CN1614406A - Quantitatively analyzing method for fluohydric acid in lithium ion battery electrolyte - Google Patents

Quantitatively analyzing method for fluohydric acid in lithium ion battery electrolyte Download PDF

Info

Publication number
CN1614406A
CN1614406A CN 200410052417 CN200410052417A CN1614406A CN 1614406 A CN1614406 A CN 1614406A CN 200410052417 CN200410052417 CN 200410052417 CN 200410052417 A CN200410052417 A CN 200410052417A CN 1614406 A CN1614406 A CN 1614406A
Authority
CN
China
Prior art keywords
titrant
electrolyte
titration
ion battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410052417
Other languages
Chinese (zh)
Other versions
CN100368800C (en
Inventor
左晓希
李伟善
刘建生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CNB2004100524179A priority Critical patent/CN100368800C/en
Publication of CN1614406A publication Critical patent/CN1614406A/en
Application granted granted Critical
Publication of CN100368800C publication Critical patent/CN100368800C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Secondary Cells (AREA)

Abstract

A quantitative analysis method includes diluting lithium ion cell electrolyte in absolute ethyl alcohol or methyl alcohol, using MOH as titrant, applying automatic potentiometric titration, using (CoXV20)/(1000XM) to confirm titrimetric curve as Co referring to tritrant concentration, V referring to consumed tritrant volume ml, 20 referring to HF molecular weight and M referring to electrolyte weight, using potentiometric titrator to carry out second order derivation of titrimetric curve for cnofirming titrimetric end point.

Description

锂离子电池电解液中氢氟酸的定量分析方法Quantitative analysis method of hydrofluoric acid in lithium-ion battery electrolyte

                          技术领域Technical field

本发明涉及锂离子电池电解液的生产制造技术领域,具体是指一种锂离子电池电解液中氢氟酸的定量分析方法。The invention relates to the technical field of production and manufacture of lithium-ion battery electrolytes, in particular to a quantitative analysis method for hydrofluoric acid in lithium-ion battery electrolytes.

                          背景技术 Background technique

锂离子电池用的非水电解液中微量氢氟酸对电池的容量、循环寿命和安全性都有很大的影响。因此,在锂离子电池电解液的生产、储存、运输以及电池的制造过程中必须对氢氟酸的含量进行严格的监控。但是,目前在这一方面报道的技术却极为少见。目前,通常采用氢氧化四丁基铵(NBu4OH)为滴定剂、溴百里酚蓝(BTB)为指示剂,在无水甲醇溶剂中,根据观察到的电解液中氟化氢与氢氧化四丁基铵发生的反应效果来对非水体系中氟化氢进行测定( ),但该反应同时伴随着的副反应( )给分析结果带来一定误差,而且氢氧化四丁基铵的价格也非常昂贵(例如MERCK公司的测定方法)。为解决这一问题,中国01130017.5号发明专利申请又公开了一种采用甲醇钠作滴定剂的方法,在降低检测成本方面有一定改进,但这一方法与上述方法的共同点是均采用BTB作指示剂,通过目测的方法判断终点,这会产生一定的系统误差。此外,工业上为了提高电解液的稳定性,一般会添加一些稳定剂以提高六氟磷酸锂的稳定性,抑制氟化氢的产生和吸附氟化氢,而这些稳定剂大多是路易斯碱,使电解液一般会呈现微弱的碱性(pH值大约为7~9),而BTB变色点pH值大约为7,所以滴定时溶液pH值突跃点很可能与BTB的变色点不一致,给测试结果带来较大的误差。Trace amounts of hydrofluoric acid in the non-aqueous electrolyte used in lithium-ion batteries have a great influence on the capacity, cycle life and safety of the battery. Therefore, the content of hydrofluoric acid must be strictly monitored during the production, storage, transportation and battery manufacturing process of lithium-ion battery electrolyte. However, currently reported technologies in this area are extremely rare. At present, tetrabutylammonium hydroxide (NBu 4 OH) is usually used as titrant and bromothymol blue (BTB) as indicator. The reaction effect of butyl ammonium is used to measure hydrogen fluoride in non-aqueous system ( ), but the reaction is accompanied by side reactions ( ) brings certain errors to analytical results, and the price of tetrabutylammonium hydroxide is also very expensive (such as the assay method of MERCK company). In order to solve this problem, China's No. 01130017.5 invention patent application discloses a method using sodium methylate as titrant, which has certain improvements in reducing detection costs, but the common point between this method and the above-mentioned method is that BTB is used as titrant. Indicators, the end point is judged by visual inspection, which will produce certain systematic errors. In addition, in order to improve the stability of the electrolyte in the industry, some stabilizers are generally added to improve the stability of lithium hexafluorophosphate, inhibit the production of hydrogen fluoride and absorb hydrogen fluoride, and most of these stabilizers are Lewis bases, so that the electrolyte generally presents a weak Alkaline (pH value is about 7-9), and the pH value of BTB discoloration point is about 7, so the sudden point of solution pH value during titration is likely to be inconsistent with the discoloration point of BTB, which will bring large errors to the test results.

                          发明内容Contents of Invention

本发明的目的就是为了解决上述现有技术中存在的不足之处,提供一种锂离子电池电解液中氢氟酸的定量分析方法。该方法可以克服目前滴定方法中溶液PH值突跃点与指示剂的变色点不一致的问题,从而大大提高了测定结果的准确性。The object of the present invention is to provide a quantitative analysis method for hydrofluoric acid in the electrolyte of lithium-ion batteries in order to solve the above-mentioned deficiencies in the prior art. The method can overcome the problem of inconsistency between the abrupt point of the pH value of the solution and the discoloration point of the indicator in the current titration method, thereby greatly improving the accuracy of the measurement result.

本发明通过如下技术方案实现:所述锂离子电池电解液中氢氟酸的定量分析方法将锂离子电池电解液按每50ml溶剂中加2.5~3.0g的比例稀释到无须干燥处理的溶剂无水甲醇或无水乙醇中,并以MOH为滴定剂,采用自动电位滴定法测定滴定曲线,利用电位滴定仪对滴定曲线进行二阶求导,从而确定滴定终点;利用公式(C0×V20)/(1000×m)计算终点值,其中C0为滴定剂的浓度mol/L,V为消耗滴定剂的体积ml,20为HF的分子量,m为电解液的重量g。The present invention is realized through the following technical scheme: the quantitative analysis method of hydrofluoric acid in the lithium-ion battery electrolyte is to dilute the lithium-ion battery electrolyte at a ratio of 2.5 to 3.0 g per 50 ml of solvent to an anhydrous solvent that does not need to be dried. In methanol or absolute ethanol, with MOH as the titrant, the titration curve is determined by the automatic potentiometric titration method, and the second-order derivation of the titration curve is carried out by the potentiometric titrator, thereby determining the titration end point; using the formula (C 0 ×V20)/ (1000×m) to calculate the endpoint value, where C 0 is the concentration mol/L of the titrant, V is the volume ml of the titrant consumed, 20 is the molecular weight of HF, and m is the weight of the electrolyte in g.

为了更好地实现本发明,所述滴定剂MOH中的M包括锂、钠、钾等碱金属,特别是KOH;所述滴定剂浓度为0.0100mol/L~0.1000mol/L;所述溶剂为无须干燥处理的无水乙醇或无水甲醇(含水量0.15~0.2%),特别优选为无须干燥处理的无水乙醇;所述锂离子电池电解液包括有机溶剂和锂盐两部分,所述有机溶剂包括碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、γ-丁内酯(γ-BL)、二甲氧基乙烷(DME)、四氢呋喃(THF)中一种或一种以上混合溶剂,所述锂盐包括LiCF3SO3、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO2)2中一种或一种以上混合物。In order to better realize the present invention, M in the titrant MOH includes alkali metals such as lithium, sodium and potassium, especially KOH; the titrant concentration is 0.0100mol/L~0.1000mol/L; the solvent is Dehydrated ethanol or dehydrated methanol (water content 0.15~0.2%) without drying treatment, particularly preferably dehydrated alcohol without drying treatment; the lithium-ion battery electrolyte includes two parts, an organic solvent and a lithium salt, and the organic Solvents include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ-BL) , dimethoxyethane (DME), tetrahydrofuran (THF), one or more mixed solvents, the lithium salt includes LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN(CF 3 SO 2 ) 2 in one or more than one mixture.

本发明与现有技术相比,具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:

本发明是在分别研究了滴定剂和溶剂对氢氟酸定量分析的影响,分别分析比较了指示剂法和自动电位滴定法的测试结果的基础上,提出了一种适合于锂离子电池电解液中氢氟酸的准确分析方法。本发明与现有技术相比,测量精确度大大提高(现有技术测定的结果偏低,在电解液中加入有机胺稳定剂后偏离度更大,在酸度较大、稳定剂含量较高的电解液中测试的结果相差非常明显,偏差达到18.2%)。The present invention proposes an electrolyte suitable for lithium-ion batteries on the basis of respectively studying the influence of titrants and solvents on the quantitative analysis of hydrofluoric acid, and analyzing and comparing the test results of the indicator method and the automatic potentiometric titration method respectively. The accurate analysis method of hydrofluoric acid in medium. Compared with the prior art, the present invention greatly improves the measurement accuracy (the result measured by the prior art is on the low side, and the degree of deviation is larger after adding the organic amine stabilizer in the electrolytic solution, and the acidity is larger and the stabilizer content is higher. The results of the test in the electrolyte differ significantly, with a deviation of 18.2%).

对比实验证明,以氢氧化四丁基铵为滴定剂的测试结果较其它滴定剂的测试结果偏大;以甲醇钠作滴定剂测定的滴定曲线最平缓,突跃不明显,所测定的平行结果偏离较大(这主要是由于甲醇钠的碱性弱,与酸的反应较缓慢引起的);以NaOH和KOH为滴定剂的滴定突跃均很明显,且平行测定结果的精确度比上述两种滴定剂好,但由于NaOH与溶剂的反应性较大,测试结果比KOH稍高。KOH的碱性较强,与酸的反应迅速,曲线的突跃比较明显,且KOH与无水甲醇、无水乙醇均没有反应。测试表明,在无水甲醇中滴定曲线都比在无水乙醇中的平缓;无水乙醇未经进一步干燥,其中微量水分的存在不仅不影响测定结果,而且使滴定突跃更明显,更有利于终点的判断。因此,本发明优选KOH为滴定剂,未经过进一步干燥处理的无水乙醇作溶剂,滴定终点最容易判断,测试结果最精确,且所用的滴定剂和溶剂价格便宜,滴定过程无须在手套箱中进行,是一种非常适宜于工业分析的测试方法。Contrast experiments prove that the test results using tetrabutylammonium hydroxide as the titrant are larger than those of other titrants; the titration curve measured with sodium methoxide as the titrant is the gentlest, the jump is not obvious, and the measured parallel results The deviation is relatively large (this is mainly due to the weak alkalinity of sodium methoxide and the slow reaction with acid); the titration jumps using NaOH and KOH as titrants are obvious, and the accuracy of parallel determination results is higher than that of the above two methods. This titrant is good, but due to the high reactivity of NaOH with the solvent, the test result is slightly higher than that of KOH. KOH has strong alkalinity, reacts quickly with acid, and the jump of the curve is more obvious, and KOH has no reaction with anhydrous methanol and anhydrous ethanol. The test shows that the titration curve in absolute methanol is gentler than that in absolute ethanol; the presence of trace moisture in absolute ethanol without further drying not only does not affect the determination results, but also makes the titration jump more obvious, which is more conducive to end point judgment. Therefore, the preferred KOH of the present invention is the titrant, and dehydrated alcohol without further drying is used as the solvent, the titration endpoint is the easiest to judge, the test result is the most accurate, and the used titrant and solvent are cheap, and the titration process does not need to be carried out in a glove box. It is a test method very suitable for industrial analysis.

                          附图说明Description of drawings

图1是本发明实施例四在无水甲醇和无水乙醇两种溶剂中四种滴定剂的滴定曲线;Fig. 1 is the titration curve of four kinds of titrants in two kinds of solvents of absolute methanol and absolute ethanol in the embodiment of the present invention four;

图2是本发明实施例四在不同含水量的乙醇溶剂中的酸度滴定曲线。Fig. 2 is the acidity titration curve of Example 4 of the present invention in ethanol solvents with different water contents.

                        具体实施方式 Detailed ways

下面结合附图和实施例,对本发明做进一步地详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.

实施例中采用的部分试剂和仪器包括:Some reagents and instruments used in the examples include:

甲醇(色谱纯,德国Merk公司生产);无水乙醇(分析纯);3A分子筛;苯甲酸(标准物),在真空80℃下干燥8小时;溴百里酚蓝(BTB),在真空100℃下干燥8小时;0.1mol/L氢氧化钠乙醇溶液(分析纯,德国Merk公司生产);0.1mol/L氢氧化钾乙醇溶液(分析纯,德国Merk公司生产);氢氧化四丁基铵;0.1mol/L异丙醇溶液(分析纯,德国Merk公司生产);甲醇钠(分析纯)。Methanol (chromatographically pure, produced by Merk, Germany); absolute ethanol (analytical pure); 3A molecular sieves; benzoic acid (standard substance), dried at 80°C for 8 hours in a vacuum; bromothymol blue (BTB), in a vacuum of 100 Dry at ℃ for 8 hours; 0.1mol/L sodium hydroxide ethanol solution (analytical pure, produced by Merk Company of Germany); 0.1mol/L potassium hydroxide ethanol solution (analytical pure, produced by German Merk Company); tetrabutylammonium hydroxide ; 0.1mol/L isopropanol solution (analytically pure, produced by Germany Merk Company); sodium methoxide (analytical pure).

EC、DMC、EMC:含量≥99.95%,含水量<10ppm。LiPF6:含量≥99.95%,HF的含量<100ppm。有机碱(用N表示):含量≥99.9%,含水量<100ppm。去离子水。EC, DMC, EMC: content ≥ 99.95%, water content < 10ppm. LiPF 6 : content ≥ 99.95%, HF content < 100ppm. Organic base (indicated by N): content ≥ 99.9%, water content < 100ppm. Deionized water.

Metrohm798型电位滴定仪(瑞士Metrohm公司生产);长寿命复合pH电极;Metrohm83 1KF型水分测定仪(瑞士Metrohm公司生产);电子天平(精确度0.0001g,赛多利斯);手套箱:氩气气氛,无水无氧;电解液的配制和取样均在该手套箱中进行;10mlPE材质注射器。Metrohm798 potentiometric titrator (produced by Metrohm, Switzerland); long-life composite pH electrode; Metrohm83 1KF moisture analyzer (produced by Metrohm, Switzerland); electronic balance (accuracy 0.0001g, Sartorius); glove box: argon atmosphere , anhydrous and oxygen-free; the preparation and sampling of the electrolyte are carried out in the glove box; 10ml PE material syringe.

实施例一Embodiment one

第一步选用干燥好的10mlPE材质注射器在手套箱中取8ml锂离子电池电解液,针头用硅胶密封,将注射器转移到空气中;锂离子电池电解液由碳酸二乙酯(DEC)、γ-丁内酯(γ-BL)和LiCF3SO3、LiBF4混合组成,其中γ-BL∶DEC=1∶2(w),两种锂盐的浓度都是0.5mol/L;The first step is to use a dry 10ml PE material syringe to take 8ml of lithium-ion battery electrolyte in the glove box, seal the needle with silica gel, and transfer the syringe to the air; the lithium-ion battery electrolyte is composed of diethyl carbonate (DEC), γ- Butyrolactone (γ-BL) mixed with LiCF 3 SO 3 and LiBF 4 , where γ-BL:DEC=1:2(w), the concentration of the two lithium salts is 0.5mol/L;

第二步在滴定杯中用移液管加入50.0ml无水甲醇(无须干燥处理,含水量0.15%),加入2克电解液(用天平称量注入电解液的量,精确到0.1mg),启动搅拌;In the second step, add 50.0ml of anhydrous methanol (no drying treatment, water content 0.15%) into the titration cup with a pipette, add 2 grams of electrolyte (weigh the amount of electrolyte injected with a balance, accurate to 0.1mg), start stirring;

第三步选用浓度为0.0100mol/L的氢氧化钾为滴定剂,开始滴定,将电解液的用量输入到电位滴定仪中,输入二阶求导程序(瑞士Metrohm公司提供)以及酸度计算公式(C0×V20)/(1000×m),其中,C0为滴定剂的浓度mol/L,V为消耗滴定剂的体积ml,20为HF的分子量,m为电解液的重量g;根据电解液中氟化氢的含量调整滴定步长,滴定步长为滴定终点时消耗滴定剂体积的1/10~1/20,匀速滴定,到终点出现、滴定曲线很平缓后,停止滴定,取最后的突跃终点;The 3rd step selects concentration and is that the potassium hydroxide of 0.0100mol/L is titrant, starts titration, the consumption of electrolytic solution is input in the potentiometric titrator, input second-order derivation program (Switzerland Metrohm company provides) and acidity calculation formula ( C 0 ×V20)/(1000×m), wherein, C 0 is the concentration mol/L of the titrant, V is the volume ml of the titrant consumed, 20 is the molecular weight of HF, and m is the weight g of the electrolyte; The content of hydrogen fluoride in the liquid adjusts the titration step length, the titration step length is 1/10 to 1/20 of the volume of the titrant consumed at the end point of the titration, titrate at a constant speed, and when the end point appears and the titration curve is very smooth, stop the titration and take the final peak. Jump to the end;

第四步根据测试结果看滴定步长是否为滴定终点时消耗滴定剂体积的1/10~1/20,如果不是,调整滴定步长重复第三步;结果平行测定3次,取平均值。The fourth step is to check whether the titration step length is 1/10 to 1/20 of the titrant volume consumed at the end of the titration according to the test results. If not, adjust the titration step length and repeat the third step; the results are measured in parallel 3 times, and the average value is taken.

实施例二Embodiment two

第一步选用干燥好的10mlPE材质注射器在手套箱中取8ml锂离子电池电解液,针头用硅胶密封,将注射器转移到空气中;锂离子电池电解液由碳酸丙烯酯(PC)、二甲氧基乙烷(DME)和LiClO4、LiAsF6混合组成,其中PC∶DME=1∶2(w),两种锂盐的浓度都是0.5mol/L;The first step is to use a dry 10ml PE material syringe to take 8ml of lithium-ion battery electrolyte in the glove box, seal the needle with silica gel, and transfer the syringe to the air; the lithium-ion battery electrolyte is composed of propylene carbonate (PC), dimethoxy Diethyl ethane (DME) and LiClO 4 , LiAsF 6 mixed composition, where PC: DME = 1:2 (w), the concentration of the two lithium salts are 0.5mol/L;

第二步在滴定杯中用移液管加入50.0ml无水乙醇(无须干燥处理,含水量0.2%),加入2.5克电解液(用天平称量注入电解液的量,精确到0.1mg),启动搅拌;In the second step, add 50.0ml of absolute ethanol with a pipette in the titration cup (no drying treatment, water content 0.2%), add 2.5 grams of electrolyte (weigh the amount of electrolyte injected with a balance, accurate to 0.1mg), start stirring;

第三步选用浓度为0.0500mol/L的氢氧化钠为滴定剂,开始滴定,将电解液的用量输入到电位滴定仪中,输入二阶求导程序(瑞士Metrohm公司提供)以及酸度计算公式(C0×V20)/(1000×m),其中,C0为滴定剂的浓度mol/L,V为消耗滴定剂的体积ml,20为HF的分子量,m为电解液的重量g;根据电解液中氟化氢的含量调整滴定步长,滴定步长为滴定终点时消耗滴定剂体积的1/10~1/20,匀速滴定,到终点出现、滴定曲线很平缓后,停止滴定,取最后的突跃终点;The 3rd step selects the sodium hydroxide that concentration is 0.0500mol/L to be titrant, starts titration, the consumption of electrolytic solution is input in the potentiometric titrator, input second-order derivation program (Switzerland Metrohm company provides) and acidity calculation formula ( C 0 ×V20)/(1000×m), wherein, C 0 is the concentration mol/L of the titrant, V is the volume ml of the titrant consumed, 20 is the molecular weight of HF, and m is the weight g of the electrolyte; The content of hydrogen fluoride in the liquid adjusts the titration step length, the titration step length is 1/10 to 1/20 of the volume of the titrant consumed at the end point of the titration, titrate at a constant speed, and when the end point appears and the titration curve is very smooth, stop the titration and take the final peak. Jump to the end;

第四步根据测试结果看滴定步长是否为滴定终点时消耗滴定剂体积的1/10~1/20,如果不是,调整滴定步长重复第三步;结果平行测定3次,取平均值。The fourth step is to check whether the titration step length is 1/10 to 1/20 of the titrant volume consumed at the end of the titration according to the test results. If not, adjust the titration step length and repeat the third step; the results are measured in parallel 3 times, and the average value is taken.

实施例三Embodiment three

第一步选用干燥好的10mlPE材质注射器在手套箱中取8ml锂离子电池电解液,针头用硅胶密封,将注射器转移到空气中;锂离子电池电解液由PC、碳酸而甲酯(DMC)、四氢呋喃(THF)和LiN(CF3SO2)2混合组成其中PC∶DMC∶THF=2∶3∶1(w),锂盐的浓度为1mol/L;The first step is to use a dry 10ml PE material syringe to take 8ml of lithium-ion battery electrolyte in the glove box, seal the needle with silica gel, and transfer the syringe to the air; the lithium-ion battery electrolyte is composed of PC, methyl carbonate (DMC), Tetrahydrofuran (THF) and LiN(CF 3 SO 2 ) 2 mixed composition where PC:DMC:THF=2:3:1 (w), the concentration of lithium salt is 1mol/L;

第二步在滴定杯中用移液管加入50.0ml无水乙醇(无须干燥处理,含水量0.2%),加入3克电解液(用天平称量注入电解液的量,精确到0.1mg),启动搅拌;The second step is to add 50.0ml of absolute ethanol (without drying process, water content 0.2%) into the titration cup with a pipette, and add 3 grams of electrolyte (weigh the amount of injected electrolyte with a balance, accurate to 0.1mg), start stirring;

第三步选用浓度为0.1000mol/L的氢氧化锂为滴定剂,开始滴定,将电解液的用量输入到电位滴定仪中,输入二阶求导程序(瑞士Metrohm公司提供)以及酸度计算公式(C0×V20)/(1000×m),其中,C0为滴定剂的浓度mol/L,V为消耗滴定剂的体积ml,20为HF的分子量,m为电解液的重量g;根据电解液中氟化氢的含量调整滴定步长,滴定步长为滴定终点时消耗滴定剂体积的1/10~1/20,匀速滴定,到终点出现、滴定曲线很平缓后,停止滴定,取最后的突跃终点;The 3rd step selects the lithium hydroxide that concentration is 0.1000mol/L to be titrant, starts titration, the consumption of electrolytic solution is input in the potentiometric titrator, input second-order derivation program (Switzerland Metrohm company provides) and acidity calculation formula ( C 0 ×V20)/(1000×m), wherein, C 0 is the concentration mol/L of the titrant, V is the volume ml of the titrant consumed, 20 is the molecular weight of HF, and m is the weight g of the electrolyte; The content of hydrogen fluoride in the liquid adjusts the titration step length, the titration step length is 1/10 to 1/20 of the volume of the titrant consumed at the end point of the titration, titrate at a constant speed, and when the end point appears and the titration curve is very smooth, stop the titration and take the final peak. Jump to the end;

第四步根据测试结果看滴定步长是否为滴定终点时消耗滴定剂体积的1/10~1/20,如果不是,调整滴定步长重复第三步;结果平行测定3次,取平均值。The fourth step is to check whether the titration step length is 1/10 to 1/20 of the titrant volume consumed at the end of the titration according to the test results. If not, adjust the titration step length and repeat the third step; the results are measured in parallel 3 times, and the average value is taken.

实施例四Embodiment four

为进一步说明本发明,本实施例采用与现有技术指示剂法相对比的方式进行:For further illustrating the present invention, present embodiment adopts the mode that compares with prior art indicator method to carry out:

对比的指示剂法:采用干燥好的10mlPE材质注射器在手套箱中取8ml电解液,针头用硅胶密封,在滴定杯中用移液管加入50ml无水乙醇和4~5滴BTB,加入电解液3~4克(精确到0.1mg),混合均匀,边滴边摇,直到溶液变蓝,记下滴定剂的使用量,平行测定3次。Comparative indicator method: use a dry 10ml PE material syringe to take 8ml of electrolyte in the glove box, seal the needle with silica gel, add 50ml of absolute ethanol and 4 to 5 drops of BTB into the titration cup with a pipette, and add the electrolyte 3 to 4 grams (accurate to 0.1 mg), mix well, shake while dripping until the solution turns blue, record the amount of titrant used, and measure 3 times in parallel.

在手套箱中配制以下锂离子电池电解液,但不局限于下述配方:Prepare the following Li-ion battery electrolytes in the glove box, but are not limited to the following formulations:

A、EC∶DMC∶EMC=1∶1∶1(w),LiPF6:1mol/L(这种表达方式可否)A. EC: DMC: EMC = 1:1:1 (w), LiPF 6 : 1mol/L (is this expression possible)

B、EC∶DMC∶EMC=1∶1∶1(w),LiPF6:1mol/L,加入稳定剂N0.1%(w)B. EC: DMC: EMC = 1:1:1 (w), LiPF 6 : 1mol/L, add stabilizer N0.1% (w)

C、在A中加入微量水,使其水分含量约100ppm,并密封置于45℃下24小时后,加稳定剂N0.5%(w)C. Add a small amount of water to A to make the moisture content about 100ppm, and seal it at 45°C for 24 hours, then add stabilizer N0.5% (w)

D、EC∶PC∶DMC∶EMC=2∶1∶2∶3(w),LiPF6:1mol/L,加稳定剂N1%(w)。D. EC:PC:DMC:EMC=2:1:2:3 (w), LiPF 6 : 1mol/L, plus stabilizer N1% (w).

在手套箱中将0.1mol/L氢氧化钠的乙醇溶液和氢氧化钾的乙醇溶液用干燥过的乙醇(H2O<20ppm)稀释10倍,0.1mol/L氢氧化四丁基铵异丙醇溶液用甲醇稀释10倍,配制0.01mol/L的甲醇钠的甲醇溶液。四种溶液用基准苯甲酸进行标定。Dilute 0.1 mol/L sodium hydroxide ethanol solution and potassium hydroxide ethanol solution 10 times with dry ethanol (H 2 O<20ppm) in the glove box, 0.1 mol/L tetrabutylammonium hydroxide isopropyl Dilute the alcoholic solution 10 times with methanol to prepare a 0.01mol/L methanolic solution of sodium methoxide. The four solutions were calibrated with reference benzoic acid.

测试方法的对比:采用KOH为滴定剂,无水乙醇为溶剂,平行测定电解液B、C各三次,一种采用电位滴定法,另一种采用指示剂法。Comparison of test methods: KOH is used as titrant, absolute ethanol is used as solvent, and electrolytes B and C are measured in parallel three times, one using potentiometric titration, and the other using indicator method.

滴定剂与溶剂的对比:用四种滴定剂分别在干燥过的无水乙醇和甲醇中测定电解液A:在手套箱中用10ml的注射器约6ml样品,用硅胶将注射器密封,在室内测定,每次注样约2.5g,平行测定三次,测试方法为电位滴定法。对比滴定剂和溶剂对测定结果的影响。Comparison of titrants and solvents: Use four kinds of titrants to measure electrolyte A in dry ethanol and methanol: use a 10ml syringe in the glove box to seal about 6ml of the sample, seal the syringe with silica gel, and measure it indoors. Each sample injection is about 2.5g, and the parallel measurement is performed three times. The test method is potentiometric titration. Compare the effects of titrants and solvents on the determination results.

采用KOH为滴定剂,分别在无水乙醇(水含量~2000ppm)和进一步干燥过的无水乙醇(水含量~10ppm)测定电解液A和D,比较微量水份的存在对测试结果的影响。Using KOH as the titrant, measure the electrolytes A and D in absolute ethanol (water content ~ 2000ppm) and further dried anhydrous ethanol (water content ~ 10ppm), respectively, and compare the influence of the presence of trace moisture on the test results.

氢氟酸的测定结果:Determination results of hydrofluoric acid:

(1)滴定剂的浓度标定(1) Concentration calibration of titrant

表1四种滴定剂的浓度(单位:mol/L)     滴定剂     1     2     3     平均结果     NBu4OH     0.0098     0.0010     0.0098     0.0099     NaOCH3     0.0097     0.0099     0.0098     0.0098     NaOH     0.0101     0.0102     0.0101     0.0101     KOH     0.0102     0.0103     0.0102     0.0102 The concentration of four kinds of titrants in table 1 (unit: mol/L) Titrant 1 2 3 average result NBu4OH 0.0098 0.0010 0.0098 0.0099 NaOCH 3 0.0097 0.0099 0.0098 0.0098 NaOH 0.0101 0.0102 0.0101 0.0101 KOH 0.0102 0.0103 0.0102 0.0102

(2)测试方法的比较(2) Comparison of test methods

在工业应用中,为了提高电解液的稳定性,一般都会加入一定量的路易斯碱(例如有机胺)作稳定剂,使电解液接近中性或偏碱性(pH07~9),而现有技术均未考虑此问题,因此采用现有技术很可能出现测定的终点pH不在指示剂的变色范围内,这样就会出现较大的误差,若稳定剂的碱性较强或含量高,电解液的pH0就更大,这样结果的偏差可能会更大。In industrial applications, in order to improve the stability of the electrolyte, a certain amount of Lewis base (such as organic amine) is generally added as a stabilizer to make the electrolyte close to neutral or alkaline (pH 0.7-9 ). None of the existing technologies has considered this problem, so it is likely that the measured end point pH is not within the discoloration range of the indicator by using the existing technology, so there will be a large error. If the alkalinity of the stabilizer is strong or the content is high, the electrolysis The pH 0 of the solution is greater, so the deviation of the result may be greater.

表2是本发明(自动电位滴定法)与现有技术(指示剂法)测试电解液A和B结果比较,表3是两种方法测试电解液C的电结果比较,其中pHz是测试终点时的pH值,滴定剂为KOH,溶剂为未干燥的乙醇,平行测定3次。Table 2 is that the present invention (automatic potentiometric titration method) compares with prior art (indicator method) test electrolyte A and B result, and table 3 is the electrical result comparison of two kinds of methods test electrolyte C, and wherein pH z is a test end point When the pH value was measured, the titrant was KOH, the solvent was undried ethanol, and the parallel measurement was performed 3 times.

表2稳定剂对氢氟酸定量分析的影响 电解液样品  pH0     m1(ppm)   pHz1     m2(ppm)   pHz2     (M2-M1)/M2×100% A  5.4     13.9   6.3     15.0   6.7     8.5     14.5   6.5     15.6   6.9     14.3   6.4     16.1   6.7 B  6.8     14.0   7.2     16.3   7.5     8.8     14.2   7.1     15.9   7.6     15.0   7.2     15.3   7.5 The impact of table 2 stabilizer on the quantitative analysis of hydrofluoric acid Electrolyte sample pH 0 m 1 (ppm) pH z1 m 2 (ppm) pH z2 (M 2 -M 1 )/M 2 ×100% A 5.4 13.9 6.3 15.0 6.7 8.5 14.5 6.5 15.6 6.9 14.3 6.4 16.1 6.7 B 6.8 14.0 7.2 16.3 7.5 8.8 14.2 7.1 15.9 7.6 15.0 7.2 15.3 7.5

注:m1为指示剂法测试的结果,M1为其平均值,m2是电位滴定法测试结果,M2为其平均值。Note: m 1 is the result of indicator method test, M 1 is its average value, m 2 is the test result of potentiometric titration method, and M 2 is its average value.

表3两种方法测试电解液C的电解液的结果Table 3 Two methods test the results of the electrolyte of electrolyte C

pH0      m1(ppm)      pHz1       m2(ppm)      pHz2     (M2-M1)/M2×100%pH 0 m 1 (ppm) pH z1 m 2 (ppm) pH z2 (M 2 -M 1 )/M 2 ×100%

          259.7         7.6         305.6         7.9259.7 7.6 305.6 7.9

7.2       230.4         7.5         298.9         7.8       18.27.2 230.4 7.5 298.9 7.8 18.2

          249.7         7.6         300.3         7.9249.7 7.6 300.3 7.9

注:m1为指示剂法测试的结果,M1为其平均值,m2是电位滴定法测试结果,M2为其平均值。Note: m 1 is the result of indicator method test, M 1 is its average value, m 2 is the test result of potentiometric titration method, and M 2 is its average value.

从表2的数据可看出,稳定剂加入后对电解液总酸度几乎没有影响,只是提高了电解液的pH值。结合表3的数据分析,指示剂法测定的结果比电位滴定法测定的结果偏小,在酸度含量低(<30ppm)的电解液中这种偏差较小(8.5%);电解液中添加稳定剂后两种方法测试的结果相差增大大,特别是在酸度较大(≥50ppm)、稳定剂含量较高(≥0.5)的电解液中测试的结果相差就非常明显(18.2%),且指示剂法测试的结果精确度很差,说明指示剂法此时已不适用于目前的电解质体系中酸度的测试。It can be seen from the data in Table 2 that the addition of the stabilizer has almost no effect on the total acidity of the electrolyte, but only increases the pH value of the electrolyte. In conjunction with the data analysis of Table 3, the result determined by the indicator method is smaller than the result determined by the potentiometric titration method, and this deviation is small (8.5%) in the electrolyte solution with low acidity content (<30ppm); The difference between the test results of the two methods increases greatly after the injection, especially in the electrolyte with high acidity (≥50ppm) and high stabilizer content (≥0.5), the difference between the test results is very obvious (18.2%), and the indication The accuracy of the test results of the reagent method is very poor, indicating that the indicator method is not suitable for the acidity test in the current electrolyte system at this time.

(3)滴定剂与溶剂的比较分析(3) Comparative analysis of titrant and solvent

表4是分别在甲醇和乙醇中,采用氢氧化四丁基铵、氢氧化钠、氢氧化钾和甲醇钠四种滴定剂测试电解液A的3次平行测试的结果,测试方法为自动电位滴定法。如图1所示,在乙醇B中的滴定突跃比在甲醇A中的明显(a、氢氧化四丁基铵,b、氢氧化钠,c、氢氧化钾,d、甲醇钠)。表4的数据表明,在四种滴定剂中KOH的精确度最好。氢氧化四丁基铵为滴定剂测试的结果较其它三种滴定剂测试的结果大。甲醇钠的突跃很平坦,给突跃终点的选择带来困难。以KOH为滴定剂的测试结果的精确度最好,不论是以甲醇还是以乙醇作溶剂,其标准偏差均小于1%。Table 4 is respectively in methanol and ethanol, adopts tetrabutylammonium hydroxide, sodium hydroxide, potassium hydroxide and sodium methylate four kinds of titrants to test the result of 3 parallel tests of electrolyte A, and the test method is automatic potentiometric titration Law. As shown in Figure 1, the titration jump in ethanol B is more obvious than in methanol A (a, tetrabutylammonium hydroxide, b, sodium hydroxide, c, potassium hydroxide, d, sodium methoxide). The data in Table 4 show that KOH has the best accuracy among the four titrants. The test results of tetrabutylammonium hydroxide as the titrant are larger than those of the other three titrants. The jump of sodium methoxide is very flat, which makes it difficult to choose the end point of the jump. The accuracy of the test results with KOH as titrant is the best, whether methanol or ethanol is used as solvent, the standard deviation is less than 1%.

表4不同滴定剂分别在甲醇和乙醇中的测试结果(单位:ppm)     滴定剂     氢氧化四丁基铵     氢氧化钠    氢氧化钾     甲醇钠 甲醇 测量值     28.3,27.7,27.0     16.8,21.8,12.4    14.4,16.3,15.8     15.2,11.0,16.9 标准偏差S(%)     0.65     4.70    0.98     3.04 乙醇 测量值     22.8,18.6,16.9     16.5,16.9,17.3    11.7,11.3,12.0     16.6,18.0,15.1 标准偏差S(%)     3.04     0.40    0.35     1.45 The test results (unit: ppm) of different titrants in methanol and ethanol respectively in table 4 Titrant tetrabutylammonium hydroxide sodium hydroxide Potassium hydroxide Sodium methoxide Methanol Measurements 28.3, 27.7, 27.0 16.8, 21.8, 12.4 14.4, 16.3, 15.8 15.2, 11.0, 16.9 Standard DeviationS(%) 0.65 4.70 0.98 3.04 ethanol Measurements 22.8, 18.6, 16.9 16.5, 16.9, 17.3 11.7, 11.3, 12.0 16.6, 18.0, 15.1 Standard DeviationS(%) 3.04 0.40 0.35 1.45

(4)微量水分对测试结果的影响(4) Influence of trace moisture on test results

现有技术中乙醇通过分子筛干燥处理,本实施例用3A分子筛对乙醇进行干燥处理,分别以干燥前后的乙醇作溶剂进行测试,测试的电解液为A(图A)和D(图B),表5是测试结果,表明干燥前后的乙醇测试的结果相差不大,以未经干燥的乙醇做溶剂测试结果的精确度还好一些。如图2所示,曲线a是对乙醇(H2O:2171.6ppm)的测试滴定曲线;曲线b是对乙醇(H2O:23.6ppm)的测试滴定曲线。可以看出,在未干燥的乙醇中滴定曲线的突跃比在干燥后的乙醇中的陡峭,表5的数据表明,在未干燥的乙醇中测得的结果精确也高一些。从这个结果可以分析到,分析纯乙醇中的微量水分(0.15~0.2%)对测试结果的影响可以忽略,而实验结果表明这些水分的存在有利于终点的判断。In the prior art, ethanol is dried through molecular sieves. In this embodiment, 3A molecular sieves are used to dry ethanol, and the ethanol before and after drying is used as a solvent for testing. The tested electrolytes are A (Figure A) and D (Figure B). Table 5 shows the test results, which show that the results of the ethanol test before and after drying are not much different, and the accuracy of the test results with undried ethanol as the solvent is better. As shown in Figure 2, curve a is the test titration curve for ethanol (H 2 O: 2171.6ppm); curve b is the test titration curve for ethanol (H 2 O: 23.6ppm). It can be seen that the sudden jump of the titration curve in undried ethanol is steeper than that in dried ethanol, and the data in Table 5 shows that the accuracy of the results measured in undried ethanol is also higher. From this result, it can be seen that the influence of trace moisture (0.15-0.2%) in the analysis of pure ethanol on the test results can be ignored, and the experimental results show that the existence of these moisture is beneficial to the judgment of the end point.

表5溶剂水含量对氢氟酸定量分析的影响 含水量(ppm)     电解液  酸度(ppm)     RSD(%) 2171.6     A  15.0,13.0,13.6     1.03     D  115.3,117.1,114.4     1.37 23.6     A  15.2,13.2,14.5     1.01     D  114.0,118.3,116.7     2.17 Table 5 The influence of solvent water content on hydrofluoric acid quantitative analysis Moisture content (ppm) Electrolyte Acidity (ppm) RSD(%) 2171.6 A 15.0, 13.0, 13.6 1.03 D. 115.3, 117.1, 114.4 1.37 23.6 A 15.2, 13.2, 14.5 1.01 D. 114.0, 118.3, 116.7 2.17

如上所述,即可较好地实现本发明。As described above, the present invention can be preferably realized.

Claims (7)

1. A quantitative analysis method for hydrofluoric acid in lithium ion battery electrolyte is characterized in that the lithium ion battery electrolyte is diluted to a solvent without drying treatment according to the proportion that 2.5-3.0 g of the lithium ion battery electrolyte is added into 50ml of the solventIn water methanol or absolute ethanol, MOH is used as a titrant, an automatic potentiometric titration method is adopted to determine a titration curve, and a potentiometric titrator is used for carrying out second-order derivation on the titration curve, so that a titration end point is determined; using the formula (C)0X V20)/(1000 x m) calculating the end point value, where C0Is the concentration mol/L of the titrant, V is the volume ml of the titrant consumed, 20 is the molecular weight of HF, and m is the weight g of the electrolyte.
2. The method of claim 1, wherein M in the titrant MOH comprises lithium, sodium and potassium as alkali metals.
3. The method of claim 1 or 2, wherein the titrant is KOH.
4. The method of claim 1, wherein the titrant concentration is 0.0100mol/L to 0.1000 mol/L.
5. The method of claim 1, wherein the solvent is anhydrous ethanol or anhydrous methanol without drying treatment, and the water content is 0.15-0.2%.
6. The method for quantitatively analyzing the hydrofluoric acid in the lithium ion battery electrolyte according to claim 1 or 5, wherein the solvent is absolute ethyl alcohol without drying treatment, and the water content is 0.15-0.2%.
7. The method of claim 1, wherein the electrolyte comprises an organic solvent and a lithium salt, and the organic solvent comprises ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ -butyrolactone, dimethyl carbonate, or a mixture thereofOne or more mixed solvents of oxyethane and tetrahydrofuran, wherein the lithium salt comprises LiCF3SO3、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO2)2One or more than one mixture.
CNB2004100524179A 2004-11-29 2004-11-29 Quantitative analysis method of hydrofluoric acid in lithium-ion battery electrolyte Expired - Fee Related CN100368800C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100524179A CN100368800C (en) 2004-11-29 2004-11-29 Quantitative analysis method of hydrofluoric acid in lithium-ion battery electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100524179A CN100368800C (en) 2004-11-29 2004-11-29 Quantitative analysis method of hydrofluoric acid in lithium-ion battery electrolyte

Publications (2)

Publication Number Publication Date
CN1614406A true CN1614406A (en) 2005-05-11
CN100368800C CN100368800C (en) 2008-02-13

Family

ID=34764161

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100524179A Expired - Fee Related CN100368800C (en) 2004-11-29 2004-11-29 Quantitative analysis method of hydrofluoric acid in lithium-ion battery electrolyte

Country Status (1)

Country Link
CN (1) CN100368800C (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101451974B (en) * 2008-12-24 2012-02-15 浙江赞宇科技股份有限公司 Disodium salt content measuring method in sodium fatty acid methyl ester sulfonate
CN102778532A (en) * 2012-08-10 2012-11-14 深圳市华星光电技术有限公司 Potentiometric titration method of mixed acid concentration in aluminum etching liquid
CN103364475A (en) * 2013-07-31 2013-10-23 东莞市杉杉电池材料有限公司 A kind of detection method of hydrogen fluoride content in fluoroethylene carbonate
CN103645226A (en) * 2013-12-26 2014-03-19 东莞市杉杉电池材料有限公司 Method for detecting free acids in boracic lithium salt and electrolyte of boracic lithium salt
CN104111279A (en) * 2014-08-08 2014-10-22 广东东阳光药业有限公司 A kind of content assay method of 2-pyrazinecarboxylic acid
CN104330457A (en) * 2013-07-22 2015-02-04 深圳市沃特玛电池有限公司 Free acid test method of lithium ion battery electrolyte
CN105158407A (en) * 2015-10-09 2015-12-16 天津市捷威动力工业有限公司 Method for measuring HF content of electrolyte containing LiBOB
CN107356703A (en) * 2017-07-03 2017-11-17 宁德市凯欣电池材料有限公司 A kind of electrolyte acid number detection method
CN109142617A (en) * 2017-06-16 2019-01-04 张家港市国泰华荣化工新材料有限公司 The nonaqueous titration determination method of Free HF in lithium-ion electrolyte
CN109283286A (en) * 2017-07-21 2019-01-29 天津金牛电源材料有限责任公司 A kind of detection method of difluoro oxygen phosphorus lithium
CN109668941A (en) * 2018-12-06 2019-04-23 普瑞斯伊诺康有限公司 A kind of method of sulfuric acid and manganese sulfate concentration in measurement electrolyte aqueous solution
CN110045058A (en) * 2018-01-17 2019-07-23 中天储能科技有限公司 Hydrogen fluoride content test method in electrolyte
CN110501453A (en) * 2019-08-16 2019-11-26 武汉工程大学 Method for Determination of Industrial Grade Cis-acrylic Phosphoric Acid Content Using pH Meter Analysis
CN111855650A (en) * 2020-07-30 2020-10-30 青岛科技大学 A kind of determination method of fluosilicic acid, hydrofluoric acid and nitric acid content in etching acid
CN112083121A (en) * 2020-09-24 2020-12-15 国联汽车动力电池研究院有限责任公司 Method for measuring content of free acid in lithium ion battery electrolyte
CN114054110A (en) * 2021-11-17 2022-02-18 芜湖天弋能源科技有限公司 Kit and method for testing HF content in electrolyte

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646399B2 (en) * 1997-12-26 2011-03-09 三和油化工業株式会社 Electrolytic solution for lithium battery and method for producing the same
JP3520921B2 (en) * 2001-03-27 2004-04-19 日本電気株式会社 Negative electrode for secondary battery and secondary battery using the same
CN1423127A (en) * 2001-12-04 2003-06-11 比亚迪股份有限公司 Nonaqueous titration determination method of hydrogen fluoride in electrolyte of lithium ion cell

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101451974B (en) * 2008-12-24 2012-02-15 浙江赞宇科技股份有限公司 Disodium salt content measuring method in sodium fatty acid methyl ester sulfonate
CN102778532A (en) * 2012-08-10 2012-11-14 深圳市华星光电技术有限公司 Potentiometric titration method of mixed acid concentration in aluminum etching liquid
CN102778532B (en) * 2012-08-10 2016-03-09 深圳市华星光电技术有限公司 The potentiometric titration method of aluminium etching solution nitration mixture concentration
CN104330457A (en) * 2013-07-22 2015-02-04 深圳市沃特玛电池有限公司 Free acid test method of lithium ion battery electrolyte
CN103364475A (en) * 2013-07-31 2013-10-23 东莞市杉杉电池材料有限公司 A kind of detection method of hydrogen fluoride content in fluoroethylene carbonate
CN103645226A (en) * 2013-12-26 2014-03-19 东莞市杉杉电池材料有限公司 Method for detecting free acids in boracic lithium salt and electrolyte of boracic lithium salt
CN104111279A (en) * 2014-08-08 2014-10-22 广东东阳光药业有限公司 A kind of content assay method of 2-pyrazinecarboxylic acid
CN105158407A (en) * 2015-10-09 2015-12-16 天津市捷威动力工业有限公司 Method for measuring HF content of electrolyte containing LiBOB
CN109142617A (en) * 2017-06-16 2019-01-04 张家港市国泰华荣化工新材料有限公司 The nonaqueous titration determination method of Free HF in lithium-ion electrolyte
CN107356703A (en) * 2017-07-03 2017-11-17 宁德市凯欣电池材料有限公司 A kind of electrolyte acid number detection method
CN109283286A (en) * 2017-07-21 2019-01-29 天津金牛电源材料有限责任公司 A kind of detection method of difluoro oxygen phosphorus lithium
CN110045058A (en) * 2018-01-17 2019-07-23 中天储能科技有限公司 Hydrogen fluoride content test method in electrolyte
CN109668941A (en) * 2018-12-06 2019-04-23 普瑞斯伊诺康有限公司 A kind of method of sulfuric acid and manganese sulfate concentration in measurement electrolyte aqueous solution
CN109668941B (en) * 2018-12-06 2021-08-03 普瑞斯矿业(中国)有限公司 A kind of method for measuring the concentration of sulfuric acid and manganese sulfate in electrolyte aqueous solution
CN110501453A (en) * 2019-08-16 2019-11-26 武汉工程大学 Method for Determination of Industrial Grade Cis-acrylic Phosphoric Acid Content Using pH Meter Analysis
CN111855650A (en) * 2020-07-30 2020-10-30 青岛科技大学 A kind of determination method of fluosilicic acid, hydrofluoric acid and nitric acid content in etching acid
CN112083121A (en) * 2020-09-24 2020-12-15 国联汽车动力电池研究院有限责任公司 Method for measuring content of free acid in lithium ion battery electrolyte
CN114054110A (en) * 2021-11-17 2022-02-18 芜湖天弋能源科技有限公司 Kit and method for testing HF content in electrolyte
CN114054110B (en) * 2021-11-17 2022-10-11 芜湖天弋能源科技有限公司 Kit and method for testing HF content in electrolyte

Also Published As

Publication number Publication date
CN100368800C (en) 2008-02-13

Similar Documents

Publication Publication Date Title
CN1614406A (en) Quantitatively analyzing method for fluohydric acid in lithium ion battery electrolyte
CN105467058B (en) Method for detecting carboxylic ester compounds in lithium ion battery electrolyte
CN103063726B (en) Detection method for chlorine ion content in lithium-ion battery electrolyte
CN110261464A (en) The method of free acid content in lithium hexafluoro phosphate product is quickly measured in non-aqueous system
CN103645226A (en) Method for detecting free acids in boracic lithium salt and electrolyte of boracic lithium salt
CN1925207A (en) High rate electrolyte for lithium ion battery
CN111505200A (en) Method for detecting trace free acid in electrolyte additive
CN103913458A (en) Detection method for trace free acid in electrolyte lithium salt
CN105158407A (en) Method for measuring HF content of electrolyte containing LiBOB
CN109142617A (en) The nonaqueous titration determination method of Free HF in lithium-ion electrolyte
CN1888893A (en) Ion chromatography method for measuring lithium salt density in lithiumion cell electrolyte
KR20130076700A (en) Method for measuring hf content in lithium secondary battery electrolyte and analytical reagent composition used in the same
CN111624195A (en) Method for analyzing acidity of electrolyte of lithium ion battery
CN110389182A (en) The quantitative detecting method of TMSP in a kind of lithium-ion battery electrolytes
CN103364475A (en) A kind of detection method of hydrogen fluoride content in fluoroethylene carbonate
CN117491559A (en) Method for testing residual alkali content of positive electrode material of sodium ion battery
CN102937614A (en) Method for analyzing content of free fluorin in lithium ion battery electrolyte salt LiBF4
US20130168264A1 (en) Method for Measuring HF Content in Lithium Secondary Battery Electrolyte and Analytical Reagent Composition Used in the Same
CN1423127A (en) Nonaqueous titration determination method of hydrogen fluoride in electrolyte of lithium ion cell
CN107703138A (en) The detection method of acidity in lithium ion battery electrolyte lithium salts and electrolyte
CN113671110B (en) Moisture detection method for vinyl sulfate
CN113281457A (en) Method for rapidly determining content of free acid in lithium hexafluorophosphate electrolyte through low-temperature linear titration
CN109870490A (en) The measuring method of free acid content in lithium salts and its electrolyte
CN103236561B (en) Method for detecting alkylsilazane compounds in lithium hexafluorophosphate electrolyte
CN111812142B (en) Method for detecting content of alkyl silicon compounds in lithium ion battery electrolyte

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080213

Termination date: 20111129