CN1592845B - 用于液位测量装置的天线系统 - Google Patents

用于液位测量装置的天线系统 Download PDF

Info

Publication number
CN1592845B
CN1592845B CN02823383.2A CN02823383A CN1592845B CN 1592845 B CN1592845 B CN 1592845B CN 02823383 A CN02823383 A CN 02823383A CN 1592845 B CN1592845 B CN 1592845B
Authority
CN
China
Prior art keywords
antenna
hydraucone
horn
antenna system
filling material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN02823383.2A
Other languages
English (en)
Other versions
CN1592845A (zh
Inventor
克劳斯·金泽尔
约根·莫泽
丹尼尔·舒尔蒂斯
约瑟夫·费林巴克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vega Grieshaber KG
Original Assignee
Vega Grieshaber KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vega Grieshaber KG filed Critical Vega Grieshaber KG
Publication of CN1592845A publication Critical patent/CN1592845A/zh
Application granted granted Critical
Publication of CN1592845B publication Critical patent/CN1592845B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/2845Electromagnetic waves for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明涉及一种用于液面测量装置的天线系统,用于通过微波信号测量容器中的填充物的填充液位。此天线系统包括具有内部天线喇叭形区域的天线喇叭(2),和位于天线喇叭的喇叭形区域的平面结构(4)。该平面结构(4)将微波信号耦合到天线喇叭(2)中,用于确定填充物的填充液位,然后该微波信号通过天线喇叭(2)向填充物的方向发射。

Description

用于液位测量装置的天线系统
要求优先权
本申请要求在2001年11月26日提交的美国临时申请No.60/333440的优先权,在这里特地将其整个内容包括在其中,以供参考。
技术领域
本发明涉及一种用于液位测量装置的天线系统,它适合用于填充液位的无接触测量。这种天线系统尤其是预定用于与所谓的填充液位雷达装置和雷达液位传送器一起使用。这些装置通常也被称为雷达液位传感器。此外,本发明还涉及一种包括该天线系统的填充液位雷达。通常,上述类型的天线系统用于发射微波信号。微波信号的发射可以非连续或连续地进行。非连续发射的信号是例如微波脉冲。连续发射微波的雷达液位传感器通常称为FMCW(调频连续波)-雷达液位传感器。
背景技术
那种类型的天线系统主要用于测量任意种类的填充物的填充液位,尤其是在贮存槽或容器中的粒状材料和流体。因此接着通过测量微波脉冲的传送时间来确定填充液位,它通过天线系统向待确定的填充液位表面的方向发射,从该表面反射并被天线系统接收,并且最后被传送到组合的发射和接收模块。通过信号传送时间和微波传播速度、由信号传播的路径,以及知道容器的高度,就可以确定填充液位高度。为此目的需要发射微波脉冲,由此特别是使用喇叭式天线。
在填充液位测量技术领域中,由现有技术已知各种喇叭式天线;然而,所有这些天线由于它们的结构外形和长度都存在一定问题。
用于液面测量所必要的微波是由高频模块(HF模块)产生的。根据现有技术,这些微波信号通过激励器引脚侧向耦合到波导中。在大多数情况下与玻璃馈线一起使用的激励器引脚由此经由同轴电缆从HF模块馈送。从德国实用新型DE 94 122 34 U1中已知一种喇叭式天线,它具有一个与用于液面测量的同轴电缆相连的激励器引脚,该激励器引脚嵌入杯形的金属壳的侧壁中。在此杯形金属壳之后是一个波导。接着在该波导之后又是一个与其耦联的天线喇叭。
此装置的另一改进结构在于,提供一种平面结构(补片)以代替激励器引脚,以便同样依次把微波脉冲耦合到波导中。此平面结构连接在介电常数为ε1的电介质材料上,并且定位在波导的一端。在DE198 00 306 A1中建议,借助于平面辐射元件来将微波耦合到波导中。平面辐射元件由此设置在波导的前端。然而,该解决方案再次由于其结构上固有的问题,使此天线系统要求很大的结构空间-它主要沿纵向延伸。
然而,已知的所有类型的馈送系统具有的共同特点是,微波脉冲耦合到波导中,沿传播方向接在其后的是天线喇叭的喇叭形。因此,对于仅允许在波导内传播波的基谐模式,波导尺寸与微波信号的传输频率范围的确切匹配是有问题的。用于波导的不足够精确的匹配调整由于波色散而可能导致信号失真,最终导致不真实的测量结果。
发明内容
根据本发明的第一个方面,提供一种用于雷达液面测量装置的天线系统,例如用于测量容器中填充物的填充液位的液面测量装置,其中天线系统包括一个具有内部天线喇叭形区域的天线喇叭,以及位于天线喇叭形区域中的平面结构,该平面结构将微波信号耦合到天线喇叭中,用于确定填充物的填充液位,然后该微波信号由天线喇叭向填充物的方向发射。
根据本发明的第二个方面,一种用于液面测量装置的天线系统,用于测量容器中的填充物的填充液位,包括一个具有内部天线喇叭形区域的天线喇叭,并且至少部分地填充有一种电介质材料的填充物,其介电常数大于或等于1,并且位于天线喇叭形区域中的平面结构将微波信号耦合到天线喇叭中,用于确定填充物的填充液位,该微波信号然后由天线喇叭向填充物的方向发射。
根据本发明的另一个方面,一种用于液面测量装置的天线系统,用于测量容器中的填充物的填充液位,包括一个具有一个第一天线喇叭口和一个与其间隔开的第二天线喇叭口的天线喇叭,其中第二喇叭口比第一喇叭口直径更大,并且天线喇叭形区域在第一和第二喇叭口之间延伸,以及一个平面结构,它包括至少一个位于紧靠于第一喇叭口的天线喇叭形区域中的补片,通过该补片能够将微波信号直接地耦合到天线喇叭中,用于确定填充物的填充液位,该微波信号然后由天线喇叭向填充物的方向发射。
因此,在根据本发明上述任一方面的本发明天线系统中,波导被首次分配,微波信号到此位置已经被耦合到波导中,由此天线系统的纵向长度可以被减小。代替波导例如同轴电缆可以与带有例如至少一个在其上的补片的平面结构相连,以便将微波信号(例如微波脉冲)从产生微波信号的雷达传感器的微波部件传导到根据本发明的天线系统,使得微波向其液位待测量的填充物的方向发射。本发明的一个优点可以是,天线系统更加紧凑,并且足够小到甚至能在非常狭窄的空间条件下使用。
如已经被描述的,已经可以普遍运用将微波通过激励器引脚或使用补片耦合到连接在天线喇叭后的波导中。由于在侧面设置激励器引脚,这种耦合到波导中最初需要以结构偶然的形式进行。通过进一步改进本系统,代替激励器引脚,使用耦合微波的平面结构,耦合到波导中的原理被维持了,因为本领域技术人员认为这对于系统的理想功能是需要的。
然而,波导和天线喇叭的组合要求重要的元件沿纵向延伸。令人惊讶的是,在进行大量的测试之后发现,能够以微波的形式通过平面结构(补片)将HF能量直接耦合到天线喇叭中,例如喇叭的喇叭形区域中。根据本发明的示例性实施例,带有两个或四个、甚至更多的为26GHz频率优化的矩形补片的平面结构证明是尤其适合的。因此使用的补片也可以有任何其它的形状,例如三角形、椭圆形或圆形。为了能够直接耦合,补片可以被直接安装在天线喇叭的前端。通过这种直接耦合到天线喇叭中,天线系统的结构长度相对于常规的系统减少直到60%。现有技术中带有26GHz频率的波导的2”天线的长度例如大约为160毫米,然新的要求保护的特征的结构在类似的电特性上仅仅为65毫米。
天线经常被用于化学侵蚀环境的条件下或食品工业中.对于保护补片免受可能的化学作用或被食品弄脏,本发明的天线系统最好完全或部分地充满电介质材料.除了保护其免受化学作用和弄脏补片外,包括介电常数εr≥1的电介质材料的填充物(如PP、PVDF、PTFE、陶瓷及其混合物)也有机械磨损保护作用,它对某些填充材料非常有用。此外,在此要说明的是,通过对喇叭式天线填充一种电介质材料,同时防止冷凝物侵入天线内部区域。
然而,对天线填充一种电介质材料,用于一种完全不同的目的:除了对于天线引起的纯粹的保护作用外,这种填充物的使用还允许减小天线系统的尺寸,其中填充物的辐射表面以光学透镜或锥体的形式产生,因此可以降低波传播角度。与具有相同性质的常规天线相比,这同时对应于获得本发明天线系统的高增益。除了获得高增益的简单优点外,使用电介质的填充介质因此允许减小天线的尺寸:通过这个事实,即由于填充介质形式的透镜或锥体,减小了波传播角度,并且波信号于是比通常的补片天线散射得更少,用于获得确定的预先规定的增益所需要的补片数目可以被减少。然而,这又引天线尺寸的减小,首先是其直径的减小。
因此,通过聚焦经由天线喇叭产生的、由补片耦合的自由空间波,和位于天线喇叭中的电介质材料,能够减少为获得一定的增益所需要的补片数目。优选的是,使用四个单独的补片,它们彼此电耦合。因此,同样可以只使用一个、两个或多于四个补片。
设置多于一个补片可以表现出本发明的另一优点:如果至今由于波导的直径很小,可以使用单个补片用于耦合信号,那么现在由于本发明可以使用多于仅仅一个补片,因为各自频率的天线喇叭的直径显然比至今所需波导的直径较大。通过使用几个补片,增益可以随之显著增加,这样提高了测量精度。
此外非常有利的是,本发明天线系统能够以低成本制造并由此是很经济的。由于小的元件尺寸,较小的外壳以及附件是可能的。
本发明的另一优点在于,本类型的天线系统甚至可以用于非常高的频率范围。在高于30或50GHz的频率范围内,波导的机械尺寸通常变得如此小,以至于常规的结构不再能被运行。
另一重要优点可以由此结构的系统随机的防爆绝缘来表示。因此,在危险的环境条件下,不需要额外的维护用于防爆绝缘,因为为本目的所需要的单独接地(电路块、地端)已经系统随机地产生。因此,通过本发明借助于其上带有补片的电路板,使电路块相对于容器块绝缘。因此,补片经由同轴电缆的内导体与电路块连接。
此外,本发明还证明是尤其有利的在于,除了补片的同轴馈送外,其它所有的常规方法,例如微波传输带、多层微波传输带、狭槽或共面的馈电方法都是可能的。
例如在本发明描述的开头已经解释,存在可以得到的对天线系统的某些要求,它足够小到可以用在非常狭窄的空间条件下。对于这种小型化的天线系统的要求通过本发明可以实现。因此,本发明天线系统也可以用于高度非常低的容器中,容器体积将被充分利用。
根据本发明的另一方面,本发明天线系统的示例性实施例包括一个具有内部天线喇叭形区域的天线喇叭,以及一个位于在天线一端的平面结构,该平面结构将微波信号耦合到天线喇叭中,用于确定填充物的填充液位。
在上述本发明天线系统的示例性实施例中,平面结构包括至少一个补片。
在上述本发明天线系统的另一示例性实施例中,天线喇叭内部的喇叭形区域至少部分填充介电常数大于或等于1的电介质材料的填充物.填充物材料可以从包括PP、PTFE和陶瓷的材料组中选择.
在上述本发明天线系统的另一示例性实施例中,天线系统还包括一个可传送微波的电介质材料的圆片,其中圆片设置在平面结构的前端并且被封装在天线喇叭内部的喇叭形区域内。
在上述本发明天线系统的另一示例性实施例中,天线喇叭具有一个第一喇叭口和一个第二喇叭口,其中第二喇叭口比第一喇叭口直径较大,并且圆片紧靠第二喇叭口地设置。
在上述本发明天线系统的另一示例性实施例中,圆片具有一定的厚度(t),该厚度为λ/2除以圆片电介质材料的介电常数εr的平方根并且乘以n,其中λ为待由天线系统发射的微波波长,并且n∈N*。相应的公式是:
附图说明
以下借助于附图描述本发明的几个示例性实施例,附图中:
图1是本发明第一个实施例的局部纵向剖视图;
图2示出了图1的仰视图,沿主波传播方向A的相反方向;
图3是本发明的另一个实施例的纵向剖面图;
图4是一个示意图,其中可以看到防爆绝缘的原理;
图5以实施例a到c示出了各种可能的天线喇叭的形状,本发明的天线系统能够装备这些天线喇叭形状;
图6以实施例a到f示出了具有各种可能的透镜形状的不同天线喇叭填充物,本发明的天线系统可以装备有这些填充物;
图7以实施例a到j示出了不同的天线喇叭填充物的形状,本发明的天线系统可以具有这些填充物形状;
图8a-8c示出了与圆盘或圆片结合的各种天线喇叭填充物的形状,本发明的天线系统可以具有这些填充物形状;
图9a-9e示出了靠近天线喇叭前端的圆片的另一示例性实施例;以及
图10示出了本发明一个示例性实施例、尤其是一种液位传送器的部分剖切的示意图,液位传送器包括带有由安装在天线喇叭内的圆片或圆盘保护的平面结构的天线喇叭。
具体实施方式
图1是本发明天线系统的纵向剖视图。天线系统包括设有多个孔9的金属凸缘1。孔9用于容纳螺钉,通过这些螺钉将天线系统连接在具有孔口的容器或贮存槽(未示出)上,金属的天线喇叭2通过这个孔口伸进内部容器空间。基于这个目的,这些孔9需要在容器壁中相应的孔中找到它们的延长(部分),以便允许天线系统与容器用螺丝旋紧。此外,凸缘1在其中心还有一个孔10,同轴电缆被引导穿过其中。在天线系统的凸缘1的下面,天线喇叭2用螺钉8连接。
天线喇叭2以这样的方式固定在凸缘1上,使得天线喇叭2的中心轴线与孔10的中心轴线同轴.天线喇叭2在其小的漏斗口的前侧具有一个凹槽.在该凹槽中、一个基片3夹紧在凸缘1和天线喇叭2之间.基片3用作为位于其上的补片4上的载体.在基片3和凸缘1之间设置一个薄的连续的基面7.
安装在基片3下侧上的补片4直接位于小的天线喇叭口的前侧。补片4经由同轴电缆5提供HF能量。HF信号又经由HF模块(未示出)产生,并且通过同轴电缆5输送到位于基片3上的补片4。由此同轴电缆5通过焊接缝6或插头连接固定在HF模块的任意一侧以及固定在基片3上。
基片3由构成特别是防爆绝缘的电介质材料组成。连续的基面7以及电介质的基片3这样由天线喇叭2夹紧到凸缘1上,使基片3的平面法线与主波传播方向A一致。
在图2中以仰视图示出图1的天线系统。在此,可以看到同心排列的主要元件。在此可以看到四个独立的补片4同心于主波传播方向A排列在基片3上。四个补片4彼此电耦合。
图3示出了本发明的另一实施例。此天线系统也包括天线喇叭2,HF信号由直接位于较小的天线喇叭口的前侧的四个补片4电偶合到天线喇叭2的较小的口中。补片4的平面几何形状位于介电的基片3上。在图3所描述的实施例中,可以省略在HF模块和天线系统之间的接线。这点如此实现,即,补片4作为HF模块11的有源元件安装在相同的印刷电路板上,或者补片4通过在多层印刷板上的直通电镀(throughplating)与HF模块11相联接。
此外,在图3中示出金属的喇叭式天线2的填充物13和外壳12。一方面,金属的天线喇叭2的包络面完全由电介质材料的外壳13,例如PVDF包围。另一方面,由天线喇叭2形成的空腔完全或至少部分充满一种电介质材料,例如PP。填充物13在此可以有各种形状。可能的填充物形状在其它的附图中描述。
如上所述,此结构的重要优点在于用于,防爆绝缘所需的对地的单独的传导性已经以系统偶然性的方式产生。在图4的示意图中,此防爆绝缘以一个实例示出。在本发明中,经由通过基片3(补片4贴合在基片3上)与金属天线喇叭2的连接来实现与HF模块的电路块的容器接地的绝缘,该HF模块通过同轴电缆5b的外导体与天线相连。基片3的厚度按照防爆要求的电压稳定性来选择(例如0.5mm)。在HF模块中,也发生同轴电缆的内导体5a与外导体5b的绝缘。
在图5中示出各种天线喇叭形状2a、2b和2c,本发明的天线系统可以装备这些天线喇叭形状。图5a的天线喇叭2a表示标准喇叭形状。另外,然而,在图5b中示出的喇叭形状2b、即凸起的喇叭,以及在图5c中示出的郁金香形状2c、即凹入的喇叭同样也被使用。上述喇叭形状2、2b和2c的数量是无限制的。另外的喇叭形状也是可能的。当然,图5a-图5c的各种喇叭形状的组合也是可能的。
在图6中示出了主要的喇叭填充物形状20a-20d。图6a表示没有任何填充物的喇叭2。在图6b中示出的喇叭2完全充满电介质材料13b(例如PP、PVDF或PTFE),填充物13b总是以平面方式与前和后喇叭口端部端接。在图6c至图6f中示出了填充物13c-13f可能的透镜形状(lens form)20a-20d.图6c和6d的正的透镜形状20a、20b可以构成为圆锥体(图6c),其顶端指向波辐射方向,或者构成为凸透镜(图6d).图6e和6f的负透镜20c、20d具有负圆锥体的形状(图6e),其顶端指向相反的波传播方向,或者具有凹的形状(图6f).
在图7中示出了电介质材料的填充物13的各种形状。本发明的所有示例性实施例可以与上述的平面结构相组合。示例性的填充材料是例如PP、PVDF或PTFE。如上所述,这样的填充物13可以完全或只部分地填满天线喇叭2。在此,各种填充物形状都是可能的。这在图7a到7j中示出。图7a至7e的填充物13是部分的填充物,它们只出现在喇叭前部区域。在喇叭的内部空间中,填充物形成圆锥形,其顶端指向较小的喇叭口的方向。在较大的喇叭口区域内的波辐射表面可以具有各种形状。这些喇叭形状具有如已经针对图6描述的透镜性质。图7f到7i的喇叭填充物形状是只出现在喇叭后部区域的部分填充。填充物形状总是包括圆柱体,其顶端指向较大的喇叭口的方向。图7j表示另一实施例,其中补片仅仅由一个电介质材料的平面圆盘21覆盖。
在此所示的全部喇叭填充物形状适合,一方面用于聚焦微波,以及另一方面,用于保护补片4免受由侵蚀性环境条件引起的作用或由粒状材料引起的机械冲击。通过聚焦微波得到的主要优点在于,能够优化所谓的天线增益。
除图5到7所示的方案之外,各种方案的所有组合可以用于喇叭形状和喇叭填充方案,也就是说,每个天线喇叭2可以与各填充物13和各透镜组合。
图8a-8c示出了与圆片21组合在本发明天线系统的天线喇叭2内的填充物13的各种示例性实施例。在图8a中所示的圆片21由能传送待发射的微波信号的电介质材料制成。圆片21紧紧地安装在天线喇叭2内。平面结构4安装在圆片21的左侧,以便它可以得到保护以免受例如贮存罐内的化学侵蚀气氛,天线喇叭2在该贮存罐中指向。
在图8b中示出的按本发明天线系统的示例性实施例与图8a中示出的实施例相对应,除了它与具有圆锥形状的填充物13相组合之外。圆锥形状的填充物13的顶端指向其液位要被测量的产品表面。图8b的实施例的变形在图8c中示出。此处,与圆片21相组合的填充物13比图8b的圆锥形状的填充物13的基部较小。根据图8b的实施例以及在图8c中示出的本发明天线系统的实施例可以有这样的优点,即,补片结构4得到保护以免受侵蚀性气氛并且发射出的辐射能够以所要求的方式聚焦。
图9a-9e还示出了天线喇叭2与安装在天线喇叭2的第二喇叭口上的保护元件22a-e的组合的示例性实施例。在图9a中示出的示例性实施例包括一个具有平面的内表面和平面的外表面的保护板22a。在图9b中示出的另一示例性的实施例包括一个以凸出形状形成的保护板22b。根据图9c的可选择的实施例包括一个具有凸形2的保护板22c,但是外表面是圆的。在图9d中示出的保护板22d的另一种变型。此保护板22d具有与图9b的变化形状一样的凹形,但是板22d的顶端指向补片结构4。最后的但不是最少的,在图9e中示出凹入的保护板22e的另一示例性实施例。在此,保护板22e与图9c的保护板22c相同,但是是转向的。
在根据图9a-9e的所有示例性实施例中,保护板22a-22e的厚度等这样计算得到的值,即,λ/2除以保护板22a-22e的材料介电常数的平方根。保护板22a-22e的厚度也可以是上述值的倍数。
最后,在图10中以纵剖面示出本发明天线系统的另一示例性实施例,在此,雷达液位传送器包括一个外壳26和天线系统的按本发明的示例性实施例.在外壳26内还设有特别是电子部件或模块.电子部件产生微波信号,例如微波脉冲.由于雷达液位传送器或雷达液位传感器的电子部件和模块对于本领域技术人员是公知的,关于这些部件的详细解释就省略了.产生微波脉冲的模块与同轴电缆5的一端相连接.同轴电缆5的另一端与具有至少一个补片的平面结构4焊接(位置6).作为可选择的方案,同轴电缆5也可以通过插入式连接与平面结构4电连接.
具有至少一个补片的平面结构4支承在支承盘27的中心。此支承盘27邻接天线喇叭2的一个端面。在图10中示出的天线喇叭2具有一个口29。在平面结构4安装在其上的端面和天线喇叭2的口29之间,设置了一个上述的保护圆盘或保护窗21c。此保护窗21c有稍微圆锥曲线的形状,其顶端直接指向天线喇叭2的第二个口29。为了在保护窗21c和天线喇叭2之间的较好的密封,在天线喇叭2内成形的容纳凹槽内安装一密封环25。整个装置,也就是带有天线的雷达液位传感器,安装在凸缘1的孔内。此凸缘1用作为雷达液位传感器的安装装置。凸缘1将由螺栓(未示出)固定在贮存槽上。
在操作过程中,电子部件产生微波脉冲,它将由指向平面结构4的同轴电缆5传导。通过平面结构4上的补片,此微波脉冲将在向保护窗21c的方向上被发射,通过保护窗21c传输并可以通过保护板21c的透镜形状聚焦。通过天线喇叭2,微波脉冲将被发送到要被测量的产品表面。由产品表面反射的回波在天线喇叭2内被接收,通过保护窗21c传输并将被平面结构21c上的所述补片接收。微波脉冲的反射波然后由同轴电缆5传导到外壳6内的电子部件,以便确定传播时间。在进行各种计算之后确定液位,并且表示贮存槽内的产品液位的相应信号发送到接收器(未示出)。
最后要指出的是,保护窗21c的材料是能够传送微波的,并且考虑到在槽中可能的侵蚀气氛而可以由一层保护涂层覆盖。

Claims (24)

1.一种用于液面测量装置的天线系统,用于通过微波信号测量容器中的填充物的填充液位,包括:
-具有内部天线喇叭形区域的天线喇叭(2),以及
-位于天线喇叭形区域中的平面结构(4),该平面结构(4)将微波信号耦合到天线喇叭(2)中,用于确定填充物的填充液位,然后所述微波信号通过天线喇叭(2)向填充物的方向发射。
2.如权利要求1所述的天线系统,其特征在于,平面结构(4)包括单个补片或者多个彼此电耦合的补片。
3.如权利要求1所述的天线系统,其特征在于,天线喇叭(2)包括一个第一喇叭口和一个与其间隔开的第二喇叭口(29),其中第二喇叭口(29)的直径比第一喇叭口的直径更大,并且第一喇叭口直接与一天线凸缘(1)相连并且与其是共轴的。
4.如权利要求3所述的天线系统,其特征在于,平面结构(4)安装在第一喇叭口的前侧。
5.如权利要求2所述的天线系统,其特征在于,天线喇叭(2)包括一个第一喇叭口和一个与其间隔开的第二喇叭口(29),其中第二喇叭口(29)的直径比第一喇叭口的直径更大,并且第一喇叭口直接与一天线凸缘(1)相连并且与其是共轴的。
6.如权利要求5所述的天线系统,其特征在于,平面结构(4)安装在第一喇叭口的前侧。
7.如权利要求5所述的天线系统,其特征在于,至少一个补片安装在平面的电介质载体(3)上并位于第一喇叭口上,用于经由第一天线喇叭口将微波直接耦合到天线喇叭(2)中,载体(3)的平面法线与天线喇叭(2)的中心轴线平行。
8.如权利要求5所述的天线系统,其特征在于,至少一个补片安装在平面的电介质载体(3)上并位于第二喇叭口(29)上,用于经由第二天线喇叭口将微波直接耦合到天线喇叭(2)中,载体(3)的平面法线与天线喇叭(2)的中心轴线平行。
9.如权利要求7或8所述的天线系统,其特征在于,内部天线喇叭形区域至少部分地填充有介电常数大于或等于1的电介质材料的填充物(13;13b-13f)。
10.如权利要求9所述的天线系统,其特征在于,所述电介质材料的填充物(13;13b-13f)的介电常数的值在1与10之间。
11.如权利要求10所述的天线系统,其特征在于,所述电介质材料的填充物(13;13b-13f)的介电常数的值在2至4之间。
12.如权利要求11所述的天线系统,其特征在于,所述电介质材料的填充物(13;13b-13f)的介电常数的值为大约2.2。
13.如权利要求9所述的天线系统,其特征在于,电介质材料的填充物(13;13b-13f)从包括PP、PVDF、PTFE、陶瓷及其混合物的材料组中选择。
14.如权利要求1所述的天线系统,其特征在于,天线系统还包括一能够传送微波的电介质材料的圆片,其中圆片安装在平面结构(4)的前部并且密封在内部天线喇叭形区域内。
15.如权利要求14所述的天线系统,其特征在于,天线喇叭(2)具有一个第一喇叭口和一个第二喇叭口(29),其中第二喇叭口(29)的直径比第一喇叭口直径更大,并且圆片安装在第一喇叭口上.
16.如权利要求14所述的天线系统,其特征在于,天线喇叭(2)具有一个第一喇叭口和一个第二喇叭口(29),其中第二喇叭口(29)的直径比第一喇叭口直径更大,并且圆片紧靠第二喇叭口(29)安装。
17.如权利要求9所述的天线系统,载体(3)的介电常数比电介质材料的填充物(13;13a-13f)的介电常数更大。
18.如权利要求9所述的天线系统,其特征在于,在较大的喇叭口(29)处的电介质材料的填充物(13;13a-13f)具有一光学透镜形式的辐射表面。
19.如权利要求14所述的天线系统,其特征在于,所述圆片具有一光学透镜形式的辐射表面。
20.如权利要求18或19所述的天线系统,其特征在于,光学透镜形状是凹形的。
21.如权利要求18或19所述的天线系统,其特征在于,光学透镜形状是凸形的。
22.一种用于液面测量装置的天线系统,用于通过微波信号测量容器中的填充物的填充液位,包括:
-天线喇叭(2),它具有一个第一喇叭口和一个与其间隔开的第二喇叭口(29),其中第二喇叭口(29)的直径比第一喇叭口直径更大,以及
-内部天线喇叭形区域,它在第一喇叭口和第二喇叭口(29)之间延伸,以及
-位于内部天线喇叭形区域中的平面结构(4),它与第二喇叭口(29)相比更靠近第一喇叭口,该平面结构(4)包括至少一个补片,通过它将微波信号直接耦合到天线喇叭(2)中,用于确定填充物填充液位,该微波信号然后通过天线喇叭(2)向填充物的方向发射。
23.一种用于发射微波脉冲的填充雷达微波传感器,用于确定填充物的填充液位,包括:
-用于产生微波信号的模块,以及
-根据上述权利要求之一的与所述模块耦连的天线系统。
24.一种用于发射微波信号的方法,用于确定填充物的填充液位,微波信号通过HF模块产生并且馈送到位于天线喇叭形区域内的平面结构(4)中,以便接着通过平面结构直接耦合到一天线喇叭(2)中并从那里向填充物的方向发射。
CN02823383.2A 2001-11-26 2002-11-21 用于液位测量装置的天线系统 Expired - Lifetime CN1592845B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US33344001P 2001-11-26 2001-11-26
US60/333,440 2001-11-26
PCT/EP2002/013086 WO2003046491A1 (en) 2001-11-26 2002-11-21 Antenna system for a level measuring device

Publications (2)

Publication Number Publication Date
CN1592845A CN1592845A (zh) 2005-03-09
CN1592845B true CN1592845B (zh) 2010-05-05

Family

ID=23302790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02823383.2A Expired - Lifetime CN1592845B (zh) 2001-11-26 2002-11-21 用于液位测量装置的天线系统

Country Status (6)

Country Link
EP (1) EP1448959B1 (zh)
CN (1) CN1592845B (zh)
AU (1) AU2002356705B2 (zh)
DE (1) DE60214755T2 (zh)
HK (1) HK1071192A1 (zh)
WO (1) WO2003046491A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4417943A1 (en) * 2023-02-15 2024-08-21 Rosemount Tank Radar AB Radar level gauge system with a conical dielectric antenna body

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005036715A1 (de) * 2005-08-04 2007-02-15 Vega Grieshaber Kg Potentialtrennung für Füllstandradar
DE102006019688B4 (de) * 2006-04-27 2014-10-23 Vega Grieshaber Kg Patchantenne mit Keramikscheibe als Abdeckung
EP2615690A3 (de) * 2008-09-15 2014-03-26 VEGA Grieshaber KG Baukasten für ein Füllstandsradar-Antennensystem
HUE027129T2 (en) * 2008-10-01 2016-08-29 Grieshaber Vega Kg Microwave Antenna for Charging Conditioner
DE102010031276A1 (de) 2010-07-13 2012-01-19 Endress + Hauser Gmbh + Co. Kg Füllstandsmessgerät zur Ermittlung und Überwachung eines Füllstandes eines im Prozessraum eines Behälters befindlichen Mediums mittels einem Mikrowellen-Laufzeitmessverfahren
HUE029254T2 (en) 2010-07-23 2017-02-28 Grieshaber Vega Kg Flat antenna cover
CN102128663B (zh) * 2010-12-12 2012-05-30 丹东通博电器(集团)有限公司 大型储罐雷达液位计
CN102343969B (zh) * 2011-07-20 2013-10-09 中国船舶重工集团公司第七○二研究所 无自由液面液舱
DE102011112045A1 (de) * 2011-09-01 2013-03-07 Krohne Messtechnik Gmbh Mikrowellensendegerät mit Verguss
US9046406B2 (en) * 2012-04-11 2015-06-02 Honeywell International Inc. Advanced antenna protection for radars in level gauging and other applications
US20140007674A1 (en) * 2012-07-04 2014-01-09 Vega Grieshaber Kg Gas-tight waveguide coupling, high-frequency module, fill-level radar and use
DE102012016120B4 (de) * 2012-08-15 2017-12-07 Krohne Messtechnik Gmbh Mikrowellenfenster und nach dem Radar-Prinzip arbeitendes Füllstandmesssystem
US8970424B2 (en) * 2012-10-24 2015-03-03 Rosemount Tank Radar Ab Radar level gauge system with reduced antenna reflection
CN104713616A (zh) * 2013-12-17 2015-06-17 贵阳铝镁设计研究院有限公司 一种防止泥浆堵塞雷达料位计检测探头的方法及结构
US20180131099A1 (en) * 2015-05-13 2018-05-10 GM Global Technology Operations LLC Structure between radar and fascia
HUE057002T2 (hu) * 2015-11-13 2022-04-28 Grieshaber Vega Kg Kürt antenna
JP6838250B2 (ja) * 2017-06-05 2021-03-03 日立Astemo株式会社 アンテナ、アレーアンテナ、レーダ装置及び車載システム
CN207456563U (zh) * 2017-11-08 2018-06-05 北京古大仪表有限公司 用于物位测量的高频模块及应用该高频模块的雷达物位计
DE102018107450A1 (de) 2018-03-28 2019-10-02 Endress+Hauser Flowtec Ag Vorrichtung zur Bestimmung eines Füllstands einer Flüssigkeit in einem Messrohr, und Durchflussmessgerät mit einer solchen Vorrichtung
CN108565555A (zh) * 2018-06-21 2018-09-21 河南师范大学 高增益h面喇叭天线
WO2020089578A1 (en) * 2018-10-29 2020-05-07 Bae Systems Plc Conductive liquid antenna
HUE055323T2 (hu) * 2019-02-11 2021-11-29 Grieshaber Vega Kg Radaros mérõkészülék sík-domború lencsével
CN112666185B (zh) * 2020-10-27 2023-04-07 西安交通大学 基于微波透射法的远程原油含水率测量装置及其测量方法
CN112304391A (zh) * 2020-11-03 2021-02-02 安徽安广电气有限公司 一种耐腐蚀性能优异的物位计
EP4266588A1 (en) 2022-04-23 2023-10-25 Aiut Sp. z o.o. Container for pressurized liquid gas and liquid level measuring system
WO2022249031A1 (en) 2021-05-25 2022-12-01 Aiut Sp. Z O.O. Method and system for measuring a level of liquid inside a hermetically closed container
EP4096105A1 (en) 2021-05-25 2022-11-30 Aiut Sp. z o.o. Method for digital wireless communication through a barrier made of conductive material, system for performing such communication, and system for monitoring cylinder content
DE102022129178A1 (de) 2022-11-04 2024-05-08 Endress+Hauser Flowtec Ag Messanordnung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318103A (en) * 1980-03-17 1982-03-02 Comgeneral Corporation Compact radar detector and range extender
US4888597A (en) * 1987-12-14 1989-12-19 California Institute Of Technology Millimeter and submillimeter wave antenna structure
US5317329A (en) * 1989-09-26 1994-05-31 Yupiteru Industries Co., Ltd. Microwave detector and horn antenna structure therefor
CN1144019A (zh) * 1994-02-26 1997-02-26 福特尔技术有限公司 微波天线
EP0858126A2 (en) * 1997-02-10 1998-08-12 Kabushiki Kaisha Toshiba Monolithic antenna
EP0866517A2 (en) * 1997-03-21 1998-09-23 SHARP Corporation Antenna-integral high frequency circuit electromagnetically coupling feeder circuit connected to high frequency circuit to microstrip antenna via slot coupling hole
EP0935127A2 (de) * 1998-01-07 1999-08-11 VEGA Grieshaber GmbH & Co. Antenneneinrichtung für ein Füllstandmess-Radargerät
US6310574B1 (en) * 1999-08-05 2001-10-30 Vega Grieshaber Kg Level transmitter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10023497A1 (de) * 2000-05-13 2001-11-15 Endress Hauser Gmbh Co Füllstandsmeßgerät

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318103A (en) * 1980-03-17 1982-03-02 Comgeneral Corporation Compact radar detector and range extender
US4888597A (en) * 1987-12-14 1989-12-19 California Institute Of Technology Millimeter and submillimeter wave antenna structure
US5317329A (en) * 1989-09-26 1994-05-31 Yupiteru Industries Co., Ltd. Microwave detector and horn antenna structure therefor
CN1144019A (zh) * 1994-02-26 1997-02-26 福特尔技术有限公司 微波天线
EP0858126A2 (en) * 1997-02-10 1998-08-12 Kabushiki Kaisha Toshiba Monolithic antenna
EP0866517A2 (en) * 1997-03-21 1998-09-23 SHARP Corporation Antenna-integral high frequency circuit electromagnetically coupling feeder circuit connected to high frequency circuit to microstrip antenna via slot coupling hole
EP0935127A2 (de) * 1998-01-07 1999-08-11 VEGA Grieshaber GmbH & Co. Antenneneinrichtung für ein Füllstandmess-Radargerät
US6310574B1 (en) * 1999-08-05 2001-10-30 Vega Grieshaber Kg Level transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4417943A1 (en) * 2023-02-15 2024-08-21 Rosemount Tank Radar AB Radar level gauge system with a conical dielectric antenna body

Also Published As

Publication number Publication date
EP1448959A1 (en) 2004-08-25
WO2003046491A1 (en) 2003-06-05
AU2002356705B2 (en) 2007-02-15
AU2002356705A1 (en) 2003-06-10
HK1071192A1 (en) 2005-07-08
DE60214755D1 (de) 2006-10-26
EP1448959B1 (en) 2006-09-13
DE60214755T2 (de) 2007-10-04
CN1592845A (zh) 2005-03-09

Similar Documents

Publication Publication Date Title
CN1592845B (zh) 用于液位测量装置的天线系统
US6891513B2 (en) Antenna system for a level measurement apparatus
KR102061134B1 (ko) 기밀 도파관 커플링, 고주파수 모듈, 충진-레벨 레이더 및 이용
US9091584B2 (en) Microwave window and level-measuring system that works according to the radar principle
US20090289835A1 (en) Multi-channel radar level gauge system
US8184039B2 (en) Level sensing device
US10616996B2 (en) Printed circuit board for a radar level measurement device with waveguide coupling
US6353418B1 (en) Horn antenna having a dielectric insert with a wide-based cone section
US20120153969A1 (en) Measuring device working with microwave
CN212458549U (zh) 雷达物位计及测量系统
US11631932B2 (en) Antenna assembly
CN109149123A (zh) 用于填充物位测量装置的雷达天线
US11971502B2 (en) High-frequency module
US20090128396A1 (en) Filling Level Sensor for Short Measuring Distances
US7227495B2 (en) Radar fill-level sensing device
EP2901524A1 (en) A two-channel directional antenna and a radar level gauge with such an antenna
US6750657B2 (en) Combination of a feedthrough element for an electric high-frequency signal and a probe, and a level meter metering device including a combination of this type
US11841261B2 (en) Fill state radar antenna assembly for measuring the fill state in a container
US20240003732A1 (en) Fill-level measuring device
CA3116798A1 (en) System for recognizing and/or determining the volume of bodies or substances made of dielectric and/or conductive material
EP4293818B1 (de) Antennenanordnung zum abstrahlen eines hochfrequenz-messsignals eines messsensors
EP1480287A1 (en) Radar duplexing arrangement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20100505