CN1587886A - High vacuum low temperature thermostat using low temperature leak flexible connecting structure - Google Patents

High vacuum low temperature thermostat using low temperature leak flexible connecting structure Download PDF

Info

Publication number
CN1587886A
CN1587886A CN 200410053602 CN200410053602A CN1587886A CN 1587886 A CN1587886 A CN 1587886A CN 200410053602 CN200410053602 CN 200410053602 CN 200410053602 A CN200410053602 A CN 200410053602A CN 1587886 A CN1587886 A CN 1587886A
Authority
CN
China
Prior art keywords
heat sink
connecting structure
high vacuum
flexible connecting
adopts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410053602
Other languages
Chinese (zh)
Other versions
CN1304810C (en
Inventor
陈国邦
金滔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CNB200410053602XA priority Critical patent/CN1304810C/en
Publication of CN1587886A publication Critical patent/CN1587886A/en
Application granted granted Critical
Publication of CN1304810C publication Critical patent/CN1304810C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a high vacuum low temperature thermostat using low heat leakage flexible connection structure, including refrigerator fixing flange whose outside is fixed with extine of the top by bolted construction and inside is melted and fixed by bellows, in thermostat, vacuum jacket, upper heat sink, lower heat sink and flexible connection structure are installed under the refrigerator fixing flange. Its advantage include: vacuum jacket has property of low heat leakage by using folding bush and other types; stainless steel bellows in fixed structure can eliminate mechanical vibration caused by low temperature refrigerator operation; mechanical yaw between agent of refrigerator and cooled substance is allowed by flexible connection structure; additional indium slice between agent of refrigerator and heat sink, heat sink and cooled substance can decrease thermal contact resistance between connecting fitting and effective refrigerating capacity loss.

Description

Adopt the high vacuum cryostat of low heat leak flexible connecting structure
Technical field
The present invention relates to a kind of high vacuum cryostat that adopts low heat leak flexible connecting structure.
Background technology
Many application scenarios (for example cooling of vacuum environment simulating chamber) need provide a low temperature environment, adopted the cryogenic liquid mode that is coiled in the coil pipe on the cooled object of flowing through to reach the cooling purpose more in the past, yet such mode complicated operation in running, and need additional liquefaction device or low temperature storage tank that a large amount of cryogenic liquids is provided, the processing of the gas after the heat exchange evaporation also is a relatively stubborn problem, high price and safety issue as cryogenic gas all require to install gas concentration unit, and this will increase the complexity of system again greatly.Under this background, the no cold-producing medium scheme that adopts Cryo Refrigerator directly to cool off has obtained application more and more widely.Compare with traditional scheme of utilizing refrigerant cools, no cold-producing medium scheme has also been brought a new problem, promptly how the cold of Cryo Refrigerator is delivered to cooled object expeditiously, this not only will overcome the mechanical stress problem that is rigidly connected and causes, and allows certain one-movement-freedom-degree at the object that requires aspect the structure installation to be cooled.In addition, also need to overcome the mechanical oscillation problem that the running by refrigeration machine brings.These problems require to provide a kind of scheme that flexibly connects of low heat leak.
Summary of the invention
The purpose of this invention is to provide a kind of high vacuum cryostat that adopts low heat leak flexible connecting structure.
It has the refrigeration machine mounting flange, the refrigeration machine mounting flange outside is fixed with the outer wall employing bolt arrangement of thermostat upper end, the inboard outer wall with the thermostat upper end of refrigeration machine mounting flange adopts the bellows welding fixing, in the thermostat, be provided with vacuum jacket under the refrigeration machine mounting flange successively, go up heat sink, flexible thermal syndeton, heat sink down.
Advantage of the present invention: vacuum jacket adopts patterns such as thin-wall stainless steel, bellows or folding sleeve pipe, has increased thermal conduction resistance and then has reduced axial heat leak, has the characteristics of low heat leak; Adopted corrugated stainless steel tubing in the fixed structure of vacuum jacket and thermostat upper end outer wall, can eliminate because the mechanical oscillation that the operation of Cryo Refrigerator brings; The cold head of Cryo Refrigerator adopts flexible connecting structure with the thermally coupled that is cooled between object, and allowing the refrigeration machine cold head and being cooled has level of freedom can realize that machinery is moving partially between object; Flexible oxygen-free copper establishment band in the flexible connecting structure with heat sink between be connected adopt silver soldering mode with the minimizing thermal contact resistance, simultaneously a common outlet passageway is ganged up and be provided with to each welding hole mutually, and the gas that can prevent to be enclosed in the welding hole progressively discharges and influences vacuum to vacuum environment; Additional indium sheet then can reduce thermal contact resistance between connector scheme the effective refrigerating capacity loss of minimizing between cold head and heat sink and heat sink and cooled object.
Description of drawings
Fig. 1 (a) is the high vacuum cryostat structure schematic diagram that adopts low heat leak flexible connecting structure;
Fig. 1 (b) is a heat sink b-b view in the present invention;
Fig. 1 (c) is a heat sink c-c view under the present invention;
Fig. 2 is the syndeton schematic diagram that vacuum jacket of the present invention adopts corrugated stainless steel tubing;
Fig. 3 is the syndeton schematic diagram that vacuum jacket of the present invention adopts the folding sleeve pipe of stainless steel.
The specific embodiment
The present invention has adopted three kinds of schemes, i.e. thin-wall stainless steel, bellows and folding sleeve pipe in order to realize the purpose of low heat leak aspect vacuum jacket.The light-wall pipe scheme (Fig. 1-3a) is to increase thermal conduction resistance by light-wall pipe, and bellows ((common ground of Fig. 3-3c) is to realize reducing the purpose of axial heat leak by increasing thermally conductive pathways for Fig. 2-3b) and folding sleeve pipe.The two kinds of schemes in back are applicable to the occasion that cryogenic temperature is lower more, are the problems that needs emphasis to solve in the system because reduce heat leak this moment, effectively utilize the cold of refrigeration machine.Meanwhile, because the thermal contact resistance between cold head and heat sink and heat sink and cooled object can cause increase and effective refrigerating capacity loss of the temperature difference between connector, adopt additional soft metal indium sheet can reduce thermal resistance.
The cold head of Cryo Refrigerator is not directly to adopt hard connecting mode with the thermally coupled that is cooled between object, but employing flexible connecting structure, be that the refrigeration machine cold head is delivered to cold heat sink by the indium sheet, then, flexible oxygen-free copper establishment band by high heat conductance is delivered to down cold heat sink, is connected to cooled object by the bolt arrangement that adds the indium sheet more at last.This flexible connection structure, allowing the refrigeration machine cold head and being cooled has level of freedom can realize that machinery is moving partially between object.
Flexible oxygen-free copper establishment band in the flexible connecting structure with heat sink between be connected adopt silver soldering mode with the minimizing thermal contact resistance.For the gas that prevents to be enclosed in the welding hole progressively discharges to vacuum environment, each welding hole is ganged up mutually, and passes through a common exit passageway with the gas in the release aperture.
Low heat leak between Cryo Refrigerator and cooled object flexibly connect scheme on the whole by Cryo Refrigerator 1, refrigeration machine fixed cover shell structure 2, vacuum jacket 3, go up heat sink 4, heat sink 6, the flexible thermal syndeton 5 and the object 7 that is cooled etc. are partly formed down.
At first Cryo Refrigerator 1 need be installed to whole system and be got on, because cooled object 7 normally is placed in the vacuum environment in the thermostat 13, installation and removal maintenance for the ease of refrigeration machine, Cryo Refrigerator part 1 has adopted an independent vacuum space 14 that is made of vacuum jacket 3, earlier vacuum jacket 3 is fixed on the outer wall 15 of vacuum environment 13 thermostats of equipping the object that is cooled, then Cryo Refrigerator 1 is fixed in the vacuum jacket 3, by the vacuum seal in the O type circle 18 realization chucks.
In order to eliminate the vibration that brought by the refrigeration machine running influence to system, vacuum jacket 3 has adopted bellows 16-bolt arrangement 17 fixing with the coupling part of thermostat outer wall 15.The sleeve pipe of vacuum jacket 3 can adopt three kinds of forms: thin-wall stainless steel straight tube 3a, corrugated stainless steel tubing 3b and stainless steel folded tube 3c etc.Both reduce heat conduction loss by the thermal resistance that increases the heat conduction approach back.The two kinds of schemes in back structurally are applicable to the occasion that cryogenic temperature is lower more, because the heat leak problem of this moment is the problem that needs emphasis to overcome in the system.In addition, bring the structural stability problem in order to prevent that rigidity is not enough when adopting bellows 3b form, the pipe thickness of corrugated stainless steel tubing 3b itself should be not less than the pipe thickness of thin-wall stainless steel straight tube 3a.
9 pairs of the cold heads of refrigeration machine be cooled object 7 cooling by last heat sink 4, heat sink 6 realize down, between additional soft metal indium sheet 8 reduce thermal contact resistance, reduce heat transfer temperature difference.Consider connected system expand with heat and contract with cold and improve with the object 7 that is cooled be connected flexibility (comprising shape and position etc.), Cryo Refrigerator 1-is heat sink 4, heat sink 6-is cooled and adopts flexible connecting structure 5 between the object 7 down, and be with 10 to connect by 9 (wherein 8 be uniformly distributed along the circumference, 1 at center) flexible oxygen-free copper establishments, its distribution mode is seen Fig. 1 (b) and Fig. 1 (c).Flexible oxygen-free copper establishment is with the mode of employing silver soldering between 10 and last heat sink 4, down heat sink 6.For the gas that prevents to be closed in the welding hole progressively discharges to vacuum environment, the vacuum environment around the influence, each welding hole is ganged up mutually, and passes through a common exit passageway 12 with the gas in the release aperture.The heat sink 6 connection employing bolting with 7 of cooled objects also accompany soft metal indium sheet 11 between the two.

Claims (7)

1. one kind is adopted the high vacuum cryostat that hangs down the heat leak flexible connecting structure, it is characterized in that it has refrigeration machine mounting flange (2), refrigeration machine mounting flange (2) outside is fixing with outer wall (15) the employing bolt arrangement (17) of thermostat upper end, the inboard outer wall (15) with the thermostat upper end of refrigeration machine mounting flange (2) adopts bellows (16) welding fixing, in the thermostat, be provided with vacuum jacket (3), last heat sink (4), flexible thermal syndeton (5), following heat sink (6) under the refrigeration machine mounting flange (2) successively.
2. a kind of high vacuum cryostat that adopts low heat leak flexible connecting structure according to claim 1 is characterized in that said vacuum jacket (3) adopts corrugated stainless steel tubing (3b).
3. a kind of high vacuum cryostat that adopts low heat leak flexible connecting structure according to claim 1 is characterized in that said vacuum jacket (3) adopts stainless steel folded tube (3c).
4. a kind of high vacuum cryostat that adopts low heat leak flexible connecting structure according to claim 1 is characterized in that said flexible thermal syndeton (5) adopts flexible oxygen-free copper establishment band (10).
5. a kind of high vacuum cryostat that adopts low heat leak flexible connecting structure according to claim 1 is characterized in that said heat sink (4) and following heat sink (6) are provided with outlet passageway (12).
6. a kind of high vacuum cryostat that adopts low heat leak flexible connecting structure according to claim 1 is characterized in that said heat sink (4) inboard of is provided with soft metal indium sheet (8).
7. a kind of high vacuum cryostat that adopts low heat leak flexible connecting structure according to claim 1 is characterized in that said heat sink (6) lower end down is provided with soft metal indium sheet (11).
CNB200410053602XA 2004-08-05 2004-08-05 High vacuum low temperature thermostat using low temperature leak flexible connecting structure Expired - Fee Related CN1304810C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200410053602XA CN1304810C (en) 2004-08-05 2004-08-05 High vacuum low temperature thermostat using low temperature leak flexible connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200410053602XA CN1304810C (en) 2004-08-05 2004-08-05 High vacuum low temperature thermostat using low temperature leak flexible connecting structure

Publications (2)

Publication Number Publication Date
CN1587886A true CN1587886A (en) 2005-03-02
CN1304810C CN1304810C (en) 2007-03-14

Family

ID=34602935

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200410053602XA Expired - Fee Related CN1304810C (en) 2004-08-05 2004-08-05 High vacuum low temperature thermostat using low temperature leak flexible connecting structure

Country Status (1)

Country Link
CN (1) CN1304810C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014163A3 (en) * 2006-07-25 2008-11-06 Honeywell Int Inc Synergistically-modified surfaces and surface profiles for use with thermal interconnect and interface materials, methods of production and uses thereof
CN101114012B (en) * 2006-07-25 2012-10-10 英国西门子公司 Cryostat comprising a cryogen vessel suspended within an outer vacuum container
CN107664678A (en) * 2017-09-12 2018-02-06 北京大学 A kind of low vibrations ultrahigh vacuum low-temperature physical property measuring device
CN108380248A (en) * 2018-03-02 2018-08-10 中科院南京天文仪器有限公司 A kind of temperature baffling device for deep cooling vacuum environment simulation system
CN110504078A (en) * 2018-05-17 2019-11-26 株式会社东芝 Pole cold cooling unit
CN112834668A (en) * 2020-12-30 2021-05-25 中国原子能科学研究院 Low-temperature control device for analyzing hydrogen isotopes by gas chromatography
CN115289716A (en) * 2022-06-09 2022-11-04 北京交通大学 Cold plugging device of bipolar cold head refrigerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629635Y2 (en) * 1986-09-09 1994-08-10 古河電気工業株式会社 Cryostat
US5129232A (en) * 1991-06-03 1992-07-14 General Electric Company Vibration isolation of superconducting magnets
CN2733299Y (en) * 2004-08-05 2005-10-12 浙江大学 High vacuum cryostat by employing low heat-leakage flexible connection structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014163A3 (en) * 2006-07-25 2008-11-06 Honeywell Int Inc Synergistically-modified surfaces and surface profiles for use with thermal interconnect and interface materials, methods of production and uses thereof
CN101114012B (en) * 2006-07-25 2012-10-10 英国西门子公司 Cryostat comprising a cryogen vessel suspended within an outer vacuum container
CN107664678A (en) * 2017-09-12 2018-02-06 北京大学 A kind of low vibrations ultrahigh vacuum low-temperature physical property measuring device
CN107664678B (en) * 2017-09-12 2019-12-13 北京大学 Low-vibration ultrahigh-vacuum low-temperature physical property measuring device
CN108380248A (en) * 2018-03-02 2018-08-10 中科院南京天文仪器有限公司 A kind of temperature baffling device for deep cooling vacuum environment simulation system
CN108380248B (en) * 2018-03-02 2020-12-01 中科院南京天文仪器有限公司 Temperature separation device for cryogenic vacuum environment simulation system
CN110504078A (en) * 2018-05-17 2019-11-26 株式会社东芝 Pole cold cooling unit
US11137193B2 (en) 2018-05-17 2021-10-05 Kabushiki Kaisha Toshiba Cryogenic cooling apparatus
CN110504078B (en) * 2018-05-17 2022-03-11 株式会社东芝 Extremely low temperature cooling device
CN112834668A (en) * 2020-12-30 2021-05-25 中国原子能科学研究院 Low-temperature control device for analyzing hydrogen isotopes by gas chromatography
CN115289716A (en) * 2022-06-09 2022-11-04 北京交通大学 Cold plugging device of bipolar cold head refrigerator

Also Published As

Publication number Publication date
CN1304810C (en) 2007-03-14

Similar Documents

Publication Publication Date Title
CN103968878B (en) Low temperature pulsating heat pipe experimental provision
CN101452325B (en) Active refrigeration type thermal management system for easily inserting heating element
CN1304810C (en) High vacuum low temperature thermostat using low temperature leak flexible connecting structure
CN210053725U (en) Liquid cooling heat dissipation circulation loop device for rack server
CN101571132A (en) Oil cooling device in screw compressor
CN204466136U (en) The server cabinet cooling system that gate-type heat pipe air conditioner and liquid cooling apparatus combine
KR920701765A (en) Thermal medium cooler
CN2733299Y (en) High vacuum cryostat by employing low heat-leakage flexible connection structure
CA2763210C (en) Improved refrigerant compensator
CN100344930C (en) Gravity assisted low temp loop heat pipe for deep low temp area
CN205641216U (en) Show special accurate air conditioner of heat energy -saving type computer lab / rack entirely
CN101458551A (en) Computer cabinet
NL7907843A (en) HEAT-INSULATING SUPPORT.
CN102175457A (en) Flat-shaped liquid-nitrogen and liquid-helium dual-media compatible heat sink device and cooling method thereof
CN209588448U (en) Heat exchanger
KR101444372B1 (en) Heat exchanger system of cooling and heating
CN105723167A (en) Piping structure, cooling device using same, and refrigerant vapor transport method
CN201749756U (en) Refrigeration system used for superconducting magnets
CN104279083A (en) Heat exchanger
CN2621280Y (en) Evaporation refrigeration cold water set
CN2788114Y (en) Gravity aided cryogenic loop heat pipe for deep cryogenic region
CN218600027U (en) Refrigerating unit applied to low-temperature environment equipment
CN103090573A (en) Industrial water chilling unit heat exchange system which adopts efficient coiled tube type evaporator
EP4113036A1 (en) Three-way pipe, heat exchanger, heat exchanger assembly and refrigeration apparatus
CN218993788U (en) Ultralow temperature defrosting device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee