CN1605961A - 基于测量数据点直接数控加工方法 - Google Patents

基于测量数据点直接数控加工方法 Download PDF

Info

Publication number
CN1605961A
CN1605961A CN 200410084299 CN200410084299A CN1605961A CN 1605961 A CN1605961 A CN 1605961A CN 200410084299 CN200410084299 CN 200410084299 CN 200410084299 A CN200410084299 A CN 200410084299A CN 1605961 A CN1605961 A CN 1605961A
Authority
CN
China
Prior art keywords
numerical control
data points
discrete
discrete data
cutter path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410084299
Other languages
English (en)
Other versions
CN1294466C (zh
Inventor
尹忠慰
蒋丹
蒋寿伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CNB200410084299XA priority Critical patent/CN1294466C/zh
Publication of CN1605961A publication Critical patent/CN1605961A/zh
Application granted granted Critical
Publication of CN1294466C publication Critical patent/CN1294466C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Numerical Control (AREA)

Abstract

一种基于测量数据点直接数控加工方法,步骤为:1)测量三维离散点预处理:给定一系列测量数据点,基于B-spline曲线、曲面的性质,对离散数据点进行数据平滑、数据精简、数据区域分割、特征点提取和排序,利用选取的离散数据点为控制顶点进行B-spline曲线、曲面的构造,是一个“正求”过程,省略方程的求解;2)基于测量数据点直接数控刀具轨迹文件生成:依照被加工实体表面形状的复杂度来实施“自适应性”加工措施:针对实体表面曲率变化较大的区域,在实施数控刀具轨迹生成时采用较稠密的刀具轨迹进行加工,相反,针对实体表面曲率变化较小的区域,采用较稀疏的刀具轨迹进行加工。本发明提高快速成型制造效率,以缩短产品开发周期、提高市场竞争力。

Description

基于测量数据点直接数控加工方法
技术领域
本发明涉及一种数控加工方法,具体是一种基于测量数据点直接数控加工方法。用于工业产品加工领域。
背景知识
针对反求工程与数控加工技术直接集成问题,近几年以来国内外分别提出了许多与基于测量数据点的数控加工相关的算法,包括离散数据预处理算法、三维建模算法以及基于参数曲面加工轨迹生成算法等。
经对现有技术文献的检索发现,Park和Chung在《computer-aided Design》2003,35(5),P467-475上发表的“Tool path generation from measured data”(“基于测量数据点刀具轨迹生成”,《计算机辅助设计》),该文针对反求工程与数控加工技术集成问题对测量数据点直接生成数控加工方法进行了较为详细的介绍,对离散数据点直接生成粗加工指令和精加工指令的算法进行了改进,从而提高了加工效率。尽管该法的可行性和有效已经得到验证,然而,现有的基于离散数据点直接NC指令生成算法还不能满足“自适应性”加工的需求,从而影响了加工效率。“自适应性”加工策略是基于CAD模型的数控加工方法中较为成熟的技术,其有效性已经得到广泛的论证和实验验证。
发明内容
本发明的目的在于克服现有技术的不足,将“自适应性”的加工策略引入到基于测量数据点直接数控加工技术,提供一种基于测量数据点直接数控加工方法,使其采取“自适应性”的加工策略将反求工程与数控加工技术进行一体化集成,从而提高数控加工效率,以缩短产品开发周期、提高市场竞争力。
本发明是通过以下技术方案实现的,本发明基于B样条(B-spline)曲面的性质,结合数控加工技术的特点,全面利用测量数据点的几何信息,具体包括测量三维离散点预处理和基于离散数据点直接数控加工刀具轨迹文件生成两个基本步骤:
(1)测量三维离散点预处理:
利用B样条曲面的特性对测量数据进行预处理。在成型曲面测量数据的获取过程中,由于实际测量受到各种人为因素影响,使得测量结果包含“噪音点”以及存在大量的冗余数据。为了制造满足精度要求的产品,对所测量的三维离散数据点进行预处理是基于离散数据点直接数控加工技术中的一个关键环节。对离散数据的预处理一般包括:数据平滑、数据精简、数据区域分割、特征点提取和排序。
现有的离散数据平滑、分割及特征点提取算法的共同点是基于离散数据点曲率以及曲率微分进行计算,即离散数据点曲率及其微分的计算是上述算法的精髓。然而,离散数据点曲率及其微分的计算是计算机辅助几何设计中的难点和重点,尽管针对离散数据曲率计算的算法很多,但离散数据曲率的获取仍然是一个计算精度低、计算量大的技术难点。为了克服离散数据曲率及微分计算问题,从而更有效地进行离散数据的平滑、分割和特征点的提取,本发明基于B样条曲面的性质:
a)包凸性:B-spline曲线(曲面)必处在控制多边形所形成的凸包内。凸包性是B-spline曲线(曲面)的重要性质,而且这个有趣的性质可以对基于离散数据点处理方法有重要的指导作用。
b)相似性:以选取的离散数据点为控制顶点构造的B样条曲面与以所有离散点为基础的拟合曲面存在强相似性。
对传统的离散数据平滑、分割和特征点提取方法进行改进,使其能够在计算量减少的情况下获得较好的离散数据预处理效果。
由于现有的离散数据预处理的缺陷是基于离散数据点进行B-spline曲线插值所固有的,因此,为了克服这种内在的缺陷,本发明彻底地抛弃传统的观点,而大胆地开辟新思路:给定一系列离散数据点,本发明利用所测量的离散数据点为控制顶点来构造B-spline曲面,从而利用所构造的曲面对测量数据点进行数据平滑、数据精简、数据区域分割和特征点提取。由于插值B-spline曲面是一个“反求”过程,需要结合边界条件进行庞大矩阵的求解,因此,计算量较大;而利用离散数据点为控制顶点进行B-spline曲面的构造是一个“正求”过程,无须进行方程的求解,因此,所需的计算量较少,这是此发明的优点之一。
(2)基于离散数据点直接数控加工刀具轨迹文件生成
本发明依照被加工实体表面形状的复杂度(曲面曲率)来实施“自适应性”加工措施:针对实体表面曲率变化较大的区域,在实施刀具轨迹生成时采用较密的刀具轨迹进行;相反,针对实体表面曲率变化较小的区域,采用较稀疏的刀具轨迹进行数控加工,以提高成型效率。
“自适应性”成型制造策略,在基于CAD模型的数控加工过程中,大大提高了成型效率。鉴于此,本发明将“自适应性”数控加工策略应用于基于测量数据点直接数控刀具轨迹生成技术中,以提高加工效率。由于“自适应性”加工策略是以计算被成型曲面的曲率为前提的,因此,将“自适应性”加工方法应用于基于测量数据点直接数控制造所面临的首要问题是如何计算曲面的曲率。为了解决上述问题,本发明开发了一种基于离散数据点的“自适应性”直接数控加工方法。
本发明是一种新兴的数控加工技术数据处理方法,利用反求工程和数控加工制造直接集成思想,有利于缩短产品的开发周期,也是未来普遍采用的反求工程与数控加工一体化方法之一。本发明对传统的离散数据→数控加工刀具轨迹文件算法进行改进,利用B样条曲面的性质,以选取的离散数据点为控制顶点构造B样条曲面以计算离散点几何信息,使人们可以获得曲率、法方向以及几何形状等信息,进而对离散数据进行预处理,并实施“自适应性”数控加工策略来提高加工效率。针对不同的被加工实体,本发明较现有的技术提高成型效率6-11%,可用于各种基于数字化制造业。
附图说明
图1本发明方法流程图
图2本发明实施例脸谱模具模型加工轨迹结果图
具体实施方式
为了更好的理解本发明所涉及的基于测量数据点直接数控加工技术方案,以下结合附图及具体的实施方法作进一步描述。本发明方法的流程以及本发明对现有基于测量数据点数控加工方法的改进见图1。从图中可以看出,本发明的技术方案避免了基于离散数据点的曲面重建过程,由于此过程恰恰是基于离散数据数控加工制造过程的难点和计算时间消耗所在,因此本发明是一种反求工程和数控加工直接集成思想,它有利于缩短产品的开发周期,是一种新兴的反求工程与数控加工一体化技术数据处理方法。
实施例
1、测量三维离散点预处理:
本发明的技术方案以选取的离散数据点为控制顶点构造的B样条曲线、曲面,并直接利用这些构造的曲线、曲面进行数据平滑和特征提取。
根据实物外形的数字化信息以及测量规划方法的差异,测量所得测量数据点分为:有序点和无序点。如果这些离散数据点是利用一些特定设备所测量的,即这些离散数据点存有内在的连续性和一定的排列顺序Pi,j。针对这类离散数据点,各行或列的离散数据点(例如第二行Pi,2)可直接被利用作为控制顶点,其处理过程较简单。然而,大多数情况下,面对的是毫无内在顺序的离散数据点,针对这类数据点,本发明采取的处理步骤如下:
a)对离散数据点进行切片:按照所测量实体表面形状寻求一个切片方向,例如沿z或x轴方向;给定一个切片间距δ(δ上是根据具体的被测物体形状所给定的两层切平面间的距离),沿切片方向将所有离散数据点进行层片划分,形成切片数据(此类数据与医学上常用的CT数据类型相似)。
b)离散数据点排序:将每两层(例如j和j+1)切片间的所有离散数据按照某一坐标(例如切片方向为z轴方向,排序可以按照x轴坐标方向)进行“字典”方式排序为Pi
控制顶点选取完毕后,则利用它们进行B样条曲线、曲面构造。然后利用构造B样条曲线、曲面将控制顶点(选取的离散数据点)进行参数化以求得其位于构造B样条曲线、曲面的对应点,并计算这些对应点的几何信息,最终对离散数据进行预处理以及为后续基于离散数据点“自适用”性直接快速原型制造提供几何依据。图2所示脸谱模具模型加工轨迹模型,所示为选取75×60个利用三坐标测量仪测得的离散数据点作为控制顶点构造的“基曲面”。
2、基于测量数据点直接数控加工刀具轨迹生成
加工的主要目的是得到被加工零件的最终形状,因此,本发明开发的基于测量数据点直接加工指令生成算法要在提高加工效率的同时,保证被加工零件的加工精度。由于粗加工和精加工的目的不同,因此,本发明在基于测量数据点的粗加工指令和精加工指令直接生成算法中采取的策略也不相同,下面将详细介绍基于离散数据点的加工指令直接生成步骤。
利用步骤1对测量数据点进行预处理,并以选取的测量点作为控制顶点来构造B样条曲面,并将离散数据点进行参数化后,则要对构造曲面进行偏移。“基曲面”偏移是本发明所介绍的基于离散数据点直接NC指令生成算法的关键,因为它是保证加工精度的前提。对“基曲面”进行偏移以后,本发明所要解决的问题是如何将曲面划分为不同的区域,即将“偏移曲面”划分为不同的加工区域。为了更好地对曲面加工区域进行划分,本发明引入一个光学术语“等照度”。针对曲面加工区域划分,“等照度点”是指在曲面上具有相同光密度的点,即曲面在这些点的法矢与给定参考方向的夹角相同(该夹角被称为“等照度角”)。在光学上,曲面上一点的“等照度角”越小,该点吸收的光越多。针对上述特性,可以将“等照度角”小于规定值的区域称为“等照度区域”。
对“偏移曲面”进行划分后,则可以运用“自适应性”加工措施来产生精加工刀具轨迹。按照“自适应性”加工措施,针对每一个加工区域,其加工是独立的,即对整个曲面的加工是将所有区域进行独立加工。针对每一个加工区域,其刀具轨迹的计算与传统方法相同,整个曲面的加工轨迹的计算分为以下四步:
a)一系列平行平面与曲面交线的计算。平面与曲面的相交可以利用“追踪法”进行交线的计算。
b)相交曲线的逼近。利用步骤1所获得的交线不能够直接数控加工处理,它们必须按照不同的数控插补方法,例如线性插补算法、圆弧插补算法或B样条插补算法进行逼近。
c)步长计算。刀具步长的计算是刀具轨迹生成中的关键步骤,它在一定程度上决定了刀具轨迹的长度,走刀步长越小,总的刀具轨迹就越长。在步长确定过程中,通常用曲率半径为ρ的圆来代替两相临刀具轨迹之间的曲面。
d)连接相临的初始刀具轨迹,以形成实际刀具轨迹。
为了验证基于构造曲面作为“基曲面”进行数控加工算法的有效性,本实例以选取75×60个测量数据点作为控制顶点来构造的“基曲面”,并以其为基础实施数控加工仿真验证。仿真实验直接利用刀具的半径作为曲面的偏移量,刀具半径r=5mm,在仿真过程中没有出现自交现象,且最大偏移误差和平均偏移误差分别为0.186mm和0.034mm。本次仿真实验共执行了8次粗加工和精加工,其控制顶点数目如表1,其仿真参数见表2。
表1(基曲面控制顶点数目)
插值比例因子c 测量点数目  平均误差(mm)  最大误差(mm)
    c=1     1548   0.00164   0.00384
    1532   0.00166   0.00391
    3036   0.00131   0.00294
表2(仿真结果分析)
最大偏移误差(mm)  平均偏移误差(mm)  最大过切量(mm)  最大欠切量(mm)   加工合格率(%)
    0.042     0.007     0.180     0.462     99.85

Claims (4)

1、一种基于测量数据点直接数控加工方法,其特征在于,基于B样条曲面的性质,结合快速成型制造技术的特点,全面利用离散数据测量点的几何信息,具体包括两个步骤:
1)测量三维离散点预处理:给定一系列测量数据点,基于B-spline曲线、曲面的性质,对离散数据点进行数据平滑、数据精简、数据区域分割、特征点提取和排序,利用选取的离散数据点为控制顶点进行B-spline曲线、曲面的构造,是一个“正求”过程,省略方程的求解;
2)基于测量数据点直接数控刀具轨迹文件生成:依照被加工实体表面形状的复杂度来实施“自适应性”加工措施,针对实体表面曲率变化较大的区域,在实施数控刀具轨迹生成时采用较稠密的刀具轨迹进行加工,相反,针对实体表面曲率变化较小的区域,采用较稀疏的刀具轨迹进行加工。
2、根据权利要求1所述的基于测量数据点直接数控加工方法,其特征是,基于B样条曲面的特性,是指:
a)包凸性:B-spline曲线、曲面、必处在控制多边形所形成的凸包内;
b)相似性:以选取的离散数据点为控制顶点构造的B样条曲面与以所有离散点为基础的拟合曲面存在强相似性。
3、根据权利要求1所述的基于测量数据点直接数控加工方法,其特征是,当离散数据点毫无内在顺序时,处理步骤如下:
a)对离散数据点进行切片:按照所测量实体表面形状寻求一个切片方向,给定一个切片间距δ,δ上是根据具体的被测物体形状所给定的两层切平面间的距离,沿切片方向将所有离散数据点进行层片划分,形成切片数据;
b)离散数据点排序:将每两层切片间的所有离散数据按照某一坐标进行“字典”方式排序为Pi
4、根据权利要求1所述的基于测量数据点直接数控加工方法,其特征是,实施“自适应性”加工措施,针对每一个加工区域,其加工是独立的,具体处理步骤如下:
a)一系列平行平面与曲面交线的计算,平面与曲面的相交利用“追踪法”进行交线的计算;
b)相交曲线的逼近,利用步骤a所获得的交线不能够直接数控加工处理,它们必须按照线性插补算法、圆弧插补算法或B样条插补算法进行逼近;
c)步长计算,刀具步长的计算是刀具轨迹生成中的关键步骤,它在一定程度上决定了刀具轨迹的长度,走刀步长越小,总的刀具轨迹就越长,在步长确定过程中,利用曲率圆代替两相临刀具轨迹之间的曲面;
d)连接相临的初始刀具轨迹,形成实际刀具轨迹。
CNB200410084299XA 2004-11-18 2004-11-18 基于测量数据点直接数控加工方法 Expired - Fee Related CN1294466C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200410084299XA CN1294466C (zh) 2004-11-18 2004-11-18 基于测量数据点直接数控加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200410084299XA CN1294466C (zh) 2004-11-18 2004-11-18 基于测量数据点直接数控加工方法

Publications (2)

Publication Number Publication Date
CN1605961A true CN1605961A (zh) 2005-04-13
CN1294466C CN1294466C (zh) 2007-01-10

Family

ID=34765849

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200410084299XA Expired - Fee Related CN1294466C (zh) 2004-11-18 2004-11-18 基于测量数据点直接数控加工方法

Country Status (1)

Country Link
CN (1) CN1294466C (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033513A (zh) * 2010-11-05 2011-04-27 江俊逢 一种计算机辅助离散几何规划方法与系统
WO2012058959A1 (zh) * 2010-11-05 2012-05-10 Jiang Junfeng 一种计算机辅助数字控制方法与系统
CN102495586A (zh) * 2011-12-26 2012-06-13 北京进取者软件技术有限公司 一种基于曲面模型的加工效果表示方法
CN103777567A (zh) * 2012-10-22 2014-05-07 苹果公司 使用工具中心点移动技术来光滑化表面的方法
CN104503364A (zh) * 2014-11-21 2015-04-08 苏州大学 全瓷义齿磨削系统的刀具轨迹测量仪
CN106874526A (zh) * 2015-12-10 2017-06-20 中航商用航空发动机有限责任公司 叶轮机叶片的生产坐标的生成方法和装置
CN108453439A (zh) * 2018-03-14 2018-08-28 清华大学天津高端装备研究院洛阳先进制造产业研发基地 基于视觉传感的机器人焊接轨迹自主编程系统及方法
CN109991921A (zh) * 2019-03-25 2019-07-09 华中科技大学 一种平顺b样条轨迹直接生成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6079831A (en) * 1997-04-24 2000-06-27 Orbtek, Inc. Device and method for mapping the topography of an eye using elevation measurements in combination with slope measurements
CN1214231C (zh) * 2003-03-28 2005-08-10 中国科学院力学研究所 一种空间三维自由曲线的测量方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033513A (zh) * 2010-11-05 2011-04-27 江俊逢 一种计算机辅助离散几何规划方法与系统
WO2012058959A1 (zh) * 2010-11-05 2012-05-10 Jiang Junfeng 一种计算机辅助数字控制方法与系统
CN102033513B (zh) * 2010-11-05 2012-07-18 江俊逢 一种计算机辅助离散几何规划方法
CN102495586A (zh) * 2011-12-26 2012-06-13 北京进取者软件技术有限公司 一种基于曲面模型的加工效果表示方法
CN103777567A (zh) * 2012-10-22 2014-05-07 苹果公司 使用工具中心点移动技术来光滑化表面的方法
CN104503364A (zh) * 2014-11-21 2015-04-08 苏州大学 全瓷义齿磨削系统的刀具轨迹测量仪
CN104503364B (zh) * 2014-11-21 2017-09-29 珠海市晶彩医疗科技有限公司 全瓷义齿磨削系统的刀具轨迹测量仪
CN106874526A (zh) * 2015-12-10 2017-06-20 中航商用航空发动机有限责任公司 叶轮机叶片的生产坐标的生成方法和装置
CN106874526B (zh) * 2015-12-10 2020-02-28 中国航发商用航空发动机有限责任公司 叶轮机叶片的生产坐标的生成方法和装置
CN108453439A (zh) * 2018-03-14 2018-08-28 清华大学天津高端装备研究院洛阳先进制造产业研发基地 基于视觉传感的机器人焊接轨迹自主编程系统及方法
CN109991921A (zh) * 2019-03-25 2019-07-09 华中科技大学 一种平顺b样条轨迹直接生成方法

Also Published As

Publication number Publication date
CN1294466C (zh) 2007-01-10

Similar Documents

Publication Publication Date Title
CN110516388B (zh) 基于调和映射的曲面离散点云模型环切刀轨生成方法
Boschetto et al. Finishing of fused deposition modeling parts by CNC machining
Kulkarni et al. An accurate slicing procedure for layered manufacturing
CN105739440A (zh) 一种宽弦空心风扇叶片的自适应加工方法
CN106133628A (zh) 用于确定加工凹槽形状的刀具的路径的方法和系统
CN106970589B (zh) 一种减小多轴加工轮廓误差的进给率松弛方法
CN109522585A (zh) 一种防止3d打印模型特征偏移的自适应分层方法
CN109214032B (zh) 一种空心叶片的自适应加工方法
CN109325316B (zh) 基于共点焊接排序的stl模型高效并行切层方法
CN1294466C (zh) 基于测量数据点直接数控加工方法
WO2022179097A1 (zh) 等几何拓扑优化结果的可编辑模型自动构建方法及系统
CN108594764B (zh) 一种三角网格模型的等残留高度刀触点轨迹生成方法
CN110348086A (zh) 一种球头铣刀立铣表面粗糙度快速建模方法
Dhanda et al. Adaptive tool path planning strategy for freeform surface machining using point cloud
CN109858143B (zh) 圆弧墙上异型门窗模型生成方法
Li et al. Reasoning mechanism: An effective data reduction algorithm for on-line point cloud selective sampling of sculptured surfaces
Yan et al. THREE-AXIS TOOL-PATH B-SPLINE FITTING BASED ON PREPROCESSING, LEAST SQUARE APPROXIMATION AND ENERGY MINIMIZATION AND ITS QUALITY EVALUATION.
CN105653773A (zh) 一种适于3d打印的棱透镜复合眼镜片stl模型的修复方法
Li et al. Design and implementation of an integral design CAD system for plastic profile extrusion die
Navangul et al. A vertex translation algorithm for adaptive modification of STL file in layered manufacturing
CN1294542C (zh) 基于离散数据点直接快速原型制造方法
Kerschbaumer et al. Tool path generation for 3D laser cladding using adaptive slicing technology
Wang et al. A slicing algorithm to guarantee non-negative error of additive manufactured parts
Qu et al. Raster milling tool‐path generation from STL files
Xú et al. Feature recognition for virtual machining

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070110

Termination date: 20091218