CN1648537A - Regulating method for heating and over cold degree of multiple air conditioner system - Google Patents

Regulating method for heating and over cold degree of multiple air conditioner system Download PDF

Info

Publication number
CN1648537A
CN1648537A CN 200410039048 CN200410039048A CN1648537A CN 1648537 A CN1648537 A CN 1648537A CN 200410039048 CN200410039048 CN 200410039048 CN 200410039048 A CN200410039048 A CN 200410039048A CN 1648537 A CN1648537 A CN 1648537A
Authority
CN
China
Prior art keywords
during
expansion valve
pulses
target temperature
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410039048
Other languages
Chinese (zh)
Other versions
CN100561064C (en
Inventor
张晓兰
毛守博
卢大海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haier Group Corp
Qingdao Haier Air Conditioning Electric Co Ltd
Original Assignee
Haier Group Corp
Qingdao Haier Air Conditioning Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haier Group Corp, Qingdao Haier Air Conditioning Electric Co Ltd filed Critical Haier Group Corp
Priority to CNB200410039048XA priority Critical patent/CN100561064C/en
Publication of CN1648537A publication Critical patent/CN1648537A/en
Application granted granted Critical
Publication of CN100561064C publication Critical patent/CN100561064C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

The heating supercooling degree regulating process for multiple air conditioning system includes:after the indoor units receive the heating signal from the controller, the indoor unit electronic expansion valves are opened to the reference opening and the outdoor unit judges automatically the total capacity of running indoor units, determines the initial running state and transmits relevant parameters to indoor units; and each of the indoor units determines the target temperature T20 based on the transmitted information, and each of the electronic expansion valves regulates the opening. Setting the target temperature T20 can ensure the homogeneous distribution of the refrigerant and effective supercooling degree, and the precise control with the electronic expansion valves ensure the accuracy of supercooling degree regulation, so as to reach the effective matching between the indoor units and the outdoor unit, high efficiency of the compressor and high efficiency and energy saving in the system.

Description

Multi-connected air conditioning system heat the degree of supercooling control method
Technical field
The present invention relates to the control technology field of multi-connected air conditioner, more particularly, the present invention relates in the heating operation multi-connected air conditioning system heat the degree of supercooling regulation technology.
Background technology
At present, for improve energy efficiency, reduce cost be extensive use of with one drag many, drag the multi-connected air conditioning system that mostly is main more, in these existing multi-connected air conditioning systems, when heating operation, generally the electric expansion valve of indoor set is made as fixedly aperture, and carry out the control of refrigerant flow by the electric expansion valve of off-premises station, heat the purpose of (refrigeration) to reach.Yet, the fixedly control of aperture of this indoor set electric expansion valve, can not guarantee the effective cold excessively of cold-producing medium, more can not guarantee the cold-producing medium distributed uniform, thereby make the heating effect of each indoor set inhomogeneous, the temperature drift at place, suction port of compressor, the ability of compressor can not be not fully exerted, cause compressor efficiency to reduce, system's fluctuation of service, the problem that increase power consumption, wastes energy.
In order to address the above problem, in patent documentation CN1275700, JPH08-145482A etc., all adopted the method for regulating degree of supercooling by electric expansion valve in the conditioning chamber, thereby under the situation that the service ability of indoor set and off-premises station is complementary, adjusting by accurate indoor electric expansion valve, guarantee the effective cold excessively of cold-producing medium, reached the purpose of system stable operation.
Yet; existing by conditioning chamber in electric expansion valve regulate in the method for degree of supercooling; owing to only the indoor set of temperature detector on is carried out the adjusting of electric expansion valve; and the electric expansion valve that makes the indoor set of temperature detector off keeps former aperture; so; under the situation that machine moves in little; because of the ability of indoor set working capacity much smaller than off-premises station; make compressor outlet side pressure at expulsion too high; even cause system out of service because of high voltage protective; thereby can't make system stable operation, reduce the efficient of system's operation.
Summary of the invention
Shortcoming for the control method that heats degree of supercooling that overcomes above-mentioned air-conditioning system, the invention provides the control method that a kind of multi-connected air conditioning system heats degree of supercooling, thereby pass through the aperture of the electric expansion valve of each indoor set of adjusting, even make when machine moves in little, the ability of indoor set and the ability of off-premises station are complementary, the cold-producing medium of each indoor set of flowing through all has certain degree of supercooling, thereby guarantees system stable operation, improves the efficient of compressor.
The invention provides the control method that a kind of multi-connected air conditioning system heats degree of supercooling, it is characterized in that: when heating operation, indoor set receive that controller transmits heat signal after, each indoor set electric expansion valve enters the benchmark aperture; Off-premises station is obtained total capacity A according to the capability code of each indoor set, determines the initial launch state of off-premises station; Regulate the aperture of electric expansion valve of the indoor set of this temperature detector on according to the target temperature value T20 of the indoor set liquid pipe side of temperature detector on; More described total capacity A and virtual running critical point B, when judging A 〉=B, make the electric expansion valve of the indoor set of temperature detector off keep the benchmark aperture constant, when judging A<B, make the indoor set of temperature detector off enter virtual operation mode, regulate the aperture of electric expansion valve of the indoor set of this temperature detector off according to the target temperature value T20 of the indoor set liquid pipe side of this temperature detector off.
Here, described virtual running critical value B is 8.0HP.
And the benchmark aperture of the indoor set of described temperature detector on is 350 pulses, and the benchmark aperture of the indoor set of described temperature detector off is 65 pulses.
Among the present invention, the target temperature T20 value of described each indoor set is following definite according to the pressure at expulsion Pd value that records in the compressor outlet side, that is:
During Pd 〉=2.0MPa, target temperature T0 value is 51 ℃;
2.0MPa during>Pd 〉=1.9MPa, target temperature T20 value is 48 ℃;
1.9MPa during>Pd 〉=1.8MPa, target temperature T20 value is 46 ℃;
1.8MPa during>Pd 〉=1.7MPa, target temperature T20 value is 44 ℃;
1.7MPa during>Pd 〉=1.6MPa, target temperature T20 value is 40 ℃;
1.6MPa during>Pd 〉=1.5MPa, target temperature T20 value is 38 ℃;
1.5MPa during>Pd 〉=1.4MPa, target temperature T20 value is 35 ℃;
1.4MPa during>Pd 〉=1.3MPa, target temperature T20 value is 32 ℃;
1.3MPa during>Pd 〉=1.2MPa, target temperature T20 value is 30 ℃;
1.2MPa during>Pd 〉=1.1MPa, target temperature T20 value is 30 ℃;
1.1MPa during>Pd, target temperature T20 value is 30 ℃.
In the present invention, detect the actual temperature T2 of each indoor set liquid pipe side in real time, and according to the difference DELTA T of described observed temperature T2 and target temperature T20, the aperture of following each indoor electric expansion valve of adjusting, that is:
During Δ T<-8 ℃, electronic expansion valve opening on current aperture, add 10 pulses/time;
During-8 ℃≤Δ T<-6 ℃, electronic expansion valve opening on current aperture, add 8 pulses/time;
During-6 ℃≤Δ T<-5 ℃, electronic expansion valve opening on current aperture, add 6 pulses/time;
During-5 ℃≤Δ T<-3 ℃, electronic expansion valve opening on current aperture, add 5 pulses/time;
During-3 ℃≤Δ T<-2 ℃, electronic expansion valve opening on current aperture, add 3 pulses/time;
During-2 ℃≤Δ T<-1 ℃, electronic expansion valve opening on current aperture, add 2 pulses/time;
During-1 ℃≤Δ T<0 ℃, electronic expansion valve opening on current aperture, add 1 pulse/time;
In the time of Δ T=0 ℃, the aperture of electric expansion valve remains unchanged;
During 0 ℃≤Δ T<1 ℃, electronic expansion valve opening on current aperture, subtract 1 pulse/time;
During 1 ℃≤Δ T<2 ℃, electronic expansion valve opening on current aperture, subtract 2 pulses/time;
During 2 ℃≤Δ T<3 ℃, electronic expansion valve opening on current aperture, subtract 3 pulses/time;
During 3 ℃≤Δ T<5 ℃, electronic expansion valve opening on current aperture, subtract 5 pulses/time;
During 5 ℃≤Δ T<6 ℃, electronic expansion valve opening on current aperture, subtract 6 pulses/time;
During 6 ℃≤Δ T<8 ℃, electronic expansion valve opening on current aperture, subtract 8 pulses/time;
During Δ T 〉=8 ℃, electronic expansion valve opening on current aperture, subtract 10 pulses/time.
Description of drawings
Fig. 1 drags the circular chart of three air-conditioning systems when heating operation.
Fig. 2 is the adjusting flow chart that heats degree of supercooling of the embodiment of the invention.
The specific embodiment
In order to help to understand the present invention, below, with reference to accompanying drawing 1,2, embodiments of the invention are described, but protection scope of the present invention is not limited to this embodiment.
Fig. 1 drags the circular chart of three air-conditioning systems when heating operation, only shows here with degree of supercooling of the present invention and regulates relevant part.Off-premises station 1, indoor set 2a, 2b, 2c and indoor electric expansion valve 3a, the 3b, the 3c ring-type that are installed in indoor set liquid pipe side link to each other.On the tracheae of the close compressor of outdoor compressor outlet side, pressure sensor 5 is installed, is used to detect pressure at expulsion.Between the heat exchanger of each indoor set 2a, 2b, 2c and indoor electric expansion valve 3a separately, 3b, 3c, liquid pipe temperature sensor 4a, 4b, 4c are installed, are used to detect the refrigerant temperature of indoor set outlet side.The flow direction of cold-producing medium when solid arrow is illustrated in heating operation among the figure.Fig. 2 is the adjusting flow process skeleton diagram that heats degree of supercooling of the embodiment of the invention.
Multi-connected air conditioning system is when heating operation, the electric expansion valve 3a of the indoor set 2a of temperature detector on enters 350 pulses of benchmark aperture, electric expansion valve 3b, the 3c of indoor set 2b, the 2c of temperature detector off enters benchmark aperture 65 pulses (the benchmark aperture of the indoor set of different abilities may be different), and each indoor set is to off-premises station transmitting capacity code simultaneously.The capability code that off-premises station sends according to indoor set is obtained capability code summation A (below abbreviate total capacity A as), determine the initial operation state of self, to send each indoor set 2a, 2b, 2c to by current high-pressure Pd, total capacity A and the initial launch state that pressure sensor 5 detects; Indoor set 2a, 2b, 2c began the adjusting of degree of supercooling in 5 minutes later at compressor start.
The indoor set 2a of temperature detector on is according to the value of the high-pressure Pd automatic setting target temperature T20a of off-premises station, that is:
During Pd 〉=2.0MPa, target temperature T20a value is 51 ℃;
2.0MPa during>Pd 〉=1.9MPa, target temperature T20a value is 48 ℃;
1.9MPa during>Pd 〉=1.8MPa, target temperature T20a value is 46 ℃;
1.8MPa during>Pd 〉=1.7MPa, target temperature T20a value is 44 ℃;
1.7MPa during>Pd 〉=1.6MPa, target temperature T20a value is 40 ℃;
1.6MPa during>Pd 〉=1.5Mpa, target temperature T20a value is 38 ℃;
1.5MPa during>Pd 〉=1.4MPa, target temperature T20a value is 35 ℃;
1.4MPa during>Pd 〉=1.3MPa, target temperature T20a value is 32 ℃;
1.3MPa during>Pd 〉=1.2MPa, target temperature T20a value is 30 ℃;
1.2MPa during>Pd 〉=1.1MPa, target temperature T20a value is 30 ℃;
1.1MPa during>Pd, target temperature T20a value is 30 ℃.
Then, detect the liquid pipe outlet temperature T2a of current reality, ask T2a-T20a=Δ T, and the electric expansion valve 3a of the indoor set 2a of temperature detector on is transferred valve, that is: from 350 pulses of benchmark aperture by liquid pipe temperature sensor 4a
During Δ T<-8 ℃, electronic expansion valve opening on current aperture, add 10 pulses/time;
During-8 ℃≤Δ T<-6 ℃, electronic expansion valve opening on current aperture, add 8 pulses/time;
During-6 ℃≤Δ T<-5 ℃, electronic expansion valve opening on current aperture, add 6 pulses/time;
During-5 ℃≤Δ T<-3 ℃, electronic expansion valve opening on current aperture, add 5 pulses/time;
During-3 ℃≤Δ T<-2 ℃, electronic expansion valve opening on current aperture, add 3 pulses/time;
During-2 ℃≤Δ T<-1 ℃, electronic expansion valve opening on current aperture, add 2 pulses/time;
During-1 ℃≤Δ T<0 ℃, electronic expansion valve opening on current aperture, add 1 pulse/time;
In the time of Δ T=0 ℃, the aperture of electric expansion valve remains unchanged;
During 0 ℃≤Δ T<1 ℃, electronic expansion valve opening on current aperture, subtract 1 pulse/time;
During 1 ℃≤Δ T<2 ℃, electronic expansion valve opening on current aperture, subtract 2 pulses/time;
During 2 ℃≤Δ T<3 ℃, electronic expansion valve opening on current aperture, subtract 3 pulses/time;
During 3 ℃≤Δ T<5 ℃, electronic expansion valve opening on current aperture, subtract 5 pulses/time;
During 5 ℃≤Δ T<6 ℃, electronic expansion valve opening on current aperture, subtract 6 pulses/time;
During 6 ℃≤Δ T<8 ℃, electronic expansion valve opening on current aperture, subtract 8 pulses/time;
During Δ T 〉=8 ℃, electronic expansion valve opening on current aperture, subtract 10 pulses/time.
Below, be example with indoor set 2b, the adjustment process of electric expansion valve of the indoor set of temperature detector off is described.After the indoor set 2b of temperature detector off receives operational factor from off-premises station, at first relatively total capacity A and virtual running critical point B (for example 8.0HP), when judging A 〉=B, former aperture 65 pulses of the indoor set maintenance electric expansion valve of temperature detector off are constant; When judging A<B, the indoor set 2b of temperature detector off enters virtual operation mode, and with the indoor set 2a-sample of temperature detector on, determine that its liquid pipe surveys target temperature T20b, and survey target temperature T20b according to this liquid pipe electric expansion valve 3b is transferred valve.
Here, the aperture scope of the electric expansion valve 3a of the indoor set 2a of temperature detector on is 50~480 pulses, and the aperture scope of electric expansion valve 3b, the 3c of indoor set 2b, the 2c of temperature detector off is 50~200 pulses.In addition, in the present embodiment, every 20s regulates the once aperture of each indoor electric expansion valve, the corresponding mechanical adjustment action that the aperture that 1., 2. is meant the indoor expansion valve that is right after control section among Fig. 2 is regulated.
According to the present invention, in heating operation, indoor electric expansion valve makes the cold-producing medium distributed uniform by the adjusting of degree of supercooling, and the cold-producing medium that flows through each indoor set is complementary with the ability of each indoor set, has guaranteed the heating effect of each indoor set.Especially, when machine moves in little, enter virtual running by the indoor set that makes temperature detector off, the indoor set of simulation temperature detector on carries out the adjusting of electric expansion valve, make condensation area strengthen, guarantee that the indoor and outdoor machine ability is complementary, thereby the outlet pressure that has prevented the compressor outlet side is too high, avoid stopping of system's operation, effectively guaranteed the stable operation of system.
And, in the present invention, provided the target temperature T20 value of each pressure limit by the thermodynamic behaviour of cold-producing medium, thereby having guaranteed all has certain degree of supercooling from the cold-producing medium that every indoor set flows out, the cold-producing medium total condensation is got off, thereby make that the ability of off-premises station is brought into play to greatest extent.

Claims (5)

1. a multi-connected air conditioning system heats the control method of degree of supercooling, it is characterized in that:
When heating operation, indoor set receive that controller transmits heat signal after, each indoor set electric expansion valve enters the benchmark aperture; Off-premises station is obtained total capacity A according to the capability code of each indoor set, determines the initial launch state of off-premises station;
Regulate the aperture of electric expansion valve of the indoor set of this temperature detector on according to the target temperature T20 of the indoor set liquid pipe side of temperature detector on;
More described total capacity A and virtual running critical point B, when judging A 〉=B, make the electric expansion valve of the indoor set of temperature detector off keep the benchmark aperture constant, when judging A<B, make the indoor set of temperature detector off enter virtual operation mode, regulate the aperture of electric expansion valve of the indoor set of this temperature detector off according to the target temperature T20 of the indoor set liquid pipe side of temperature detector off.
2. multi-connected air conditioning system as claimed in claim 1 heats the control method of degree of supercooling, it is characterized in that: described virtual running critical value B is 8.0HP.
3. multi-connected air conditioning system as claimed in claim 1 heats the control method of degree of supercooling, it is characterized in that: the benchmark aperture of the indoor set of described temperature detector on is 350 pulses, and the benchmark aperture of the indoor set of described temperature detector off is 65 pulses.
4. multi-connected air conditioning system as claimed in claim 1 heats the control method of degree of supercooling, it is characterized in that: according to the described target temperature T20 value of definite described each indoor set of the pressure at expulsion Pd value that detects in the compressor outlet side, that is:
During Pd 〉=2.0MPa, target temperature value T20 is 51 ℃;
2.0MPa during>Pd 〉=1.9MPa, target temperature T20 value is 48 ℃;
1.9MPa during>Pd 〉=1.8MPa, target temperature T20 value is 46 ℃;
1.8MPa during>Pd 〉=1.7MPa, target temperature T20 value is 44 ℃;
1.7MPa during>Pd 〉=1.6MPa, target temperature T20 value is 40 ℃;
1.6MPa during>Pd 〉=1.5MPa, target temperature T20 value is 38 ℃;
1.5MPa during>Pd 〉=1.4MPa, target temperature T20 value is 35 ℃;
1.4MPa during>Pd 〉=1.3MPa, target temperature T20 value is 32 ℃;
1.3MPa during>Pd 〉=1.2MPa, target temperature T20 value is 30 ℃;
1.2MPa during>Pd 〉=1.1MPa, target temperature T20 value is 30 ℃;
1.1MPa during>Pd, target temperature T20 value is 30 ℃.
5. multi-connected air conditioning system as claimed in claim 1 heats the control method of degree of supercooling, it is characterized in that: the aperture of regulating described each indoor electric expansion valve according to the difference DELTA T of (the observed temperature T2-target temperature T20 of liquid pipe side), that is:
During Δ T<-8 ℃, electronic expansion valve opening on current aperture, add 10 pulses/time;
During-8 ℃≤Δ T<-6 ℃, electronic expansion valve opening on current aperture, add 8 pulses/time;
During-6 ℃≤Δ T<-5 ℃, electronic expansion valve opening on current aperture, add 6 pulses/time;
During-5 ℃≤Δ T<-3 ℃, electronic expansion valve opening on current aperture, add 5 pulses/time;
During-3 ℃≤Δ T<-2 ℃, electronic expansion valve opening on current aperture, add 3 pulses/time;
During-2 ℃≤Δ T<-1 ℃, electronic expansion valve opening on current aperture, add 2 pulses/time;
During-1 ℃≤Δ T<0 ℃, electronic expansion valve opening on current aperture, add 1 pulse/time;
In the time of Δ T=0 ℃, the aperture of electric expansion valve remains unchanged;
During 0 ℃≤Δ T<1 ℃, electronic expansion valve opening on current aperture, subtract 1 pulse/time;
During 1 ℃≤Δ T<2 ℃, electronic expansion valve opening on current aperture, subtract 2 pulses/time;
During 2 ℃≤Δ T<3 ℃, electronic expansion valve opening on current aperture, subtract 3 pulses/time;
During 3 ℃≤Δ T<5 ℃, electronic expansion valve opening on current aperture, subtract 5 pulses/time;
During 5 ℃≤Δ T<6 ℃, electronic expansion valve opening on current aperture, subtract 6 pulses/time;
During 6 ℃≤Δ T<8 ℃, electronic expansion valve opening on current aperture, subtract 8 pulses/time;
During Δ T 〉=8 ℃, electronic expansion valve opening on current aperture, subtract 10 pulses/time.
CNB200410039048XA 2004-01-20 2004-01-20 Multi-connected air conditioning system heat the degree of supercooling control method Expired - Fee Related CN100561064C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200410039048XA CN100561064C (en) 2004-01-20 2004-01-20 Multi-connected air conditioning system heat the degree of supercooling control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200410039048XA CN100561064C (en) 2004-01-20 2004-01-20 Multi-connected air conditioning system heat the degree of supercooling control method

Publications (2)

Publication Number Publication Date
CN1648537A true CN1648537A (en) 2005-08-03
CN100561064C CN100561064C (en) 2009-11-18

Family

ID=34868551

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200410039048XA Expired - Fee Related CN100561064C (en) 2004-01-20 2004-01-20 Multi-connected air conditioning system heat the degree of supercooling control method

Country Status (1)

Country Link
CN (1) CN100561064C (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200363A (en) * 2010-03-23 2011-09-28 三菱电机株式会社 Multi-room air conditioning apparatus
CN102242996A (en) * 2011-07-05 2011-11-16 海尔集团公司 Method for controlling opening of electronic expansion valve in central air-conditioning unit
CN101329093B (en) * 2007-06-22 2012-08-08 三星电子株式会社 Multi air-conditioner for simultaneously cooling/heating and method for controlling the same
CN102865646A (en) * 2011-07-06 2013-01-09 三菱电机株式会社 Air-conditioning apparatus
CN103206750A (en) * 2013-04-12 2013-07-17 浙江大学 Multi-split air conditioning system and status switching control method therefor
CN103644621A (en) * 2013-11-15 2014-03-19 浙江大学 Central arithmetic type multi-split air conditioner system and state switching control method thereof
CN105276749A (en) * 2014-06-24 2016-01-27 青岛海信日立空调系统有限公司 Method and device for controlling multi-split air-conditioning system
CN105571075A (en) * 2016-01-20 2016-05-11 青岛海尔空调电子有限公司 Control method for enthalpy increase by return air of water-cooled multi-split air conditioner
CN105910357A (en) * 2016-04-25 2016-08-31 广东美的暖通设备有限公司 Air conditioner system and valve control method thereof
CN108613336A (en) * 2018-05-15 2018-10-02 青岛海尔空调电子有限公司 It is a kind of for controlling the method and apparatus of air conditioner, air conditioner, computer readable storage medium
CN115046289A (en) * 2022-05-16 2022-09-13 广东美的制冷设备有限公司 Control method and control device of multi-split air conditioning system and multi-split air conditioning system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329093B (en) * 2007-06-22 2012-08-08 三星电子株式会社 Multi air-conditioner for simultaneously cooling/heating and method for controlling the same
CN102200363B (en) * 2010-03-23 2013-11-06 三菱电机株式会社 Multi-room air conditioning apparatus
CN102200363A (en) * 2010-03-23 2011-09-28 三菱电机株式会社 Multi-room air conditioning apparatus
CN102242996A (en) * 2011-07-05 2011-11-16 海尔集团公司 Method for controlling opening of electronic expansion valve in central air-conditioning unit
CN102242996B (en) * 2011-07-05 2013-06-12 海尔集团公司 Method for controlling opening of electronic expansion valve in central air-conditioning unit
CN102865646B (en) * 2011-07-06 2015-06-17 三菱电机株式会社 Air-conditioning apparatus
CN102865646A (en) * 2011-07-06 2013-01-09 三菱电机株式会社 Air-conditioning apparatus
CN103206750A (en) * 2013-04-12 2013-07-17 浙江大学 Multi-split air conditioning system and status switching control method therefor
CN103644621A (en) * 2013-11-15 2014-03-19 浙江大学 Central arithmetic type multi-split air conditioner system and state switching control method thereof
CN105276749A (en) * 2014-06-24 2016-01-27 青岛海信日立空调系统有限公司 Method and device for controlling multi-split air-conditioning system
CN105276749B (en) * 2014-06-24 2018-01-30 青岛海信日立空调系统有限公司 A kind of control method and device of multi-online air-conditioning system
CN105571075A (en) * 2016-01-20 2016-05-11 青岛海尔空调电子有限公司 Control method for enthalpy increase by return air of water-cooled multi-split air conditioner
CN105571075B (en) * 2016-01-20 2019-08-20 青岛海尔空调电子有限公司 A kind of control method of water-cooled multi-connected machine return-air increasing enthalpy
CN105910357A (en) * 2016-04-25 2016-08-31 广东美的暖通设备有限公司 Air conditioner system and valve control method thereof
CN105910357B (en) * 2016-04-25 2018-11-20 广东美的暖通设备有限公司 Air-conditioning system and its valve body control method
CN108613336A (en) * 2018-05-15 2018-10-02 青岛海尔空调电子有限公司 It is a kind of for controlling the method and apparatus of air conditioner, air conditioner, computer readable storage medium
CN115046289A (en) * 2022-05-16 2022-09-13 广东美的制冷设备有限公司 Control method and control device of multi-split air conditioning system and multi-split air conditioning system

Also Published As

Publication number Publication date
CN100561064C (en) 2009-11-18

Similar Documents

Publication Publication Date Title
CN1648537A (en) Regulating method for heating and over cold degree of multiple air conditioner system
CN1104605C (en) Improved refrigerating system for one driving multiple-unit air conditioner
CN101038097A (en) Refrigerating system of air-conditioning and method for controlling flow of refrigerant
CN1957213A (en) Heat pump
CN1779391A (en) Air conditioning system and method for controlling the same
CN102914026B (en) Control method for preventing refrigerant of outdoor unit of multi-linkage air conditioning unit from deflecting during heating
CN101984311B (en) Hot-water frost preventing and defrosting device with compressor cooling
CN102032648A (en) Refrigerant flow control method for multi-connected air-conditioning system during heating
CN110857809A (en) Air conditioner and oil return control method thereof
CN1484746A (en) Heat exchanger unit
CN103017269A (en) Solution dehumidification/regeneration heat and moisture independent treatment air conditioning device and energy-saving operation method thereof
CN1484836A (en) A nuclear power plant and method of operating the same
CN103392121B (en) The unit that the pressure and temperature of the air that reciprocating internal combustion engine sucks is simulated
CN1737456A (en) Electricity generating and air conditioning system with dehumidifier
CN1223802C (en) Air conditioner
CN102384555B (en) Full fresh air heat pump type constant temperature and constant humidity air conditioning system
CN1766212A (en) Drying machine adopting freezing circulatory system
CN1645004A (en) Air conditioning system and method for controlling the same
CN203116230U (en) Automatic adjusting device for chilled water of air conditioner
CN1517628A (en) Air conditioner and control method of air conditioner
CN203323463U (en) Multi-water-source-connected air-conditioning system
CN1690595A (en) Heat pump and compressor discharge pressure controlling apparatus for the same
CN102901194A (en) Condensation heat recovery device of air-cooled air conditioning unit
CN1445487A (en) Air conditioner
CN109990498A (en) A kind of combustion-gas thermal pump air-conditioning system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091118

Termination date: 20160120

EXPY Termination of patent right or utility model