Background
With the development of economy and science, people have higher and higher requirements on the reliability of power supplies. Especially in the current times of relatively developed economic information, various digital devices such as electronic computers may cause a large amount of data loss once power is cut off, resulting in serious economic loss.
Accordingly, uninterruptible power supply devices have come to be produced. However, as the load equipment evolves, the specification difference becomes larger and larger, and when the load needs to be expanded, the original capability of the ups may be insufficient, or as the requirement for reliability becomes higher and higher, the ups system is designed to be modular, and there is a necessary trend for parallel connection and redundancy.
The control method of the present available modularized ups system is not limited to the wired mode and the wireless mode, in which a wired parallel controller is adopted, such as U.S. Pat. No. 5,257,180, "parallel operation control system of ac output inverter with circulation current limitation" invention patent. For example, U.S. patent nos. 5,745,356 entitled "independent load distribution of parallel ac power system", 6,118,680 entitled "method and apparatus for load distribution of inverters connected in parallel in an ac power supply", and 6,356,471 entitled "parallel power system and uninterruptible power supply including the same dynamic feedback adaptive control system and method", etc. are directed to wireless parallel controllers.
At present, various loads have increasingly strict requirements on electric power and increasingly depend on the reliability of parallel products, wireless parallel connection is relative to wired parallel connection, and the wireless parallel connection has the advantage of no single-point failure caused by the fault of a parallel control line for a control signal, so that the reliability of a system is improved to the highest. The method proposed in us patent 5,745,356 only calculates the differential between the energy provided by the machine at the dc end and the active power, and cannot effectively control the reactive power, and the differential method has poor anti-interference capability and cannot process the harmonic wave; the method proposed in us patent 6,118,680, which performs phase-locking operation by calculating voltage area, cannot provide direct and effective control for active power and reactive power, except for the accuracy of calculation, whether the waveform contains higher harmonic problem; the method proposed in us patent 6,356,471, although possibly improved over the above method, requires an inductor in parallel with the output.
The basic principle of wireless parallel connection is derived from the mode that generators generate power in parallel in a power system, however, the physical characteristics of the uninterruptible power supply module and the generators are greatly different, the generators have a large and inductive internal resistance, and the internal resistance of the uninterruptible power supply module is small and generally resistive.
In order to simulate a generator model to realize wireless parallel connection of ups modules, it is assumed that the output terminals of the parallel ups modules are respectively connected in series with a large inductor, as shown in fig. 1:
wherein the UPS module is powered by an ideal voltage source <math> <mrow> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>∠</mo> <msub> <mi>δ</mi> <mi>i</mi> </msub> </mrow> </math> And an equivalent internal resistance ZoiTo simulate. ZoiAre generally resistive. Zsi=jXsiOutput inductance, Z, of the i-th module in seriessi>>Zoi. If the output internal resistance of the uninterrupted power supply module is ignored and is within the range of deltaiThe output power expression of the uninterrupted power supply module can be obtained under the condition of not too large:
<math> <mrow> <msub> <mi>P</mi> <mi>oi</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>·</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> </mrow> <msub> <mi>X</mi> <mi>si</mi> </msub> </mfrac> <mi>sin</mi> <msub> <mi>δ</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>Q</mi> <mi>oi</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>·</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>cos</mi> <msub> <mi>δ</mi> <mi>i</mi> </msub> <mo>-</mo> <msup> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> <msub> <mi>X</mi> <mi>si</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
from the above expression, the active power is
And
phase clampAngle delta
iApproximately proportional, i.e. active power reflects the magnitude of the phase difference, reactive power and
approximately proportional, i.e. the reactive power reflects the magnitude of the output voltage difference.
And two droop curves for P- ω (active power-frequency), and Q-V (reactive power-voltage) can be defined simultaneously (as shown in fig. 2).
ω=ω0-kω*P (3)
V=V0-kV*Q (4)
ω0Can be set to be 50Hz or 60Hz according to the situation; v0And can be set as 120Vac or 230Vac, etc. according to the situation.
According to the formulas (1) to (4), wireless parallel connection can be realized by using a power/slope method. The relationship between the phase and amplitude of the output voltage of each ups module and the phase and amplitude of the output voltage synthesized after parallel connection is shown in fig. 3:
representing the equivalent output voltage of the inverter of the ups module i,
the uninterrupted power supply module is connected with the output voltage synthesized in parallel. If it is not
Is kept constant when
If the frequency increases and the phase angle difference δ i also increases, the active power output by the ups module i increases according to equation (1). The increase in active power again leads to the increase in active power according to the relation of equation (3) and P-omega
Reduction of frequency, phase angle difference delta
iAnd will decrease with it. If it is not
The same will be true for the frequency reduction. Ultimately result in
And
have the same frequency and fixed phase difference, thus ensure the phase and frequency relation between the uninterrupted power source modules connected in parallel.
Similar to the analysis method described above, if
Is kept constant when
When the output voltage is increased, the reactive power output by the uninterrupted power supply module i is increased according to the formula (2); according to the Q-V relation of the formula (4), the amplitude of the output voltage is adjusted to be smaller. This mutually restricted negative feedback relationship ensures
And
relatively constant in amplitude.
From the above analysis, it can be known that the wireless parallel control can be realized by using the power/slope reduction method, but the premise is that the ups module must be connected in series with a large inductor at the output end, and the inductor is mainly composed of a winding and is connected in series with the output end of the ups module, which will undoubtedly make the size and weight of the ups module large and make the dynamic performance worse. After the load is carried, the output adjustment accuracy is deteriorated due to the internal resistance of the inductor. So far, the mutual exclusion is formed by the wireless parallel control function and the characteristics of the module volume, weight and adjustment precision, and how to take into consideration, a feasible solution is obviously to be further sought.
Disclosure of Invention
Therefore, the present invention is directed to a wireless parallel control method and system, which can solve the problems of size and weight derived from the series inductor. The control circuit can directly and effectively control the active power and the reactive power, and meanwhile, because differential or integral phase locking is not needed, the control circuit is not influenced by high-frequency harmonic waves and does not need to be actually added with an inductor. Thus, a heavy and expensive output inductor can be omitted, while still complying with the characteristics of the power slope Droop Method (Droop Method).
The main technical means adopted for achieving the purpose is to sample the uninterrupted power supply module to obtain output current, then translate the output current by a certain phase angle, then use the current after translating the phase angle and the output voltage to obtain a virtual active power and reactive power difference value, then adjust the output frequency according to the relation of P-omega, and adjust the output voltage according to the relation of Q-V, so as to achieve the purpose of wireless parallel connection.
The present invention further provides a wireless parallel control system.
The wireless parallel control system is formed by connecting at least one uninterrupted power supply module in parallel, and alternating current output parts of all the uninterrupted power supply modules are mutually connected in parallel through a power supply distributor (POD) so as to supply power to a load; wherein: each uninterrupted power supply module respectively including:
an inverter;
a PWM driving circuit for driving the inverter;
an inductor current detector located on the path of the inductor current in the inverter;
an output voltage detector, located on the output end of the inverter;
a load current detector located at the output end of the inverter;
a control unit connected to the PWM driving circuit, the inductor current detector, the output voltage detector and the load current detector; wherein:
the control unit is used for executing a translation current method to enable the uninterrupted power supply modules to be connected in parallel in a wireless mode.
The control unit samples the uninterrupted power supply module to obtain output current, translates the output current by a certain angle, obtains a difference value of virtual active power and reactive power by using the current after phase angle translation and the output voltage, adjusts output frequency according to the relation of P-omega, and adjusts the output voltage according to the relation of Q-V.
The control unit is formed by a Digital Signal Processor (DSP) in software.
It is another object of the present invention to provide a wireless parallel control method and system operating in a wired parallel mode.
In order to achieve the above purpose, the invention adopts that all uninterrupted power supply modules in a parallel system are connected with each other by a group of circuits under a wired parallel mode, and the group of circuits comprises a shunt circuit, a synchronous time sequence signal line and a communication line;
under the wired parallel control mode, each uninterrupted power supply module obtains the information of other uninterrupted power supply modules through the signal line group, and wired parallel control is carried out after operation; if the wireless parallel control mode is switched, the signal line group does not work.
The shunt line is used for connecting the load current detectors of the uninterrupted power supply modules.
Detailed Description
As shown in fig. 4, a system wiring diagram of a parallel system of ups modules is disclosed, which is formed by connecting an unspecified number of ups modules 10, 101-10N in parallel, and if the ac Output part of each ups module 10, 101-10N has a large parallel Power, the outputs are connected in parallel through a Power Output Distribution 20 (POD) to supply Power to the load. If the power of the uninterrupted power supply modules connected in parallel is smaller, the uninterrupted power supply modules can be mutually connected through the wiring to jointly provide energy for the load. It must be stated that: the invention is applicable to the uninterruptible power supply module parallel system and also applicable to a power supply system with parallel AC output of an inverter.
The ups modules 10, 101-10N shown in fig. 4 are single-phase input and single-phase output, but are also applicable to a three-phase input and single-phase output system, and the difference is that two phases (S-phase and T-phase) are added to the input, the inverter part is not changed, and the phase lock and the bypass are based on the R-phase.
As shown in fig. 5, a functional block diagram of each of the aforementioned uninterruptible power supply modules 10, 101-10N (only one of the uninterruptible power supply modules 10 is illustrated in the figure) mainly includes an inverter 11, a PWM driving circuit 12 for driving the inverter 11, an inductive current detector 13 located in the inverter 11, an output voltage detector 14 and a load current detector 15 located at an output end of the inverter 11, and a control unit 30; wherein:
the control unit 30 may be implemented in software by a Digital Signal Processor (DSP).
In the foregoing system embodiment, the ups modules 10 have no other signal connections except for the power line (O/P), and under this configuration, the ups modules 10 can perform parallel control in a wireless mode. However, the wireless parallel control mode can still be applied to a wired power parallel system, and the system, in addition to the above basic architecture, enables all signals to be exchanged among the uninterruptible power supply modules 10, 101-10N through the following signal lines (see fig. 6), so as to perform a wired parallel control mode, which includes:
and a shunt line 21(Load Share Current) is responsible for exchanging the information of the Load Current output by each parallel module, and the voltage value on the shunt line represents the average value of the output currents of the parallel uninterrupted power supply modules 10 and 101-10N.
And a synchronization Clock Signal line 22(Synchronizing Clock Signal) for Synchronizing the phases of all the parallel uninterruptible power supply modules 10, 101-10N.
A Communication Line 23(Communication Line) for the parallel ups modules 10, 101-10N to exchange information, which is a necessary part for implementing the function of monitoring the operating status of the system in real time.
Under the basic framework, the uninterrupted power supply modules 10, 101-10N are connected with each other through the shunt line 21, the synchronous timing signal line 22 and the communication line 23 to exchange messages, and work in a wired parallel control mode;
referring to fig. 7, a functional block diagram of the ups modules 10 and 101-10N in the wired parallel mode is shown, except that the ups modules still include the inverter 11, the PWM driving circuit 12, the inductor current detector 13, the output voltage detector 14, the load current detector 15, and the control unit 30, the load current detector 15 is connected to the other ups modules 101-10N through a shunt line 16 and the shunt line 21, and performs an operation according to the current signal obtained by the shunt line 16 to serve as a basis for parallel control.
Since the wired parallel mode is not the main subject of the present invention, the working principle thereof will not be further detailed.
In order to improve the reliability of the parallel system and reduce single-point failure, the invention mainly provides a wireless parallel mode capable of avoiding single-point failure caused by communication faults, and the wireless parallel control mode still adopts a traditional power slope descending Method (Droop Method), namely, utilizes simulated P-omega and Q-V slope descending curves to realize automatic phase locking and current sharing.
The analysis of the wireless parallel principle in the background of the invention shows that the premise of wireless parallel control is that a large inductor needs to be connected in series with the output end of the uninterruptible power supply module, but the inductor causes the size and weight of the uninterruptible power supply module to be increased and the dynamic performance to be poor. Based on the consideration, the invention provides a method for simulating the effect of the series output inductor by matching the internal resistance characteristic of the uninterrupted power supply module with the load current translation phase angle operation, and calculating the active power and the reactive power related to the circulation by the circulation in the uninterrupted power supply module, thereby achieving the purpose of wireless parallel control.
In terms of technical principles adopted, assuming that an inductor is connected in series at the current output end of an uninterruptible power supply module, the current behind the voltage direction of the inductor and the corresponding voltage value can be used for calculating to obtain the output active power and reactive power of individual uninterruptible power supply modules and adjusting the output voltage and phase, such as formulas (1) to (4); according to the method, during power calculation, the load current lags behind by an angle beta, the inductance action is simulated by matching with the internal resistance characteristic of the uninterrupted power supply module, and the influence of the circulation current on the amplitude and the phase angle of the output voltage of each uninterrupted power supply module caused by the internal resistance is utilized to obtain the relational expressions similar to the expressions (1) to (4), which are the basic principle of the translation current method.
Since the values of the active power and the reactive power calculated by shifting the current and the output voltage obtained by the phase angle are not the actual active power and reactive power, VP and VQ (Virtual P and Q) represent the power calculated by the shift current method in the present embodiment.
FIG. 8 shows an equivalent ideal voltage source of the UPS module i, which is a parallel model of the UPS module without serially connecting inductors to the output terminal
And the total output voltage
Angle delta
iThe internal resistance of the UPS module is equal to
And (4) showing.
For convenience of further explanation, the letter designations and their meanings used hereinafter are specifically listed:
<math> <mrow> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>∠</mo> <mn>0</mn> </mrow> </math> -parallel voltages and referenced to 0 degrees in their phase angle;
s-total output power;
<math> <mrow> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>→</mo> </mover> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>∠</mo> <mi>θ</mi> </mrow> </math> -a total load current corresponding to S, andthe included angle is theta;
-an equivalent output voltage of the ith ups module;
-an output current of an ith uninterruptible power supply module;
δ
i-ith UPS module
And
the included angle of (A);
αi-the phase angle of the circulating current vector contained in the ith ups module;
ξ
iinternal resistance of the ith UPS Module itself
Phase angle of
si(t) -ith UPS module instantaneous output power
Suppose n uninterruptible power supply modules are operated in parallel, the total load is S, and the total load current is
It can be known that
<math> <mrow> <mover> <msub> <mi>I</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>→</mo> </mover> <mo>+</mo> <mover> <msub> <mi>I</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>→</mo> </mover> <mo>+</mo> <mo>·</mo> <mo>·</mo> <mo>·</mo> <mo>+</mo> <mover> <msub> <mi>I</mi> <mi>Ln</mi> </msub> <mo>→</mo> </mover> <mo>=</mo> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>→</mo> </mover> <mo>,</mo> </mrow> </math> If the system is equalized, then there are
<math> <mrow> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>≈</mo> <mo>|</mo> <mfrac> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>→</mo> </mover> <mi>n</mi> </mfrac> <mo>|</mo> <mo>.</mo> </mrow> </math> The output current of the ith uninterrupted power supply module in the system is
<math> <mrow> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> In the case where the circulating current is not too large,
it can be further approximately resolved as the sum of the equalized load current and the circulating current flowing through the module:
<math> <mrow> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>[</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mrow> <mi>cos</mi> <mi>θ</mi> </mrow> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
therefore, the ith UPS module instantaneous output power value Si(t) is:
Si(t)=Pi(t)+jQi(t)
<math> <mrow> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>·</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>·</mo> <mo>[</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mo>[</mo> <mi>cos</mi> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>+</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>[</mo> <msub> <mrow> <mi>cos</mi> <mi>α</mi> </mrow> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>]</mo> </mrow> </math>
the active power and the reactive power caused by the circulating current are as follows:
<math> <mrow> <msub> <mi>ΔP</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>cos</mi> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>ΔQ</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>sin</mi> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
at the same time, circulating
Can be regarded as the difference between the equivalent output voltage and the total output voltage of the ith UPS module and is caused by the internal resistanceThe current is represented by the following formula:
<math> <mrow> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>=</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mfrac> <mrow> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>-</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> </mrow> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>[</mo> <mi>cos</mi> <msub> <mi>δ</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>δ</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>-</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>ξ</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mrow> <mi>j</mi> <mi>sin</mi> <mi>ξ</mi> </mrow> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
if the output current is delayed by an angle β during the operation, the circulating current also lags by an angle β, so that the equation (9) can be further approximated as follows:
<math> <mrow> <mi>Δ</mi> <mover> <msup> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>′</mo> </msup> <mo>→</mo> </mover> <mo>=</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>[</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </math>
<math> <mrow> <mo>=</mo> <mfrac> <mrow> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>-</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> </mrow> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>[</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>δ</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>ξ</mi> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>ξ</mi> <mo>+</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>+</mo> <mi>j</mi> <mo>[</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>δ</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>ξ</mi> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>ξ</mi> <mo>+</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <mo>|</mo> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
from the above equation, the angle beta can be used to compensate xi
iAngle such that (beta + xi)
i) Is about
The active/reactive power difference Δ VP calculated from the virtual circulating current after the phase angle shift can be made to be such that
i/ΔVQ
iThe linear relationship can also be satisfied as shown in the following equations (1) and (2):
<math> <mrow> <msub> <mi>ΔVP</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> </mrow> </mfrac> <mi>sin</mi> <msub> <mi>δ</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>ΔVQ</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>cos</mi> <msub> <mi>δ</mi> <mi>i</mi> </msub> <mo>-</mo> <msup> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mo>|</mo> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
from the above description, it can be seen that the phase angle ξ utilizing the internal resistance of the known uninterruptible power supply module itself
iDetermining the beta angle of the translational compensation so that (beta + xi)
i) Is about
The equations (11) and (12) are obtained to simulate the characteristics of output series inductance, and the descending method is applied to obtain the relation equation which is approximately linear with the output frequency and the output voltage amplitude.
The method for obtaining the corrected fall from the expressions (11) and (12) is as follows:
<math> <mrow> <msub> <mi>ω</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>ω</mi> </msub> <mo>*</mo> <msub> <mi>VP</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>ω</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>ω</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>[</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msup> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>*</mo> </msup> <mo>→</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mo>{</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>ω</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msup> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>*</mo> </msup> <mo>→</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>-</mo> <msub> <mi>k</mi> <mi>ω</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>≈</mo> <msup> <msub> <mi>ω</mi> <mi>i</mi> </msub> <mo>*</mo> </msup> <mo>-</mo> <msub> <mi>k</mi> <mi>ω</mi> </msub> <mo>*</mo> <mi>Δ</mi> <msub> <mi>VP</mi> <mi>i</mi> </msub> </mrow> </math>
ωi *indicating the steady state output frequency in the loaded state.
<math> <mrow> <msub> <mi>V</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <msub> <mi>VQ</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>ω</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>[</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msup> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>*</mo> </msup> <mo>→</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mo>{</mo> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msup> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>*</mo> </msup> <mo>→</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>Δ</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>→</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>β</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>≈</mo> <msup> <msub> <mi>V</mi> <mi>i</mi> </msub> <mo>*</mo> </msup> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <msub> <mi>ΔVQ</mi> <mi>i</mi> </msub> </mrow> </math>
Vi *Representing the steady state output voltage in the loaded state.
As described above, in the formula (13), when Δ VPiWhen the frequency is greater than zero, the UPS module provides more power than expected, so that the frequency is adjusted to decrease to be close to omegai *(ii) a Conversely, when Δ VPiWhen the frequency is less than zero, the uninterrupted power supply module provides less power than expected, so that the frequency is adjusted to increase to be close to omegai *. (14) The adjustment of the output amplitude and the reactive power in the equation is also similar to the equation (13).
In terms of specific technical means, as described above, fig. 5 shows a functional block diagram of each of the ups modules 10, 101-10N under the wireless parallel control (only one of the ups modules 10 is illustrated in the figure), which mainly includes an inverter 11, a PWM driving circuit 12 for driving the inverter 11, an inductor current detector 13, an output voltage detector 14, a load current detector 15, and a control unit 30, where the PWM driving circuit 12 is located at an output end of the inverter 11; wherein:
the control unit 30 is still implemented by a Digital Signal Processor (DSP) in software, and is used to implement the aforementioned translation current method to realize wireless parallel connection, and the specific control flow thereof is shown in fig. 9Firstly, sampling the UPS module, detecting the output current by the load current detector 15, then translating the output current by an angle beta, and then utilizing the orthogonal decomposition quantity (V) of the current and the output voltage after translating the phase angle0*cosφ,V0Sin phi) to obtain a difference value of virtual active power and reactive power, finally adjusting output frequency according to the relation of P-omega, and adjusting output voltage according to the relation of Q-V.
As can be seen from fig. 5, the foregoing method is not only suitable for parallel connection of multiple ups modules, but also can add one ups module to a parallel ups module, which is also equivalent to the situation where ac output of the ups module is parallel to the utility power, so that parallel connection of a parallel system of ups modules and the utility power is feasible, and loads can be freely distributed between the parallel system of ups modules and the utility power by adjusting the P- ω curve. Under the condition of being connected with the mains supply in parallel, the mains supply can bear most of loads for the consideration of the reliability of the uninterrupted power supply module parallel system.
As can be seen from the above, in terms of physical significance, the shift current Method simulates the characteristic of connecting an inductor in series to an output terminal by using the internal resistance characteristic of the ups module itself in cooperation with shifting the load current to a certain angle, so that the heavy and expensive output inductor can be omitted, and the characteristics of the power slope Droop Method (Droop Method) can be still met. In other words, the invention not only achieves the purpose of wireless parallel connection, but also can avoid the defects of large volume and increased weight caused by connecting inductors in series at the output end of the uninterrupted power supply module.
The wireless parallel mode mentioned above can exist in parallel with the wired one, and can be used individually without affecting the control method, and any circuit or control method adopted by the well-known skill is included in the spirit of the invention. The inventive features are defined specifically by the appended claims.