纤陀螺,由光源组件14、X轴光纤组件16、Y轴光纤组件12、Z轴光纤组件17、机械骨架11、控制电路板15和以及用于同外部产生信息联络的外部接口13组成,机械骨架11是用来安装源组件14、X轴光纤组件16、Y轴光纤组件12、Z轴光纤组件17和控制电路板15的。光源组件1 4安装在机械骨架11的顶端,X轴光纤组件16、Y轴光纤组件12和Z轴光纤组件17分别安装在机械骨架11的X轴凸台体1、Y轴安装壁2和Z轴安装壁3的定位面上,外部接口13安装在机械骨架11的法兰盘4上(参见图2、图3所示),控制电路板15安装在机械骨架11底部的固紧装置401上并嵌入机械骨架11底部的大凹腔406内(参见图6所示)。Please refer to Figures 2 to 8, the present invention is a light and small three-axis integrated fiber optic gyroscope, which consists of a
在本发明中,机械骨架11为符合右手坐标系规则的一体结构,X轴凸台体1设在法兰盘4上,X轴凸台体1的第一侧面104上垂直设有Y轴安装壁2,X轴凸台体1的第二侧面105上垂直设有Z轴安装壁3,Y轴安装壁2和Z轴安装壁3的共面106垂直;所述机械骨架11的X轴凸台体1的中心是一空腔101,空腔101内设有供X轴光纤组件16固定用的定位面102,X轴凸台体1与共面106的对角处设有安装台103;所述机械骨架11的Y轴安装壁2的中心是一空腔201,Y轴安装壁2的背部设有凹腔203,凹腔203内设有凸起的定位面202;所述机械骨架11的Z轴安装壁3的中心是一空腔301,Z轴安装壁3的背部设有凹腔,凹腔内设有凸起的定位面;所述机械骨架11的法兰盘4上设有通孔405和用于安装部件的多个安装孔404,各个安装孔404按照120°角均匀分布,法兰盘4的背部设有供控制电路板15固紧用的固紧装置401和大凹腔406,法兰盘4背部的连接盘407上设有安装台403(参见图4、图5、图6所示)。In the present invention, the mechanical skeleton 11 is an integral structure conforming to the rules of the right-handed coordinate system, the X-axis boss body 1 is arranged on the flange 4, and the first side 104 of the X-axis boss body 1 is vertically provided with a Y-axis installation Wall 2, the second side 105 of the X-axis boss body 1 is vertically provided with a Z-axis installation wall 3, and the co-plane 106 of the Y-axis installation wall 2 and the Z-axis installation wall 3 is vertical; the X-axis convex of the mechanical skeleton 11 The center of the table body 1 is a cavity 101, the cavity 101 is provided with a positioning surface 102 for fixing the X-axis optical fiber assembly 16, and a mounting table 103 is provided at the opposite corner of the X-axis boss body 1 and the co-plane 106; The center of the Y-axis installation wall 2 of the mechanical skeleton 11 is a cavity 201, the back of the Y-axis installation wall 2 is provided with a concave cavity 203, and a raised positioning surface 202 is provided in the concave cavity 203; the Z-axis of the mechanical skeleton 11 The center of the mounting wall 3 is a cavity 301, the back of the Z-axis mounting wall 3 is provided with a cavity, and a raised positioning surface is provided in the cavity; the flange 4 of the mechanical frame 11 is provided with a through hole 405 and A plurality of mounting holes 404 for mounting components, each mounting hole 404 is evenly distributed according to an angle of 120°, the back of the flange 4 is provided with a fastening device 401 and a large concave cavity 406 for fastening the control circuit board 15, the method The connecting plate 407 on the back of the blue plate 4 is provided with a mounting platform 403 (see FIG. 4 , FIG. 5 , and FIG. 6 ).
在本发明中的光源组件14,由光源505、第一分光器502、第二分光器506、光源驱动504和光源底板501组成,光源底板501上设有扇形凸台503,扇形凸台503上安装有光源505,光源底板501的两对角上分别设有第一分光器502和第二分光器506,光源底板501的安装柱上安装有光源驱动504;光源组件14安装在机械骨架11上部的Y轴安装壁2和Z轴安装壁3顶端(参见图7所示)。在此实例中第一分光器502和第二分光器506选用一分二分光器,故在光源组件14的光源底板501上相对安装两个分光器。在本发明中,其光源505输出的光功率为一分三的状况,可以只用一个分光器(即一分三分光器),但考虑到扩展光的功率,降低整个光纤陀螺的造价,故用安装两个分光器的方案。对于光源505即可用SLD光源也可用SFS掺饵光纤光源。The
在本发明中,因是三轴共体故光纤组件分别有三个,即X轴光纤组件16、Y轴光纤组件12和Z轴光纤组件17,这三个光纤组件的结构相同,现以Y轴光纤组件12进行详细说明其结构,三个光纤组件分别安装在机械骨架11的三个轴系中(X轴凸台体1、Y轴安装壁2和Z轴安装壁3)。Y轴光纤组件12由环骨架602、光纤603、探测器601、前放电路605、调制器604、耦合器606组成,环骨架602上缠绕有光纤603,环骨架602的上部安装有调制器604和耦合器605,探测器601安装在前放电路605上,前放电路605安装在环骨架602上的螺纹柱607上;Y轴光纤组件12安装在机械骨架11的Y轴安装壁2的定位面202上(参见图8所示)。在此实例中调制器选用集成光学调制器,其有较佳的稳定性能,对整个光纤陀螺的相位补偿有利于测试精度的提高。In the present invention, because it is a three-axis co-body, there are three optical fiber assemblies, namely the X-axis
在本发明中的控制电路板15至少包括FPGA、信号转换电路、调制器驱动电路(参见图9所示),FPGA接收经由X轴光纤组件16、Y轴光纤组件12和Z轴光纤组件17中探测器输出的光强电压信号经三轴的前放电路放大、经A/D转换器转换输出的数字信号,FPGA对接收的数字信号经时序控制处理后输出相位补偿电压信号给D/A转换器、三轴调制器的调制驱动电路,经调制驱动电路解调后输出电压信号控制三轴的调制器进行相位调制保持干涉光强恒定。本设计共享光源和FPGA,采用闭环检测控制方式。光纤陀螺的整体信号流程可以分为光路和电路两部分,其中,各轴的探测器(X轴探测器、Y轴探测器、Z轴探测器)和各轴的调制器(X轴调制器、Y轴调制器、Z轴调制器)分别完成光电、电光的信号转换。光源驱动电路504给光源505提供高稳定的恒流驱动并完成光源505内部的恒温控制,使光源505发出的光功率、光谱稳定。光源505发出的光经第一分光器502完成1∶2的功率分配,即到达第二分光器506的光功率是光源功率的三分之一,到达X轴耦合器的光功率是光源功率的三分之二。可以看出,光源505通过第一分光器502、第二分光器506和X轴耦合器将光功率三等分,使X轴光纤组件16、Y轴光纤组件12和Z轴光纤组件17中均有相同的光源。下面以Y轴向为例进行说明光路的信号流向(参见图9所示),经第一分光器502分配后的光源505再经第二分光器506分配出三分之一的光经Y轴耦合器606至Y轴调制器604,光经Y轴调制器604完成起偏、分光和加载控制信号后以光相向进入Y轴的光纤603,由于光纤陀螺转动后产生的光偏斜的角度再又通过Y轴调制器604加载控制信号、干涉(合光)以及偏振滤波后通过Y轴耦合器606进入Y轴探测器601。光从第二分光器506起,光路部分运行着两路流向相反的光信号,一路是进入光纤603前不携带载体角运动信息的从光源505来的信号,一路是从光纤603返回的携带载体角运动信息的返回到探测器601的信号。光信号在探测器601中完成光电转换,经前放电路605完成模拟放大和滤波,再经A/D转换器转换志数字信号,由FPGA完成信号的解调、滤波、积分等工作后输出两路信号,其中一路送到载体的下位机完成引导解算;另一路经D/A转换器转换后输出至调制驱动供Y轴调制器得到一个干涉光强的恒定值,这样就实现了控制部分的全数字式闭环控制。闭环控制在相向传播的两束光波之间人为引入一个与Sagnac相移大小相等、方向相反的相位差,用以抵消Sagnac相移,使系统始终工作在零相位状态,从而扩大了系统的动态范围。相位调制技术是指在光路中人为地引入非互易相位,从而使光的相位发生改变的技术,是光纤陀螺中的主要技术之一,相位调制由相位调制器来实现,本发明选取集成光学调制器。集成光学调制器是一个多功能器件,当光源经一个回路后产生的光相移通过FPGA实时采集的信号进行调制使该调制器保持在一个相对稳定的一个干涉光强值。The
由于角速率导致光纤603中相向传输的两束光相位发生偏置,该偏置经调制器后输出的干涉光强信号相应变化,该干涉光光强信号被探测器转换为电压信号,电压信号经前放电路放大处理后输出给A/D转换器转换成数字信号给FPGA,FPGA对接收的数字信号进行处理后输出反相电压信号给D/A转换器,经D/A转换器转换的模拟信号输出给调制驱动电路,调制驱动电路输出电压信号控制调制器进行相位调制,使得干涉光强保持恒定。其控制电路的原理图如图10所示,图中,FPGA选取XC2V50芯片,A/D转换器选取AD7854芯片,D/A转换器选取AD569芯片。FPGA分别与三片A/D转换器和D/A转换器联接实现对输入输出信息的时序控制。Due to the angular velocity, the phases of the two beams of light transmitted in opposite directions in the optical fiber 603 are biased, and the interference light intensity signal output by the modulator after the bias changes accordingly, and the interference light intensity signal is converted into a voltage signal by the detector, and the voltage signal After being amplified by the pre-amplifier circuit, it is output to the A/D converter and converted into a digital signal for the FPGA. After processing the received digital signal, the FPGA outputs an inverted voltage signal to the D/A converter. The analog signal is output to the modulation drive circuit, and the modulation drive circuit outputs a voltage signal to control the modulator to perform phase modulation, so that the interference light intensity remains constant. The schematic diagram of its control circuit is shown in Figure 10. In the figure, XC2V50 chip is selected for FPGA, AD7854 chip is selected for A/D converter, and AD569 chip is selected for D/A converter. FPGA is respectively connected with three A/D converters and D/A converters to realize timing control of input and output information.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100630524A CN100362320C (en) | 2005-04-08 | 2005-04-08 | Light and small three-axis integrated fiber optic gyroscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100630524A CN100362320C (en) | 2005-04-08 | 2005-04-08 | Light and small three-axis integrated fiber optic gyroscope |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1657876A true CN1657876A (en) | 2005-08-24 |
CN100362320C CN100362320C (en) | 2008-01-16 |
Family
ID=35007514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100630524A Expired - Fee Related CN100362320C (en) | 2005-04-08 | 2005-04-08 | Light and small three-axis integrated fiber optic gyroscope |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100362320C (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1904554B (en) * | 2006-07-28 | 2010-05-12 | 北京航空航天大学 | Combination of low-power fiber optic gyroscopes for space applications to reduce power consumption |
CN1888822B (en) * | 2006-07-28 | 2010-05-12 | 北京航空航天大学 | A Fiber Optic Gyroscope Combination Test Platform Suitable for Space Applications |
CN1888821B (en) * | 2006-07-28 | 2010-05-12 | 北京航空航天大学 | Light composite structure for space application of fiber optic gyroscope |
CN101290227B (en) * | 2008-06-17 | 2010-12-29 | 北京航空航天大学 | Three axis optical fibre gyroscope inertia measurement unit integral structure |
CN103557858A (en) * | 2013-10-25 | 2014-02-05 | 北京航空航天大学 | Light small biaxial photonic crystal optical fiber gyroscope framework |
CN103604431A (en) * | 2013-11-21 | 2014-02-26 | 北京航空航天大学 | Strapdown compass system based on triaxial integrated high-precision optic fiber gyroscope |
CN103674004A (en) * | 2012-09-07 | 2014-03-26 | 中国航空工业第六一八研究所 | Triaxial fiber gyroscope assembly and mounting bracket thereof |
CN103727935A (en) * | 2013-12-31 | 2014-04-16 | 天津大学 | Triaxial magnetofluid gyroscope |
CN104457731A (en) * | 2014-12-10 | 2015-03-25 | 西安中科华芯测控有限公司 | Biaxial optical fiber gyroscope |
CN105180918A (en) * | 2015-10-15 | 2015-12-23 | 中国船舶重工集团公司第七0七研究所 | Triaxial fiber-optic gyroscope and system integrated structure |
CN106352211A (en) * | 2016-09-22 | 2017-01-25 | 顺丰科技有限公司 | Three-axis rotating and positioning mechanism |
CN107543014A (en) * | 2017-09-06 | 2018-01-05 | 北京空间飞行器总体设计部 | A kind of two valve thin shell type high stable integral structures |
CN108225299A (en) * | 2017-12-21 | 2018-06-29 | 中国船舶重工集团公司第七0七研究所 | A kind of miniaturization three axis optical fibre gyro modulation /demodulation circuit |
CN108507558A (en) * | 2018-03-28 | 2018-09-07 | 株洲菲斯罗克光电技术有限公司 | A kind of lightweight three-axis integrative fibre optic gyroscope |
CN109676979A (en) * | 2019-01-07 | 2019-04-26 | 刘向宁 | A kind of plastic optical fiber optical splitter, preparation method and hot pressing die |
CN109781101A (en) * | 2019-03-15 | 2019-05-21 | 重庆零壹空间航天科技有限公司 | The redundancy approach of carrier rocket inertial measurement system and its component |
CN110553637A (en) * | 2019-09-11 | 2019-12-10 | 上海航天控制技术研究所 | Optical fiber gyroscope combination |
CN111044028A (en) * | 2020-01-09 | 2020-04-21 | 陕西华燕航空仪表有限公司 | Three-axis optical fiber gyroscope |
CN114322977A (en) * | 2022-03-15 | 2022-04-12 | 西安中科华芯测控有限公司 | Small three-axis optical fiber gyroscope with multiplexing structure |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6125014A (en) * | 1984-07-16 | 1986-02-03 | Tech Res & Dev Inst Of Japan Def Agency | Optical fiber gyroscope |
US5189488A (en) * | 1991-11-25 | 1993-02-23 | Litton Systems, Inc. | Fiber optical gyroscope utilizing orthogonal sequences |
US5365337A (en) * | 1992-10-28 | 1994-11-15 | Smiths Industries Aerospace & Defense Systems, Inc. | Method and apparatus for compensating for the residual birefringence in interferometric fiber-optic gyros |
US5854678A (en) * | 1996-06-28 | 1998-12-29 | Honeywell Inc. | Three-axis fiber optic gyroscope having a single source and multi-coupler configuration |
CN2655179Y (en) * | 2003-11-20 | 2004-11-10 | 北京航空航天大学 | Optical fiber top mechanical frame |
-
2005
- 2005-04-08 CN CNB2005100630524A patent/CN100362320C/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1904554B (en) * | 2006-07-28 | 2010-05-12 | 北京航空航天大学 | Combination of low-power fiber optic gyroscopes for space applications to reduce power consumption |
CN1888822B (en) * | 2006-07-28 | 2010-05-12 | 北京航空航天大学 | A Fiber Optic Gyroscope Combination Test Platform Suitable for Space Applications |
CN1888821B (en) * | 2006-07-28 | 2010-05-12 | 北京航空航天大学 | Light composite structure for space application of fiber optic gyroscope |
CN101290227B (en) * | 2008-06-17 | 2010-12-29 | 北京航空航天大学 | Three axis optical fibre gyroscope inertia measurement unit integral structure |
CN103674004A (en) * | 2012-09-07 | 2014-03-26 | 中国航空工业第六一八研究所 | Triaxial fiber gyroscope assembly and mounting bracket thereof |
CN103557858B (en) * | 2013-10-25 | 2016-02-17 | 北京航空航天大学 | A kind of light small biaxial photonic crystal optical fiber gyroscope framework |
CN103557858A (en) * | 2013-10-25 | 2014-02-05 | 北京航空航天大学 | Light small biaxial photonic crystal optical fiber gyroscope framework |
CN103604431A (en) * | 2013-11-21 | 2014-02-26 | 北京航空航天大学 | Strapdown compass system based on triaxial integrated high-precision optic fiber gyroscope |
CN103727935A (en) * | 2013-12-31 | 2014-04-16 | 天津大学 | Triaxial magnetofluid gyroscope |
CN104457731A (en) * | 2014-12-10 | 2015-03-25 | 西安中科华芯测控有限公司 | Biaxial optical fiber gyroscope |
CN105180918B (en) * | 2015-10-15 | 2018-04-13 | 中国船舶重工集团公司第七0七研究所 | Three axis optical fibre gyro and system integration structure |
CN105180918A (en) * | 2015-10-15 | 2015-12-23 | 中国船舶重工集团公司第七0七研究所 | Triaxial fiber-optic gyroscope and system integrated structure |
CN106352211A (en) * | 2016-09-22 | 2017-01-25 | 顺丰科技有限公司 | Three-axis rotating and positioning mechanism |
CN107543014A (en) * | 2017-09-06 | 2018-01-05 | 北京空间飞行器总体设计部 | A kind of two valve thin shell type high stable integral structures |
CN107543014B (en) * | 2017-09-06 | 2019-04-09 | 北京空间飞行器总体设计部 | A kind of two valve thin shell type high stable integral structures |
CN108225299A (en) * | 2017-12-21 | 2018-06-29 | 中国船舶重工集团公司第七0七研究所 | A kind of miniaturization three axis optical fibre gyro modulation /demodulation circuit |
CN108507558A (en) * | 2018-03-28 | 2018-09-07 | 株洲菲斯罗克光电技术有限公司 | A kind of lightweight three-axis integrative fibre optic gyroscope |
CN108507558B (en) * | 2018-03-28 | 2024-04-30 | 株洲菲斯罗克光电科技股份有限公司 | Lightweight triaxial integrated optical fiber gyroscope |
CN109676979A (en) * | 2019-01-07 | 2019-04-26 | 刘向宁 | A kind of plastic optical fiber optical splitter, preparation method and hot pressing die |
CN109781101A (en) * | 2019-03-15 | 2019-05-21 | 重庆零壹空间航天科技有限公司 | The redundancy approach of carrier rocket inertial measurement system and its component |
CN110553637A (en) * | 2019-09-11 | 2019-12-10 | 上海航天控制技术研究所 | Optical fiber gyroscope combination |
CN111044028A (en) * | 2020-01-09 | 2020-04-21 | 陕西华燕航空仪表有限公司 | Three-axis optical fiber gyroscope |
CN114322977A (en) * | 2022-03-15 | 2022-04-12 | 西安中科华芯测控有限公司 | Small three-axis optical fiber gyroscope with multiplexing structure |
CN114322977B (en) * | 2022-03-15 | 2022-06-21 | 西安中科华芯测控有限公司 | Small three-axis optical fiber gyroscope with multiplexing structure |
Also Published As
Publication number | Publication date |
---|---|
CN100362320C (en) | 2008-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100362320C (en) | Light and small three-axis integrated fiber optic gyroscope | |
CN107515000B (en) | A Modulated Dual-Axis Atomic Spin Gyroscope | |
CN101349564B (en) | An inertial measurement device | |
CN102353373B (en) | Double-closed loop locking technology-based resonant optical gyro | |
CN102980578B (en) | A kind of double-shaft rotation optical fiber strapdown inertia navigation device | |
CN103278150B (en) | A kind of light of detection angle speed carries microwave gyroscope method | |
CN113532410B (en) | Single-beam biaxial atomic spin gyroscope | |
Belfi et al. | Performance of “G-Pisa” ring laser gyro at the Virgo site | |
Yao et al. | Polarimetry fiber optic gyroscope | |
CN103411601A (en) | Modulate and demodulate method of double-interference type fiber optic gyroscope based on optical path differencing | |
CN101261127A (en) | Fiber optic gyroscope based on the principle of MZ resonance interference | |
CN114353790A (en) | Atomic interference inertial navigation information detection system and detection method | |
CN102305628B (en) | Triaxial integrated all-optical-fiber inertial sensing system | |
Meng et al. | Closed-loop dual-atom-interferometer inertial sensor with continuous cold atomic beams | |
CN1228609C (en) | Beat frequency detection method for travelling-wave annular resonance cavity of non-mechanical gyro | |
Kim et al. | Fiber-optic gyroscopes: In harsh, confining environments this advanced gyroscope, a close cousin to the ring laser gyro, offers great advantages | |
CN101344402A (en) | Optical fiber measuring device and measuring method for superconducting spherical rotor | |
CN1888821A (en) | Light assembling structure for optical fiber gyro-space application | |
CN111551165A (en) | Three-axis gyroscope structure based on orthogonal grating and four-quadrant detector | |
CN114740223B (en) | Monolithic integrated triaxial optical accelerometer based on push-pull type photonic crystal zipper cavity | |
CN1328585C (en) | Space optical path interference type low-light apparatus electric top | |
Nayak et al. | Advanced optical gyroscopes | |
CN116499446A (en) | Triaxial fiber optic gyroscope and inertial measurement unit based on multi-path wide spectrum light source | |
CN204679080U (en) | A kind of double-shaft optical fiber gyroscope instrument | |
CN212082397U (en) | Laser gyro testing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080116 |