CN1585283A - TD-SCDMA system frequency offset compensating method and apparatus based on exercising sequence - Google Patents

TD-SCDMA system frequency offset compensating method and apparatus based on exercising sequence Download PDF

Info

Publication number
CN1585283A
CN1585283A CN 200410009133 CN200410009133A CN1585283A CN 1585283 A CN1585283 A CN 1585283A CN 200410009133 CN200410009133 CN 200410009133 CN 200410009133 A CN200410009133 A CN 200410009133A CN 1585283 A CN1585283 A CN 1585283A
Authority
CN
China
Prior art keywords
mrow
msubsup
frequency offset
training sequence
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410009133
Other languages
Chinese (zh)
Other versions
CN100403657C (en
Inventor
刘虎
魏元
马志锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Datang Mobile Communications Equipment Co Ltd
Original Assignee
ZTE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZTE Corp filed Critical ZTE Corp
Priority to CNB2004100091331A priority Critical patent/CN100403657C/en
Publication of CN1585283A publication Critical patent/CN1585283A/en
Application granted granted Critical
Publication of CN100403657C publication Critical patent/CN100403657C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

This method selects a received data array to intercept the training sequence, on different point of the frequency difference. The training sequence is processed with phase compensation and channel evaluation to determine the spread spectrum factor of the training sequence. The training sequence is processed with unspreading to obtain the unspreading mark of the training sequence on each frequency difference point. The exceptional unspreading mark is processed. The cost function of end customer is calculated. The minimum value of the cost function is calculated to determine the best frequency point and the estimated value of the time slot.

Description

TD-SCDMA system frequency offset compensation method and device based on training sequence
Technical Field
The invention relates to a frequency offset compensation method in the field of wireless mobile communication, in particular to a frequency offset compensation method and a frequency offset compensation device of a TD-SCDMA system based on a training sequence.
Background
In a mobile communication system, the frequency offset caused by doppler may reach several hundred hertz, and the maximum frequency difference introduced by a carrier may reach up to kilohertz, so that a receiving end must perform frequency correction. The frequency correction function is performed by a frequency correction Loop, and commonly used devices include an Automatic Frequency Control (AFC) and a Phase Lock Loop (PLL).
The frequency correction loop can effectively correct the frequency offset of the subsequent burst data by adjusting the local oscillator frequency to resist the frequency offset. But the correction does not provide any improvement to the currently received data. Therefore, a frequency offset compensation operation needs to be performed on the currently received data.
In the prior art, for example, the invention with application number 97115151.2 discloses a method and a device for carrier recovery and compensation in a spread spectrum communication system, which is to perform hard decision demodulation on despread data, then perform Quadrature Phase Shift Keying (QPSK) modulation again, obtain a Phase difference between a rescheduled bit and an undetermined bit, and then obtain a frequency offset by using the following formula:
<math> <mrow> <msup> <mi>cita</mi> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>VRU</mi> </msub> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>M</mi> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>cita</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>VRU</mi> </msub> <mo>)</mo> </mrow> </msubsup> <mrow> <mn>4.5</mn> <mo>+</mo> <mi>i</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <msubsup> <mi>cita</mi> <mrow> <mn>1,21</mn> <mo>-</mo> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>VRU</mi> </msub> <mo>)</mo> </mrow> </msubsup> <mrow> <mn>5.5</mn> <mo>+</mo> <mi>i</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
the above equation may be represented by fig. 1, where:
<math> <mrow> <mi>&Delta;f</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>&Delta;t</mi> <mn>1</mn> </msub> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> </mrow> <msub> <mi>&Delta;t</mi> <mn>2</mn> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
it is considered that 4.5+ i and 5.5+ i in the formula (1) are approximately equal.
After the frequency offset is obtained by the formula (1), the frequency offset is converted into a phase and is added back to each symbol, and the phase is used as soft output information to be sent to a following decoding unit.
In the prior art, when the frequency offset is large, in a burst Time of Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), the user channel environment is no longer assumed to be Time-invariant, and the channel impulse response h (t) obtained through the training sequence is no longer applicable to the whole burst. Therefore, after performing the joint detection, the frequency offset compensation is obtained by performing hard-decision demodulation using the unknown user data, which has the following problems:
1. when the frequency offset is large, in a burst time of the TD-SCDMA, the user channel environment can no longer be assumed to be time-invariant, and the channel impulse response h (t) obtained through the training sequence is no longer applicable to the whole burst, so the performance of joint detection is reduced, thereby increasing the error rate of data after despreading.
2. Since the error rate of data after despreading increases, demodulation performance is degraded.
3. Hard decision loss is inevitably introduced due to the adoption of hard decision demodulation.
4. This scheme cannot compensate effectively when the phase changes by an integer multiple.
5. In some error cases, the demodulation constellation after hard decision appears in the dots, which brings larger error.
Therefore, the above problems can be effectively reduced or avoided by correcting the frequency offset before the joint detection.
Disclosure of Invention
The invention aims to provide a TD-SCDMA system frequency offset compensation method and a device based on a training sequence. And a weighted correction method is adopted to correct the frequency offset estimation of the current time slot, so that the base station can quickly and accurately perform de-spread and demodulation. On a digital signal processing platform, a simplified method and fewer storage units are applied to obtain accurate frequency offset estimation.
The purpose of the invention is realized as follows:
the invention discloses a TD-SCDMA system frequency offset compensation method based on training sequence, comprising the following steps:
(1) selecting a received data sequence;
(2) intercepting a training sequence from a received data sequence;
(3) carrying out phase compensation on the training sequence at different frequency difference points, carrying out channel estimation and determining a spread spectrum factor Q of the training sequence;
(4) despreading the training sequence to obtain a symbol of each frequency difference point after despreading the training sequence;
(5) processing abnormal despreading symbols, and calculating a cost function of each frequency point and each user;
(6) calculating a minimum cost function value, determining an optimal frequency point, and obtaining a frequency deviation estimation value of the current time slot;
(7) carrying out smooth correction on the frequency offset estimation value of the current time slot;
(8) obtaining mixed channel impact response through channel estimation, spread spectrum codes, scrambling codes and weights;
(9) and performing frequency offset compensation on the mixed channel impulse response of each user.
The processing of the abnormally despread symbols includes identifying despread erroneous symbols and discarding the erroneous symbols.
The TD-SCDMA system frequency offset compensation method based on the training sequence, the preset frequency offset compensationA value of e-j2πfiWherein f isiE f, f is in the range of [ -fmax,fmax]。
And the smooth correction also comprises a current time slot frequency offset estimation result, and after weighting P, the current time slot frequency offset estimation result is multiplied by the stored previous time slot frequency offset estimation result in a weighting (1-P) manner to obtain the frequency offset estimation after the smooth correction.
The possible range of the frequency difference of the received data sequence is [ -f [ ]max,fmax]At a frequency difference interval of <math> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>=</mo> <mfrac> <msub> <mrow> <mn>2</mn> <mi>f</mi> </mrow> <mi>max</mi> </msub> <mi>&lambda;</mi> </mfrac> <mo>,</mo> </mrow> </math> λ is the number of estimations.
The spreading factor Q of the midamble is 128/N, and N is the number of midamble symbols.
The cost function of the training symbol sequence is:
<math> <mrow> <msup> <mi>C</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>|</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </math>
<math> <mrow> <msup> <mi>C</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>|</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </math>
wherein the training data symbol sequence
<math> <mrow> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mo>{</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>2</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>N</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>&lambda;</mi> </mrow> </math>
i is the ith frequency traversal point, k is the kth user, and N is the number of training sequence symbols.
The smoothing correction is to perform smoothing correction on the frequency offset estimation values of the current time slot and the previous time slot by adopting an iterative forgetting factor:
<math> <mrow> <msubsup> <mover> <mi>&theta;</mi> <mo>&OverBar;</mo> </mover> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>p</mi> <mo>)</mo> </mrow> <msubsup> <mover> <mi>&theta;</mi> <mo>&OverBar;</mo> </mover> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>p&theta;</mi> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> </mrow> </math>
wherein, <math> <mrow> <msubsup> <mi>&theta;</mi> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <mn>2</mn> <mi>&pi;</mi> <msubsup> <mi>f</mi> <mi>correct</mi> <mi>k</mi> </msubsup> <mo>&CenterDot;</mo> <mi>t</mi> </mrow> </math> is the frequency offset estimate for the nth slot,
t is the time slot length, fcorrect kFor the best estimated frequency difference corresponding to the kth user,
p is a mean forgetting factor, generally set to be between 0.75 and 0.9.
The invention also discloses a TD-SCDMA system frequency offset compensation device based on the training sequence, which comprises a frequency offset presetter, a multiplier, a de-spreading module, a channel estimator, an error symbol deleting and calculating cost function module, a cost function value comparing and judging module, a frequency offset estimating module, a frequency offset smooth correcting module, a demodulating module, a mixed impact response module, a joint detection module, a spreading code, a scrambling code and a weight generator,
the frequency offset pre-estimating device and the multiplier are used for carrying out frequency offset pre-estimation on a training sequence intercepted from a received data sequence; the channel estimator performs channel estimation on the training sequence subjected to frequency offset pre-estimation; the de-spread module is used for obtaining a training sequence symbol; the error symbol deleting and cost function calculating module is used for deleting the error symbols after despreading and calculating a cost function; the cost function value comparison and judgment module is used for comparing a plurality of frequency offset preset despread results of the same user and selecting an optimal frequency offset preset point of each user; the frequency offset estimation module is used for calculating the frequency offset of each user in the current time slot; the frequency offset smoothing correction module is used for smoothing frequency offset to obtain a smoothed frequency offset estimation value; the channel estimator, the spread spectrum code, the scrambling code, the weight generator and the multiplier are used for obtaining the mixed channel impact response; the multiplier is used for carrying out frequency offset compensation on the mixed channel impact response to obtain the compensated mixed channel impact response; the joint detection module and the demodulation module are used for despreading and demodulating data.
The invention uses the frequency deviation traversal method to de-spread the training sequence before the joint detection to obtain the cost function of the training sequence symbols of different frequency deviation points, and because the training sequence symbols are known, the de-spread error symbols can be deleted. Compared with the prior art, the invention has the following advantages:
1. the known information of the training sequence is fully utilized, so that the error symbols after despreading can be deleted;
2. because the training sequence symbols are known, only cost functions of the training sequence after de-spread and demodulation at different preset frequency offset points need to be calculated, demodulation hard judgment is not needed, and the loss of the demodulation hard judgment is avoided;
3. because frequency offset compensation is carried out before the joint detection, the performance of the joint detection is improved;
4. because the frequency offset traversal method is adopted, the frequency offset can be effectively compensated as long as the frequency offset is within the set frequency offset;
5. the frequency offset compensation method has a good compensation effect on large frequency offset, and particularly has an obvious frequency offset compensation effect when phase inversion occurs;
6. the system SNR (signal Noise ratio) -BER (bit Error ratio) performance can be effectively improved;
7. because the number of symbols of the training sequence can be dynamically set, the range of the number of symbols is as follows: 1-9, so the calculated amount is small and the practicability is strong;
8. since the training sequence symbols are known, this scheme is referred to SNR estimation.
Drawings
FIG. 1 is a diagram illustrating phase frequency offset calculation in a conventional frequency offset compensation scheme;
FIG. 2 is a flow chart of a frequency offset compensation method in the present invention;
fig. 3 is a diagram illustrating a frequency offset smoothing module according to the present invention.
Detailed Description
In the TD-SCDMA system, the known sequence effective length in a time slot is 128chips in both the uplink synchronization process and the traffic channel transmission process. The frequency estimation can be performed using the known sequence.
Let the known transmission sequence be:
S={s1,s2,...,sn} (4)
through the air channel, the data sequence corresponding to the receiving end is as follows:
R={r1,r2,...,rn,...,rn+W} (5)
according to the TD-SCDMA protocol, the training sequence received at the receiving end may be equal to the data part, which is expressed as:
<math> <mrow> <mo>{</mo> <msubsup> <mi>w</mi> <mi>Q</mi> <mi>k</mi> </msubsup> <msubsup> <mi>d</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>c</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo>,</mo> <msubsup> <mi>w</mi> <mi>Q</mi> <mi>k</mi> </msubsup> <msubsup> <mi>d</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>c</mi> <mn>2</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>w</mi> <mi>Q</mi> <mi>k</mi> </msubsup> <msubsup> <mi>d</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>c</mi> <mi>Q</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mi>Q</mi> </msub> <mo>,</mo> <msubsup> <mi>w</mi> <mi>Q</mi> <mi>k</mi> </msubsup> <msubsup> <mi>d</mi> <mn>2</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>c</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mrow> <mi>Q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>w</mi> <mi>Q</mi> <mi>k</mi> </msubsup> <msubsup> <mi>d</mi> <mrow> <mn>16</mn> <mo>/</mo> <mi>Q</mi> </mrow> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msubsup> <mi>c</mi> <mi>Q</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mn>16</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein the symbols take the following values:
<math> <mrow> <msubsup> <mi>w</mi> <mi>Q</mi> <mi>k</mi> </msubsup> <mo>&Element;</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mo>-</mo> <mi>j</mi> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
vi∈{1,j,-1,-j} (8)
ci∈{1,-1} (9)
using scrambling, spreading principles, a sequence can be represented as
<math> <mrow> <mo>{</mo> <msubsup> <mi>w</mi> <mi>Q</mi> <mi>k</mi> </msubsup> <msubsup> <mi>d</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo>,</mo> <msubsup> <mi>c</mi> <mn>2</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>c</mi> <mi>Q</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mi>Q</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mi>w</mi> <mi>Q</mi> <mi>k</mi> </msubsup> <msubsup> <mi>d</mi> <mn>2</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mrow> <mi>Q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>c</mi> <mi>Q</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mrow> <mn>2</mn> <mi>Q</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>w</mi> <mi>Q</mi> <mi>k</mi> </msubsup> <msubsup> <mi>d</mi> <mrow> <mn>16</mn> <mo>/</mo> <mi>Q</mi> </mrow> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mn>1</mn> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mrow> <mn>16</mn> <mo>-</mo> <mi>Q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msubsup> <mi>c</mi> <mi>Q</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>i</mi> </mrow> </msubsup> <msub> <mi>v</mi> <mn>16</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
Let the possible range of the frequency difference of the received sequence be [ -f ]max,fmax]Assuming that λ estimations are made within this range, the frequency difference interval is <math> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>=</mo> <mfrac> <msub> <mrow> <mn>2</mn> <mi>f</mi> </mrow> <mi>max</mi> </msub> <mi>&lambda;</mi> </mfrac> <mo>,</mo> </mrow> </math> The frequency difference point of traversal is
f={0,±fd,±2fd,..,±fmax} (11)
The preset frequency deviation compensation value is e-j2πfiWherein f isiE f, f is in the range of [ -fmax,fmax]。
The training sequence is phase-compensated at different frequency offset points, and is considered as a data sequence with a spreading factor Q (Q: 128/N), so that the data of the training sequence is despread. At each frequency difference point, the following training data symbol sequence can be obtained
<math> <mrow> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mo>{</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>2</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>N</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>}</mo> <mo>,</mo> <mo></mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>&lambda;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein i is the ith frequency traversal point, k is the kth user, and N is the number of training sequence symbols. Since the training symbol sequence is known, the cost function of the training symbol sequence is:
<math> <mrow> <msup> <mi>C</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>|</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msup> <mi>C</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>|</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
and traversing and searching each frequency offset compensation point, wherein the cost function is a set C.
<math> <mrow> <msup> <mi>C</mi> <mi>k</mi> </msup> <mo>=</mo> <mo>{</mo> <msup> <mi>C</mi> <mrow> <msub> <mrow> <mo>-</mo> <mi>f</mi> </mrow> <mi>mxa</mi> </msub> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mi>C</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msup> <mi>C</mi> <mrow> <msub> <mi>f</mi> <mi>max</mi> </msub> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
The optimal frequency offset compensation point cost function is as follows:
| | C f k | | = min ( | | C k | | ) - - - ( 16 )
the frequency difference point corresponding to the minimum value in the cost function is the best estimated frequency difference of the received sequence. The frequency offset estimation value of the nth time slot is as follows:
<math> <mrow> <msubsup> <mi>&theta;</mi> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mrow> <mn>2</mn> <mi>&pi;f</mi> </mrow> <mi>correct</mi> <mi>k</mi> </msubsup> <mo>&CenterDot;</mo> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
where t is the slot length, fcorrect kAnd the frequency difference is estimated for the optimal frequency difference corresponding to the kth user.
After the optimal frequency offset of the current time slot is estimated, in order to effectively utilize the former frequency offset information and reduce the calculation amount, the frequency offset estimation of the current time slot needs to be smoothly corrected. Adopting an iteration forgetting factor to carry out smooth correction on the frequency deviation estimated values of the current time slot and the previous time slot:
<math> <mrow> <msubsup> <mover> <mi>&theta;</mi> <mo>&OverBar;</mo> </mover> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>p</mi> <mo>)</mo> </mrow> <msubsup> <mover> <mi>&theta;</mi> <mo>&OverBar;</mo> </mover> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>p&theta;</mi> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein p is a mean forgetting factor, which is generally set to be between 0.75 and 0.9.
And after obtaining the corrected frequency offset estimation, performing frequency offset compensation on the mixed channel impact response before joint detection.
The specific implementation steps are as follows:
1. the possible range of the frequency difference of the selected receiving sequence is [ -f [ ]max,fmax]At a frequency difference interval of <math> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>=</mo> <mfrac> <msub> <mrow> <mn>2</mn> <mi>f</mi> </mrow> <mi>max</mi> </msub> <mi>&lambda;</mi> </mfrac> <mo>,</mo> </mrow> </math> Lambda is the estimation times;
2. intercepting a training sequence from received data, performing preset phase compensation on the training sequence at different frequency difference points, and performing channel estimation;
3. determining a spreading factor Q of a training sequence, wherein Q is 128/N;
4. despreading the training sequence to obtain symbols despread by the training sequence at each frequency difference point;
5. because the training sequence symbols are known, the error symbols after despreading can be identified, and the error symbols are discarded;
6. calculating a cost function of a symbol after despreading the training sequence of each frequency point and each user;
7. calculating a minimum cost function value, judging an optimal frequency point, and obtaining a frequency deviation estimation value of the current time slot;
8. carrying out smooth correction on the frequency offset estimation value of the current time slot;
9. obtaining mixed channel impact response through channel estimation, spread spectrum codes, scrambling codes and weights;
10. and respectively carrying out frequency offset compensation on the K user mixed channel impact responses, and carrying out joint detection and demodulation after compensation.
Referring to fig. 2, the apparatus of the present invention mainly includes a frequency offset presetter 22, a multiplier 23, a despreading module 24, a channel estimator 25, an error symbol deleting and calculating cost function module 26, a cost function value comparing and deciding module 28, a frequency offset estimating module 29, a frequency offset smooth correcting module 210, a demodulating module 214, a mixed impulse response module 212, a joint detecting module 213, and a spreading code, scrambling code, and weight generator 211.
According to design indexes and requirements, the possible range of the frequency deviation of the receiving sequence can be obtained in advance, and the frequency difference interval is set to <math> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mi>max</mi> </msub> </mrow> <mi>&lambda;</mi> </mfrac> <mo>,</mo> </mrow> </math> λ is the number of estimations. During receiving, the receiving data 21 can be obtained from the antenna end, the training sequence is intercepted from the receiving data, the frequency offset pre-estimation is carried out on the intercepted training sequence by using the multiplier 23 and the frequency offset pre-setter 22, the channel estimation is carried out on the training sequence subjected to the frequency offset pre-estimation by using the channel estimator 25, and the training sequence symbol is obtained by the de-spreading module 24; since the training sequence symbols 27 are known, the despread error symbols can be removed by the error symbol removal and cost function calculation module 26 and a cost function calculated; comparing a plurality of frequency offset preset de-spread results of the same user through the decision module 28, and selecting an optimal frequency offset preset point 216 of each user; calculating the frequency offset 217 of each user in the current time slot by the frequency offset estimation module 29; the frequency offset is smoothed by the frequency offset smoothing and correcting module 210 to obtain a smoothed frequency offset estimation value 218.
Obtaining a mixed channel impulse response 212 through the channel estimator 25, the spreading code, the scrambling code, the weight generator 211 and the multiplier 23; performing frequency offset compensation on the mixed channel impulse response 212 through the multiplier 23 by using the smoothed frequency offset estimation value 218 to obtain a compensated mixed channel impulse response 215; the data is despread and demodulated by the demodulation module 214 through the joint detection module 213.
Referring to fig. 3, the frequency offset smoothing process is illustrated, and the frequency offset smoothing process includes the current slot frequency offset estimation result 31, the weight P34, the weight (1-P)32, the saved previous slot frequency offset estimation result 33, and the smoothed frequency offset estimation 36.
After obtaining the current time slot frequency offset estimation result 31, the frequency offset estimation result is subjected to smooth weighting processing, the weights are respectively P34 and (1-P)32, and the frequency offset estimation after the current time slot smooth correction is calculated by using the formula 18.
In summary, the outstanding features of the present invention are that a frequency offset traversal method is adopted, a training sequence is fully utilized, the training sequence is considered as N symbols, a cost function is introduced, frequency offset estimation is performed by using known symbol information, frequency offset estimation of a current time slot is smoothly corrected, and frequency offset is compensated before joint detection. The error caused by hard judgment during demodulation of unknown information after despreading is fundamentally avoided, the performance of joint detection and the overall performance of the system are improved, and the method has high breakthrough.

Claims (9)

1. A TD-SCDMA system frequency offset compensation method based on training sequence is characterized in that the method comprises the following steps:
(1) selecting a received data sequence;
(2) intercepting a training sequence from a received data sequence;
(3) carrying out phase compensation on the training sequence at different frequency difference points, carrying out channel estimation and determining a spread spectrum factor Q of the training sequence;
(4) despreading the training sequence to obtain a symbol of each frequency difference point after despreading the training sequence;
(5) processing abnormal despreading symbols, and calculating a cost function of each frequency point and each user;
(6) calculating a minimum cost function value, determining an optimal frequency point, and obtaining a frequency deviation estimation value of the current time slot;
(7) carrying out smooth correction on the frequency offset estimation value of the current time slot;
(8) obtaining mixed channel impact response through channel estimation, spread spectrum codes, scrambling codes and weights;
(9) and performing frequency offset compensation on the mixed channel impulse response of each user.
2. The method of claim 1, wherein the processing the abnormal despread symbols comprises identifying despread erroneous symbols and discarding the erroneous symbols.
3. The TD-SCDMA system frequency offset compensation method based on training sequence according to claim 1, characterized in that, the smooth correction further comprises the current time slot frequency offset estimation result, after weighting P, the result is multiplied by the saved previous time slot frequency offset estimation result with weight (1-P) to obtain the frequency offset estimation after smooth correction.
4. The TD-SCDMA system frequency offset compensation method based on training sequence according to claim 1, characterized in that, the frequency difference of the received data sequence is possible in the range of [ -f [ ]max,fmax]At a frequency difference interval of <math> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mi>max</mi> </msub> </mrow> <mi>&lambda;</mi> </mfrac> <mo>,</mo> </mrow> </math> λ is the number of estimations.
5. The TD-SCDMA system frequency offset compensation method based on training sequence according to claim 4, characterized in that, the method further comprises that the preset frequency offset compensation value is represented by complex number as e-j2πfiWherein f islE f, f is in the range of [ -fmax,fmax]。
6. The TD-SCDMA system frequency offset compensation method based on training sequence as claimed in claim 4, characterized in that, the spreading factor Q of the training sequence is 128/N, N is the number of symbols of the training sequence.
7. The method of claim 4, wherein the cost function of the training symbol sequence is:
<math> <mrow> <msup> <mi>C</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>|</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </math>
<math> <mrow> <msup> <mi>C</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>|</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>Im</mi> <mrow> <mo>(</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>n</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </math>
wherein the training data symbol sequence
<math> <mrow> <msup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mo>{</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>1</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mn>2</mn> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mover> <mi>d</mi> <mo>^</mo> </mover> <mi>N</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msubsup> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>&lambda;</mi> </mrow> </math>
i is the ith frequency traversal point, k is the kth user, and N is the number of training sequence symbols.
8. The TD-SCDMA system frequency offset compensation method based on training sequence according to claim 7, characterized in that, the smooth correction is the smooth correction of the frequency offset estimation values of the current time slot and the previous time slot by using iterative forgetting factor:
<math> <mrow> <msubsup> <mover> <mi>&theta;</mi> <mo>&OverBar;</mo> </mover> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>p</mi> <mo>)</mo> </mrow> <msubsup> <mover> <mi>&theta;</mi> <mo>&OverBar;</mo> </mover> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <mi>p</mi> <msubsup> <mi>&theta;</mi> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> </mrow> </math>
wherein, <math> <mrow> <msubsup> <mi>&theta;</mi> <mi>correct</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <mn>2</mn> <mi>&pi;</mi> <msubsup> <mi>f</mi> <mi>correct</mi> <mi>k</mi> </msubsup> <mo>&CenterDot;</mo> <mi>t</mi> </mrow> </math> is the frequency offset estimate for the nth slot,
t is the time slot length, fcorrect kFor the best estimated frequency difference corresponding to the kth user,
p is a mean forgetting factor, generally set to be between 0.75 and 0.9.
9. A TD-SCDMA system frequency offset compensation device based on training sequence is characterized in that the device comprises a frequency offset presetter, a multiplier, a de-spread module, a channel estimator, an error symbol deleting and calculating cost function module, a cost function value comparing and judging module, a frequency offset estimating module, a frequency offset smooth correcting module, a demodulating module, a joint detecting module, a spread spectrum code, a scrambling code and a weight generator,
the frequency offset pre-estimating device and the multiplier are used for carrying out frequency offset pre-estimation on a training sequence intercepted from a received data sequence; the channel estimator performs channel estimation on the training sequence subjected to frequency offset pre-estimation; the de-spread module is used for obtaining a training sequence symbol; the error symbol deleting and cost function calculating module is used for deleting the error symbols after despreading and calculating a cost function; the cost function value comparison and judgment module is used for comparing a plurality of frequency offset preset despread results of the same user and selecting an optimal frequency offset preset point of each user; the frequency offset estimation module is used for calculating the frequency offset of each user in the current time slot; the frequency offset smoothing correction module is used for smoothing frequency offset to obtain a smoothed frequency offset estimation value; the channel estimator, the spread spectrum code, the scrambling code, the weight generator and the multiplier are used for obtaining the mixed channel impact response; the multiplier is used for carrying out frequency offset compensation on the mixed channel impact response to obtain the compensated mixed channel impact response; the joint detection module and the demodulation module are used for despreading and demodulating data.
CNB2004100091331A 2004-05-25 2004-05-25 TD-SCDMA system frequency offset compensating method and apparatus based on exercising sequence Expired - Fee Related CN100403657C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100091331A CN100403657C (en) 2004-05-25 2004-05-25 TD-SCDMA system frequency offset compensating method and apparatus based on exercising sequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100091331A CN100403657C (en) 2004-05-25 2004-05-25 TD-SCDMA system frequency offset compensating method and apparatus based on exercising sequence

Publications (2)

Publication Number Publication Date
CN1585283A true CN1585283A (en) 2005-02-23
CN100403657C CN100403657C (en) 2008-07-16

Family

ID=34600205

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100091331A Expired - Fee Related CN100403657C (en) 2004-05-25 2004-05-25 TD-SCDMA system frequency offset compensating method and apparatus based on exercising sequence

Country Status (1)

Country Link
CN (1) CN100403657C (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009065261A1 (en) * 2007-11-23 2009-05-28 Zte Corporation Transmitting diversity and receiver processing method in td-scdma system
CN101102122B (en) * 2007-07-31 2010-06-16 北京天碁科技有限公司 A frequency deviation estimation device and its method
CN1909432B (en) * 2005-08-01 2010-12-22 上海原动力通信科技有限公司 Communication method for time slot CDMA system
CN101087159B (en) * 2006-06-05 2011-03-09 中兴通讯股份有限公司 A method for frequency deviation estimation
CN101102293B (en) * 2007-07-31 2011-07-20 北京天碁科技有限公司 A frequency deviation estimation device and method
CN101610108B (en) * 2009-07-15 2012-07-04 电信科学技术第一研究所 Method for improving carrier phase jitter and waveform distortion of digital spread spectrum receiver
CN101626254B (en) * 2008-07-07 2013-05-08 鼎桥通信技术有限公司 Method for high-speed joint detection
CN101115036B (en) * 2006-02-24 2014-01-22 三星电子株式会社 channel estimation device, method and phase compensator and phase compensation method
CN104639479A (en) * 2015-02-03 2015-05-20 大唐移动通信设备有限公司 Frequency offset calibration method and equipment
CN109525336A (en) * 2018-10-29 2019-03-26 上海大学 Based on the radio communication channel test method of frequency deviation measurement time domain compensation under asynchronous clock
CN113315733A (en) * 2021-07-13 2021-08-27 中国人民解放军国防科技大学 Time-frequency synchronization method, communication system and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2347831B (en) * 1999-03-06 2004-07-07 Nec Technologies Sychronisation in digital data transmission systems
CN1131653C (en) * 2000-03-27 2003-12-17 信息产业部电信科学技术研究院 Small-region initial search method for CDMA digital mobile communication system
CN1249941C (en) * 2002-10-31 2006-04-05 电子科技大学 Turbo method used for OFDM frequency synchronization

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909432B (en) * 2005-08-01 2010-12-22 上海原动力通信科技有限公司 Communication method for time slot CDMA system
CN101115036B (en) * 2006-02-24 2014-01-22 三星电子株式会社 channel estimation device, method and phase compensator and phase compensation method
CN101087159B (en) * 2006-06-05 2011-03-09 中兴通讯股份有限公司 A method for frequency deviation estimation
CN101102122B (en) * 2007-07-31 2010-06-16 北京天碁科技有限公司 A frequency deviation estimation device and its method
CN101102293B (en) * 2007-07-31 2011-07-20 北京天碁科技有限公司 A frequency deviation estimation device and method
CN101689873B (en) * 2007-11-23 2013-02-27 中兴通讯股份有限公司 Transmitting diversity and receiver processing method in TD-SCDMA system
WO2009065261A1 (en) * 2007-11-23 2009-05-28 Zte Corporation Transmitting diversity and receiver processing method in td-scdma system
CN101626254B (en) * 2008-07-07 2013-05-08 鼎桥通信技术有限公司 Method for high-speed joint detection
CN101610108B (en) * 2009-07-15 2012-07-04 电信科学技术第一研究所 Method for improving carrier phase jitter and waveform distortion of digital spread spectrum receiver
CN104639479A (en) * 2015-02-03 2015-05-20 大唐移动通信设备有限公司 Frequency offset calibration method and equipment
CN109525336A (en) * 2018-10-29 2019-03-26 上海大学 Based on the radio communication channel test method of frequency deviation measurement time domain compensation under asynchronous clock
CN113315733A (en) * 2021-07-13 2021-08-27 中国人民解放军国防科技大学 Time-frequency synchronization method, communication system and storage medium
CN113315733B (en) * 2021-07-13 2021-11-02 中国人民解放军国防科技大学 Time-frequency synchronization method, communication system and storage medium

Also Published As

Publication number Publication date
CN100403657C (en) 2008-07-16

Similar Documents

Publication Publication Date Title
CN1192504C (en) Method and apparatus for interference cancellation in a rake receiver
US7746941B2 (en) Synchronization apparatus and method for improving timing estimation performance in OFDM-FDMA/CDMA/TDMA system
CN1082757C (en) Synchronous detector and synchronizing method for digital communication receiver
CN1259785C (en) Method for obtaining carrier frequency departure of time division synchronous CDMA (TD-SCDMA) user terminal and equipment
CN1231082C (en) Antenna weighting estimating method, and mobile communication terminal
CN1209003A (en) Wireless communication apparatus and wireless communication method
CN1518809A (en) Symbol timing correcting circuit, receiver, symbol timing correction method and demodulation processing method
CN1327318A (en) Method and equipment for reducing frequency shifting in radio frequency receiver
CN1784921A (en) Method and apparatus for providing uplink signal-to-noise ratio (SNR) estimation in wireless communication system
CN1951079A (en) Iterative channel and interference estimation and decoding
CN1922806A (en) Method and apparatus for automatic frequency correction
CN1585283A (en) TD-SCDMA system frequency offset compensating method and apparatus based on exercising sequence
CN1711709A (en) Method and apparatus for determining signal-to-interference ratio with reduced bias effect
CN1143491C (en) Channel estimates in CDMA system using power control bits
CN1691564A (en) Channel quality estimation method and receiving apparatus
CN101652969A (en) Adaptive pilot and data symbol estimation
CN1710896A (en) Frequency deviation estimation method and apparatus in mobile communication system
CN1061205C (en) Method for device of carrier exalting and compensating in frequency spreading communication system
CN1859019A (en) Method and device for realizing automatic frequency control
CN1503471A (en) Method and apparatus for estimating response characteristic, and receiving method and receiver utilizing the same
CN1684379A (en) Method and device for evaluating channels
CN1460332A (en) Radio receiving apparatus and radio receiving method
CN1599298A (en) OFDM frequence synchronous method at multi-path channel
CN1585289A (en) Method for compensating frequency offset in wireless mobile communication system
CN1500245A (en) Iterative fast fourier transform error correction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: DATANG MOBILE COMMUNICATION APPARATUS CO., LTD.

Free format text: FORMER OWNER: ZTE CO., LTD.

Effective date: 20060428

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20060428

Address after: 100083 No. 29, Haidian District, Beijing, Xueyuan Road

Applicant after: DATANG MOBILE COMMUNICATIONS EQUIPMENT Co.,Ltd.

Address before: 518057, Nanshan District high tech Industrial Park, Guangdong province Shenzhen science and technology south road Zhongxing building A block 6

Applicant before: ZTE Corp.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080716