CN1586702A - Method for preparing nano filter membrane using surface crafting technology - Google Patents

Method for preparing nano filter membrane using surface crafting technology Download PDF

Info

Publication number
CN1586702A
CN1586702A CN 200410053257 CN200410053257A CN1586702A CN 1586702 A CN1586702 A CN 1586702A CN 200410053257 CN200410053257 CN 200410053257 CN 200410053257 A CN200410053257 A CN 200410053257A CN 1586702 A CN1586702 A CN 1586702A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
production method
method according
characterized
membrane
grafting
Prior art date
Application number
CN 200410053257
Other languages
Chinese (zh)
Inventor
平郑骅
邱长泉
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The present invention relates to surface grafting process of preparing hydrophilic nanofiltering film. The surface grafting process is one radiation grafting process, which is low temperature plasma radiation process, ultraviolet radiation process, high energy ray radiation process, etc. The present invention has simple operation, controllable reaction, regulation of separating membrane performance in great range and other features, and is especially suitable for the preparation of hydrophilic nanofiltering film.

Description

一种用表面接枝技术制备纳滤膜的方法 A method of preparing a nanofiltration membrane surface grafting techniques Methods

技术领域 FIELD

本发明是关于一种用表面接枝技术制备亲水性纳滤膜的方法。 The present invention relates to a method of using a surface graft hydrophilic nanofiltration membrane preparation technology. 具有操作简单、接枝效率高、膜的性能可在较大范围内调节等特点,特别适用于亲水性纳滤膜的制备。 Simple, high grafting efficiency, performance of the membrane may be adjusted over a wide range of characteristics, particularly the preparation of hydrophilic membranes suitable for nanofiltration.

背景技术 Background technique

纳滤膜是一种用压力驱动的分离膜,具有操作压力低,渗透通量大等优点,已被广泛用于水处理和相对分子质量较小的化合物的分离,是一种具有良好应用前景的分离技术。 Nanofiltration is a pressure-driven separation membrane having a low operating pressure, permeate flux, etc., it has been widely used in water treatment and a small molecular weight compound separated, having a good prospect separation techniques.

目前,工业上生产纳滤膜的方法主要有界面缩聚法和相转变法。 At present, the production method of nanofiltration mainly on industrial interfacial polymerization method and phase inversion method. 这些方法虽然已得到广泛应用,但也存在一些不足。 Although these methods have been widely used, but there are also some disadvantages. 例如界面缩聚的方法对单体的组成有严格的要求,聚合反应的技术难度高,产品质量不易控制;而用相转变法制备的纳滤膜渗透性往往较差。 Example, a method of interfacial polycondensation of the constituent monomers have stringent requirements, technical difficulty of the polymerization reaction, the product quality is difficult to control; and a phase transition prepared nanofiltration membrane permeability is often poor. 除此以外,用这些方法制成的膜亲水性都较差,使膜的应用受到很大限制。 In addition, the hydrophilic film formed by these methods are poor, so that the application film is greatly restricted.

发明内容 SUMMARY

本发明的目的在于提出一种操作程序简便,产品质量容易控制的纳滤膜制备方法,并使制备的纳滤膜具有良好的亲水性和渗透性。 Object of the present invention is to provide a simple procedure, easy to control product quality preparation nanofiltration, nanofiltration and prepared has good hydrophilicity and permeability.

本发明提出的纳滤膜制备方法,是一种表面接枝的方法。 Nanofiltration membranes prepared by the present invention, a surface graft method. 具体是对现有的超滤膜,采用表面接枝技术,经过接枝反应,接上所需单体,获得纳滤膜。 In particular the existing membrane, by surface grafting techniques, after the grafting reaction, the desired monomers connected obtained nanofiltration membrane.

本发明采用表面接枝的方法,可通过改变接枝单体的化学成份和接枝条件,使纳滤膜的性质可以在很大的范围内变化。 The present invention uses the surface grafting method, by changing the chemical composition of the grafting monomer grafting conditions and the properties of the nanofiltration membrane may vary over a wide range. 用这种方法制成的纳滤膜不仅有很好的亲水性,而且有很高的渗透性和对高价盐的截留率。 Nanofiltration membrane made by this method has not only excellent hydrophilicity, but also has a high permeability and high retention of salt. 本发明中,所用超滤膜可从市售或自制获得。 In the present invention, as may be obtained from commercial or made using an ultrafiltration membrane.

本发明所采用的表面接枝方法主要是指辐照接枝的方法,包括紫外辐照、低温等离子体辐照或高能射线辐照等。 Surface grafting process used in the present invention mainly refers to a method of irradiation grafting, including ultraviolet radiation, low-temperature plasma irradiation or high energy ray irradiation and the like. 由于紫外辐照的设备简单,反应容易控制,因此特别适于本发明。 Since the ultraviolet irradiation device simple, easy to control the reaction, it is particularly suitable for the present invention.

根据本发明,制备超滤膜用的聚合物性质对纳滤膜的制备有一定影响。 According to the present invention, prepared by the ultrafiltration membrane has a certain impact properties of the polymer prepared nanofiltration membrane pair. 特别适于本发明的超滤膜材料是主链或侧链带有羰基或磺酰基的聚合物,如聚砜(PS)、聚醚砜(PES)、聚醚酮(PEK),含酚酞基的聚醚酮(PEK-C)和聚醚砜(PES-C)等。 The present invention is particularly suitable membrane material is a polymer side chain or a main chain with a carbonyl group or a sulfonyl group, such as polysulfone (PS), polyether sulfone (PES), polyetherketone (PEK), phenolphthalein group polyetherketone (PEK-C) and polyether sulfone (PES-C) and the like. 也可以是上述聚合物的共混或共聚物。 It may also be a blend of the aforementioned polymers or copolymers.

根据本发明,上述超滤膜的截留分子量需小于20万,最好小于10万的膜。 According to the present invention, the above molecular weight cut off ultrafiltration membrane must be less than 200,000, preferably less than 100,000 film.

根据本发明,所有能用于光化学接枝的烯烃单体都能适用本发明的方法制备纳滤膜。 According to the present invention, all of the olefin monomer can be used for photochemical grafting method of preparing a nanofiltration membrane can be applied to the present invention. 其中,适于制备亲水性纳滤膜的单体主要是含羧基、胺基、羟基和磺酸基的化合物。 Wherein the hydrophilic monomers suitable for the preparation of mainly a compound nanofiltration membrane containing a carboxyl group, amino group, hydroxyl group and sulfonic acid group. 特别是丙烯酸及其衍生物,如丙烯酸(AA)、甲基丙烯酸(MAA),丙烯酰胺,甲基丙烯酸羟乙酯等(HEMA)。 In particular acrylic acid and derivatives thereof, such as acrylic acid (AA), methacrylic acid (MAA), acrylamide, methacrylic acid, hydroxyethyl acrylate (HEMA). 其通式为R-CH2=C(R')-COOR”其中R=CnH2n+1,n≤15;R'=H或CH3;OR”=OH,OCH2CH2OH或NH2等。 The general formula R-CH2 = C (R ') - COOR "wherein R = CnH2n + 1, n≤15; R' = H or CH3; OR" = OH, OCH2CH2OH, or NH2 and the like.

含磺酸基的单体主要有烯丙基磺酸钠(SAS)、甲基丙烯酸-3-磺酸钾丙酯(SPMA)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)等。 Sulfonic acid group-containing monomers mainly sodium allylsulfonate (SAS), propyl methacrylate, 3-sulfonic acid potassium (SPMA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), etc. .

根据本发明,在使用时,需将上述单体溶解在相应的溶剂中,常用的溶剂为水或醇类,如甲醇或乙醇。 According to the invention, in use, need to be dissolved in the monomer in the appropriate solvent, conventional solvents are water or alcohols, such as methanol or ethanol. 单体溶液的重量百分比浓度为0.5%~50%。 Weight percent concentration of the monomer solution is 0.5% to 50%. 最好0.5%~20%(重量)。 Preferably 0.5% to 20% (by weight).

根据本发明,超滤膜可预先用上述溶液浸泡,然后进行紫外辐照接枝。 According to the present invention, ultrafiltration membranes can be pre-soaked with the above solution, followed by ultraviolet irradiation grafting. 也可在合适的反应器中,将溶液置于待反应的膜上,再进行辐照接枝。 May also be in a suitable reactor, the solution was placed in the film to be reacted, and then radiation grafting. 溶液的厚度约0.1~2cm。 The thickness of the solution of about 0.1 ~ 2cm. 在接枝反应前,用氮气对溶液鼓泡,以除去溶液中的氧气。 Before the grafting reaction, the solution was sparged with nitrogen to remove oxygen in the solution.

根据本发明,紫外辐照光源可以采用一种低压汞灯。 According to the present invention, the ultraviolet radiation source may be adopted a low pressure mercury lamp. 汞灯的功率可在100W~1000W之间选择,最适宜的功率为300W~800W。 Mercury lamp power between 100W ~ 1000W may be selected, the most appropriate power of 300W ~ 800W. 在光源的功率选定后,辐照光强度可以通过改变接枝膜与光源之间的距离来进行调节。 After the power source is selected, the irradiation light intensity may be adjusted by changing the distance between the light source and grafted films. 辐照距离为0.5cm~50cm。 Irradiation distance of 0.5cm ~ 50cm. 接枝反应是在常温下,在氮气保护下进行。 The grafting reaction is carried out under nitrogen at room temperature.

根据本发明制备的纳滤膜的性能还可以通过改变辐照时间来进行控制。 It can also be controlled by changing the irradiation time in accordance with the performance of the nanofiltration membrane according to the present invention. 辐照时间可在0.5分~120分之间变化。 The irradiation time may vary between 0.5 minutes to 120 minutes. 反应结束后,制成的纳滤膜用蒸馏水漂洗几次,以除去未反应的亲水性单体。 After completion of the reaction, the nanofiltration membrane was rinsed several times with distilled water produced, to remove unreacted hydrophilic monomers.

根据本发明制备的纳滤膜的分离性能是在直径为5cm的不锈钢渗透池中进行的。 The separation performance of nanofiltration membrane of the present invention is carried out in a stainless steel having a diameter of 5cm in a permeation cell. 测试温度为室温,工作压力为0.4MPa~0.8MPa。 The test temperature was room temperature and working pressure of 0.4MPa ~ 0.8MPa. 膜的渗透性用在该条件下膜的纯水通量或在有盐存在下的水通量来表示(单位:kg/m2.h);膜的选择性用膜对浓度为1%的NaCl或Na2SO4溶液的截留率来表征。 The permeability of the membrane used in the membrane pure water flux under the conditions of flux or water in the presence of a salt represented (Unit: kg / m2.h); selective membrane film to a concentration of 1% NaCl or rejection is characterized Na2SO4 solution. 具体数据见实施例。 See Example particular data.

具体实施方式 detailed description

实施例1:本实施例所用的超滤膜是用含酚酞基的聚醚酮树脂(PEK-C)用相转变的方法制备而成,膜的截留分子量为10,000。 Example 1: ultrafiltration membrane used in the present embodiment is a polyether ketone resin prepared phenolphthalein group (PEK-C) formed by a phase transition method, the 10,000 molecular weight cutoff membrane.

表面接枝聚合反应是在一个直径为5cm的四氟乙烯园形反应器中进行的。 Surface graft polymerization is a tetrafluoroethylene having a diameter of 5cm circular reactors in conducted. 反应器顶部装有一个石英玻璃盖。 Top glass reactor equipped with a quartz cover. 将超滤膜的膜面朝上安装在反应器中,然后在膜的表面加入约5mm高的单体溶液。 Ultra filter membrane mounted face-up on the reactor, followed by the addition of about 5mm high monomer solution on the surface of the membrane. 反应器置于直形紫外灯源的正下方,紫外灯功率为300W。 Straight reactor is placed immediately below the UV light source, UV lamp power is 300W. 反应器与紫外灯源间的距离为5cm。 The distance between the reactor and the UV light source is 5cm.

本实施例所用的单体溶液为浓度为10%(重量)的丙烯酸(AA)水溶液。 The monomer solution used in this embodiment is a concentration of 10% (by weight) acrylic acid (AA) solution. 辐照时间为1min。 Irradiation time was 1min. 辐照结束后,用蒸馏水将改性膜反复漂洗多次,以除去未反应的AA。 After irradiation, the modified membrane with distilled water several times repeatedly rinsed to remove unreacted AA. 制得的AA改性PEKC纳滤膜在0.8MPa下的纯水通量为25.4kg/m2h,对浓度为1%的NaCl和Na2SO4溶液的水通量分别为23.2kg/m2h和20.7kg/m2h,对上述两种盐的截留率分别为65%和95.7%。 The resulting modified PEKC nanofiltration AA in the pure water flux under 0.8MPa was 25.4kg / m2h, concentration of 1% NaCl solution and water flux were Na2SO4 23.2kg / m2h and 20.7kg / m2h the rejection of the two salts was 65% and 95.7%, respectively.

实施例2:按实施例1的条件,采用截留分子量为70,000的PEK-C超滤膜。 Example 2: under the conditions of Example 1, using a molecular weight cutoff ultrafiltration membrane PEK-C 70,000. 辐照距离为7cm,辐照时间为10min。 Irradiation distance of 7cm, irradiation time was 10min.

所得AA改性PEK-C纳滤膜在0.8MPa下水的通量为2.8kg/m2h,对浓度为1%的NaCl和Na2SO4溶液的水通量分别为2.72kg/m2h和2.53kg/m2h,对上述两种盐的截留率分别为55%和94.2%。 The resulting modified AA PEK-C nanofiltration membrane flux of water at 0.8MPa 2.8kg / m2h, concentration of 1% aqueous solution of NaCl and Na2SO4 fluxes of 2.72kg / m2h and 2.53kg / m2h, for both the salt rejection was 55% and 94.2%, respectively.

实施例3:按实施例1的条件,采用截留分子量为30,000的PEK-C超滤膜。 Example 3: under the conditions of Example 1, using PEK-C MWCO ultrafiltration membrane of 30,000. 紫外灯功率为500W。 UV lamp power of 500W. 辐照距离为7cm。 Irradiation distance of 7cm. 单体溶液为10%(重量)的AA水溶液,辐照时间为5min。 The monomer solution was 10% (by weight) aqueous solution of AA, the irradiation time was 5min.

所得到的AA改性PEKC纳滤膜在0.8MPa下水的通量为10.8kg/m2h,对浓度为1%的NaCl和Na2SO4溶液的水通量分别为8.72kg/m2h和8.13kg/m2h,对上述两种盐的截留率分别为56%和96.2%。 The resulting modified AA PEKC nanofiltration membrane flux of water at 0.8MPa 10.8kg / m2h, concentration of 1% aqueous solution of NaCl and Na2SO4 fluxes of 8.72kg / m2h and 8.13kg / m2h, for both the salt rejection was 56% and 96.2%, respectively.

实施例4:按实施例1的条件,采用截留分子量为10,000的聚醚砜超滤膜。 Example 4: under the conditions of Example 1, using a molecular weight cut-off polyethersulfone ultrafiltration membranes of 10,000. 辐照距离为7cm。 Irradiation distance of 7cm. 单体溶液为10%(重量)的MAA水溶液,辐照时间为3min,所得到的AA改性聚醚砜纳滤膜在0.8MPa下水的通量为15.4kg/m2h,对浓度为1%的NaCl和Na2SO4溶液的水通量分别为33.2kg/m2h和12.7kg/m2h,对上述两种盐的截留率分别为43%和92.7%。 The monomer solution was 10% (by weight) aqueous solution of MAA, irradiation time 3min, the resulting AA-modified polyethersulfone nanofiltration membrane flux of water at 0.8MPa at 15.4kg / m2h, concentration of 1% Na2SO4 solution and NaCl water flux were 33.2kg / m2h and 12.7kg / m2h, the salt rejection of the two 43% and 92.7%, respectively.

实施例5:按实施例1的条件,采用截留分子量为30,000的聚砜超滤膜。 Example 5: under the conditions of Example 1, using 30,000 molecular weight cutoff polysulfone membrane. 辐照距离为11cm。 Irradiation distance of 11cm. 单体溶液为10%(重量)的烯丙基磺酸钠水溶液,辐照时间为30min,所得到的SAS改性的聚砜纳滤膜在0.4MPa下水的通量为60.8kg/m2h,对浓度为1%的NaCl和Na2SO4溶液的水通量分别为58.1kg/m2h和52.63kg/m2h,对上述两种盐的截留率分别为36%和90.1%。 The monomer solution was 10% (by weight) aqueous solution of sodium allyl, irradiation time was 30min, SAS obtained modified polysulfone nanofiltration membrane flux of water at 0.4MPa at 60.8kg / m2h, for concentration of 1% NaCl solution and water flux were Na2SO4 58.1kg / m2h and 52.63kg / m2h, the salt rejection of the two 36% and 90.1%, respectively.

实施例6: Example 6:

按实施例1的条件,采用截留分子量为70,000的PEK-C超滤膜。 Under the conditions of Example 1, using a molecular weight cutoff ultrafiltration membrane PEK-C 70,000. 辐照距离为7cm。 Irradiation distance of 7cm. 辐照时间为10min。 Irradiation time was 10min. 辐照前,膜在5%AA水溶液中浸泡24hr。 Before irradiation, 24hr membrane was immersed in an aqueous solution of 5% AA.

所得到的AA改性的PEK-C膜在0.4MPa下水的通量为42.8kg/m2h,对浓度为1%的NaCl和Na2SO4溶液的水通量分别为40.2kg/m2h和39.1kg/m2h,对上述两种盐的截留率分别为58%和92.8%。 AA-modified PEK-C film obtained in 0.4MPa water flux was 42.8kg / m2h, concentration of 1% NaCl solution and water flux were Na2SO4 40.2kg / m2h and 39.1kg / m2h, the retention rate of the two salts was 58% and 92.8%, respectively.

Claims (12)

  1. 1.一种纳滤膜的制备方法,其特征在于对现有的超滤膜,采用表面接枝技术,接上所需单体,获得纳滤膜。 1. A method of preparing a nanofiltration membrane, characterized in that existing membrane, surface grafting technique employed, connected to the desired monomer to obtain a nanofiltration membrane.
  2. 2.根据权利要求1所述的制备方法,其特征在于所用的超滤膜的截留分子量小于20万。 2. The production method according to claim 1, characterized in that an ultrafiltration membrane with molecular weight cutoff of less than 200,000.
  3. 3.根据权利要求2所述的制备方法,其特征在于所用的超滤膜材料是主链或侧链带有羰基,或磺酰基的聚合物。 3. The production method according to claim 2, characterized in that the membrane material used is a polymer having a main chain or side chain a carbonyl group, or sulfonyl group.
  4. 4.根据权利要求1所述的制备方法,其特征在于所述的表面接枝技术为表面辐照接枝技术,包括紫外辐照技术、低温等离子体辐照技术和高能射线辐照技术。 4. The production method according to claim 1, wherein said surface is a surface irradiation grafting techniques grafting techniques, including ultraviolet radiation technology, low-temperature plasma irradiation technology and high-energy rays irradiation techniques.
  5. 5.根据权利要求4所述的制备方法,其特征在于辐照源是低压汞灯,其功率为100~1000W。 The production method according to claim 4, characterized in that the radiation source is a low pressure mercury lamp, a power of 100 ~ 1000W.
  6. 6.根据权利要求4所述的制备方法,其特征在于辐照源与膜的距离在0.5cm~50cm内可调。 The production method according to claim 4, characterized in that the distance from the radiation source and the film is adjustable within ~ 50cm 0.5cm.
  7. 7.根据权利要求5或6所述的制备方法,其特征在于辐照时间为0.5分到120分钟。 7. The production method of claim 5 or claim 6, characterized in that the irradiation time is 0.5 assigned to 120 minutes.
  8. 8.根据权利要求1所述的制备方法,其特征在于所述接枝单体是含羧基、胺基、羟基和磺酸基的化合物。 8. The production method according to claim 1, wherein the graft monomer is a compound containing a carboxyl group, amino group, hydroxyl group and sulfonic acid group.
  9. 9.根据权利要求8所述的制备方法,其特征在于所用的接枝单体为丙烯酸及其衍生物,其通式为R-CH2=C(R')-COOR”其中R=CnH2n+1,n≤15;R'=H或CH3;OR”=OH,OCH2CH2OH或NH2。 9. A method of preparation according to claim 8, characterized in that the grafting monomer used is acrylic acid and derivatives thereof of the general formula R-CH2 = C (R ') - wherein R COOR "= CnH2n + 1 , n≤15; R '= H or CH3; oR "= OH, OCH2CH2OH, or NH2.
  10. 10.根据权利要求8所述的制备方法,其特征在于所述含磺酸基的单体为烯丙基磺酸钠、甲基丙烯酸-3-磺酸钾丙酯和2-丙烯酰胺-2-甲基丙磺酸。 10. The production method according to claim 8, wherein said sulfonic acid group-containing monomer is allyl sodium, potassium, propyl methacrylate, 3-sulfonic acid and 2-acrylamido -2 - methyl propane sulfonic acid.
  11. 11.根据权利要求1所述的制备方法,其特征在于所述接枝单体用水或醇为溶剂,配制成相应的溶液,溶液的重量百分比浓度为0.5%~50%。 The production method according to claim 1, wherein said grafting monomer is water or an alcohol solvent to prepare a solution of the corresponding weight percentage concentration of the solution is from 0.5% to 50%.
  12. 12.根据权利要求11所述的制备方法,其特征在于接枝反应是在顶部有石英玻璃盖的四氟乙烯反应器中进行:将膜装置在反应器中,在上面覆盖配制好的单体溶液,溶液的厚度为0.1cm~2cm,常温,氮气保护。 12. The production method according to claim 11, characterized in that the grafting reaction is carried out at the top of tetrafluoroethylene with a quartz glass reactor lid: the membrane device in the reactor, covered with the formulated monomer solution, the thickness of the solution is 0.1cm ~ 2cm, at room temperature, nitrogen protection.
CN 200410053257 2004-07-29 2004-07-29 Method for preparing nano filter membrane using surface crafting technology CN1586702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410053257 CN1586702A (en) 2004-07-29 2004-07-29 Method for preparing nano filter membrane using surface crafting technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410053257 CN1586702A (en) 2004-07-29 2004-07-29 Method for preparing nano filter membrane using surface crafting technology

Publications (1)

Publication Number Publication Date
CN1586702A true true CN1586702A (en) 2005-03-02

Family

ID=34602792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410053257 CN1586702A (en) 2004-07-29 2004-07-29 Method for preparing nano filter membrane using surface crafting technology

Country Status (1)

Country Link
CN (1) CN1586702A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934204A (en) * 2010-09-17 2011-01-05 南京林业大学 Amphoteric charged nanofiltration membrane and preparation method thereof
CN101934205A (en) * 2010-09-17 2011-01-05 南京林业大学 Method for preparing amphoteric charged nanofiltration membrane
CN101966433A (en) * 2010-09-19 2011-02-09 吴大宇;刘刚 Hydrophilic modification method of ultrafiltration membrane
CN102068912A (en) * 2010-12-07 2011-05-25 天津工业大学 Method for preparing negatively charged nanofiltration membrane through grafting induced after plasma radiation
CN101351337B (en) 2005-12-30 2011-07-27 3M创新有限公司 Functionalized substrate
CN102836647A (en) * 2012-08-29 2012-12-26 南京林业大学 Preparation method for positively-charged nanofiltration membrane
CN102836646A (en) * 2012-08-29 2012-12-26 南京林业大学 Hydrophilic composite nanofiltration membrane and preparation method thereof
CN103071395A (en) * 2013-02-01 2013-05-01 北京碧水源膜科技有限公司 Dynamic preparation method of ultra-low pressure charge nanometer filtration membrane
CN103599703A (en) * 2013-11-08 2014-02-26 江南大学 Nonionic surface modification method of support-free porous high-polymer separation membrane by ultraviolet (UV) curing
CN103599704A (en) * 2013-11-08 2014-02-26 江南大学 Anionic surface modification method of support-free porous separation membrane by ultraviolet (UV) curing
CN104258747A (en) * 2014-03-04 2015-01-07 上海大学 Method for preparing nylon-66 grafted crylic acid by electronic beam pre-irradiation
CN106186545A (en) * 2016-08-19 2016-12-07 董金萍 Novel membrane bioreactor sewage treatment device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101351337B (en) 2005-12-30 2011-07-27 3M创新有限公司 Functionalized substrate
CN101934205A (en) * 2010-09-17 2011-01-05 南京林业大学 Method for preparing amphoteric charged nanofiltration membrane
CN101934204B (en) 2010-09-17 2012-09-12 南京林业大学 Amphoteric charged nanofiltration membrane and preparation method thereof
CN101934204A (en) * 2010-09-17 2011-01-05 南京林业大学 Amphoteric charged nanofiltration membrane and preparation method thereof
CN101966433B (en) 2010-09-19 2012-09-26 大连先路科技发展有限公司 Hydrophilic modification method of ultrafiltration membrane
CN101966433A (en) * 2010-09-19 2011-02-09 吴大宇;刘刚 Hydrophilic modification method of ultrafiltration membrane
CN102068912A (en) * 2010-12-07 2011-05-25 天津工业大学 Method for preparing negatively charged nanofiltration membrane through grafting induced after plasma radiation
CN102836646A (en) * 2012-08-29 2012-12-26 南京林业大学 Hydrophilic composite nanofiltration membrane and preparation method thereof
CN102836647A (en) * 2012-08-29 2012-12-26 南京林业大学 Preparation method for positively-charged nanofiltration membrane
CN103071395A (en) * 2013-02-01 2013-05-01 北京碧水源膜科技有限公司 Dynamic preparation method of ultra-low pressure charge nanometer filtration membrane
CN103071395B (en) * 2013-02-01 2015-08-19 北京碧水源膜科技有限公司 An ultra low voltage charged nanofiltration membrane preparation dynamic
CN103599703A (en) * 2013-11-08 2014-02-26 江南大学 Nonionic surface modification method of support-free porous high-polymer separation membrane by ultraviolet (UV) curing
CN103599704A (en) * 2013-11-08 2014-02-26 江南大学 Anionic surface modification method of support-free porous separation membrane by ultraviolet (UV) curing
CN104258747A (en) * 2014-03-04 2015-01-07 上海大学 Method for preparing nylon-66 grafted crylic acid by electronic beam pre-irradiation
CN106186545A (en) * 2016-08-19 2016-12-07 董金萍 Novel membrane bioreactor sewage treatment device

Similar Documents

Publication Publication Date Title
Van der Bruggen Chemical modification of polyethersulfone nanofiltration membranes: a review
Bhattacharya et al. Grafting: a versatile means to modify polymers: techniques, factors and applications
US20080216942A1 (en) Method for Continuous Production of Functional Film
US4147745A (en) Process for producing semipermeable membranes
Wang et al. Surface molecular imprinting on photosensitive dithiocarbamoyl polyacrylonitrile membranes using photograft polymerization
US7677398B2 (en) Process for improving membranes
Qiu et al. Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method
CN105289316A (en) Preparation method of composite separating film filled by interpenetrating polymer network hydrogel
Li et al. Grafting zwitterionic brush on the surface of PVDF membrane using physisorbed free radical grafting technique
Qiu et al. Surface modification of cardo polyetherketone ultrafiltration membrane by photo-grafted copolymers to obtain nanofiltration membranes
Jian et al. Crosslinked PVA-PS thin-film composite membrane for reverse osmosis
US20120248032A1 (en) Curable Compositions And Membranes
US20120248028A1 (en) Curable Compositions And Membranes
CN101274222A (en) Dynamic self-assembled process for preparing low-pressure high-throughput charged nanofiltration membrane
Hirotsu et al. Water–ethanol permseparation by pervaporation through photocrosslinked poly (vinyl alcohol) composite membranes
JP2004079252A (en) High ruggedness solid polyelectrolyte and solid polyelectrolyte (composite) membrane using it
CN103170250A (en) Hybridization hydrogel flat membrane for water filtration and preparation method thereof
CN101053780A (en) Method for preparing composite nanofiltration membrane
Ning et al. Synthesis of amphiphilic block–graft copolymers [poly (styrene‐b‐ethylene‐co‐butylene‐b‐styrene)‐g‐poly (acrylic acid)] and their aggregation in water
Gu et al. Chain-length dependence of the antifouling characteristics of the glycopolymer-modified polypropylene membrane in an SMBR
Wang et al. Preparation and characterization of negatively charged hollow fiber nanofiltration membrane by plasma-induced graft polymerization
CN103304820A (en) Preparation method of efficient polyethyleneimine modified cellulose-based heavy metal adsorbent
Knapp et al. Reverse Osmosis Membrane Prepared by Controlled Desolvation at Room Temperature
CN101343372A (en) Preparation method for nano-fibre ion exchange membrane
JP2009241006A (en) Composite membrane and its manufacturing method

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)