CN1581628A - Wireless parallel control method and system - Google Patents

Wireless parallel control method and system Download PDF

Info

Publication number
CN1581628A
CN1581628A CNA031523277A CN03152327A CN1581628A CN 1581628 A CN1581628 A CN 1581628A CN A031523277 A CNA031523277 A CN A031523277A CN 03152327 A CN03152327 A CN 03152327A CN 1581628 A CN1581628 A CN 1581628A
Authority
CN
China
Prior art keywords
msub
mrow
current
output
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031523277A
Other languages
Chinese (zh)
Other versions
CN100355176C (en
Inventor
罗汉生
田寿龙
蔡嘉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mousse Industrial Ltd By Share Ltd
Santak Electronic Shenzhen Co Ltd
Eaton Phoenixtec MMPL Co Ltd
Original Assignee
FEIRUI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEIRUI Co Ltd filed Critical FEIRUI Co Ltd
Priority to CNB031523277A priority Critical patent/CN100355176C/en
Publication of CN1581628A publication Critical patent/CN1581628A/en
Application granted granted Critical
Publication of CN100355176C publication Critical patent/CN100355176C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

At least an uninterrupted power module or at least an AC output from inverter in the system is connected to bus in parallel for supplying energy to load. Using slope of power descent method and using simulated P-Omega and Q-V slope down curve realizes connection between AC output and automatic phase lock/even current of power source system in parallel. Using uninterrupted power module or translation current method assorted with internal resistance characteristic of inverter emulates effect of cascading inductance in output end in order to eliminate large inductance needed to be connected in system. The invention solves issues of large size and weight and poor dynamic performance.

Description

Wireless parallel control method and system
Technical Field
The invention relates to a wireless parallel control method and a wireless parallel control system, which utilize the internal resistance characteristic of an uninterrupted power supply module or an inverter with parallel alternating current output and cooperate with a translation current method to simulate an output inductor so as to solve the problems of large volume and increased weight caused by series inductance.
Background
With the development of economy and science, people have higher and higher requirements on the reliability of power supplies. Especially in the current times of relatively developed economic information, various digital devices such as electronic computers may cause a large amount of data loss once power is cut off, resulting in serious economic loss.
Accordingly, uninterruptible power supply devices have come to be produced. However, as the load equipment evolves, the specification difference becomes larger and larger, and when the load needs to be expanded, the original capability of the ups may be insufficient, or as the requirement for reliability becomes higher and higher, the ups system is designed to be modular, and there is a necessary trend for parallel connection and redundancy.
The control method of the present available modularized ups system is not limited to the wired mode and the wireless mode, in which a wired parallel controller is adopted, such as U.S. Pat. No. 5,257,180, "parallel operation control system of ac output inverter with circulation current limitation" invention patent. For example, U.S. patent nos. 5,745,356 entitled "independent load distribution of parallel ac power system", 6,118,680 entitled "method and apparatus for load distribution of inverters connected in parallel in an ac power supply", and 6,356,471 entitled "parallel power system and uninterruptible power supply including the same dynamic feedback adaptive control system and method", etc. are directed to wireless parallel controllers.
At present, various loads have increasingly strict requirements on electric power and increasingly depend on the reliability of parallel products, wireless parallel connection is relative to wired parallel connection, and the wireless parallel connection has the advantage of no single-point failure caused by the fault of a parallel control line for a control signal, so that the reliability of a system is improved to the highest. The method proposed in us patent 5,745,356 only calculates the differential between the energy provided by the machine at the dc end and the active power, and cannot effectively control the reactive power, and the differential method has poor anti-interference capability and cannot process the harmonic wave; the method proposed in us patent 6,118,680, which performs phase-locking operation by calculating voltage area, cannot provide direct and effective control for active power and reactive power, except for the accuracy of calculation, whether the waveform contains higher harmonic problem; the method proposed in us patent 6,356,471, although possibly improved over the above method, requires an inductor in parallel with the output.
The basic principle of wireless parallel connection is derived from the mode that generators generate power in parallel in a power system, however, the physical characteristics of the uninterruptible power supply module and the generators are greatly different, the generators have a large and inductive internal resistance, and the internal resistance of the uninterruptible power supply module is small and generally resistive.
In order to simulate a generator model to realize wireless parallel connection of ups modules, it is assumed that the output terminals of the parallel ups modules are respectively connected in series with a large inductor, as shown in fig. 1:
wherein the UPS module is powered by an ideal voltage source <math> <mrow> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>&angle;</mo> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> </mrow> </math> And an equivalent internal resistance ZoiTo simulate. ZoiAre generally resistive. Zsi=jXsiOutput inductance, Z, of the i-th module in seriessi>>Zoi. If the output internal resistance of the uninterrupted power supply module is ignored and is within the range of deltaiThe output power expression of the uninterrupted power supply module can be obtained under the condition of not too large:
<math> <mrow> <msub> <mi>P</mi> <mi>oi</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>&CenterDot;</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <msub> <mi>X</mi> <mi>si</mi> </msub> </mfrac> <mi>sin</mi> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>Q</mi> <mi>oi</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>&CenterDot;</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>cos</mi> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mo>-</mo> <msup> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> <msub> <mi>X</mi> <mi>si</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
from the above expression, the active power is
Figure A0315232700064
Andphase clampAngle deltaiApproximately proportional, i.e. active power reflects the magnitude of the phase difference, reactive power and
Figure A0315232700066
approximately proportional, i.e. the reactive power reflects the magnitude of the output voltage difference.
And two droop curves for P- ω (active power-frequency), and Q-V (reactive power-voltage) can be defined simultaneously (as shown in fig. 2).
ω=ω0-kω*P (3)
V=V0-kV*Q (4)
ω0Can be set to be 50Hz or 60Hz according to the situation; v0And can be set as 120Vac or 230Vac, etc. according to the situation.
According to the formulas (1) to (4), wireless parallel connection can be realized by using a power/slope method. The relationship between the phase and amplitude of the output voltage of each ups module and the phase and amplitude of the output voltage synthesized after parallel connection is shown in fig. 3:
Figure A0315232700071
representing the equivalent output voltage of the inverter of the ups module i,
Figure A0315232700072
the uninterrupted power supply module is connected with the output voltage synthesized in parallel. If it is not
Figure A0315232700073
Is kept constant when
Figure A0315232700074
If the frequency increases and the phase angle difference δ i also increases, the active power output by the ups module i increases according to equation (1). The increase in active power again leads to the increase in active power according to the relation of equation (3) and P-omegaReduction of frequency, phase angle difference deltaiAnd will decrease with it. If it is notThe same will be true for the frequency reduction. Ultimately result in
Figure A0315232700077
And
Figure A0315232700078
have the same frequency and fixed phase difference, thus ensure the phase and frequency relation between the uninterrupted power source modules connected in parallel.
Similar to the analysis method described above, ifIs kept constant when
Figure A03152327000710
When the output voltage is increased, the reactive power output by the uninterrupted power supply module i is increased according to the formula (2); according to the Q-V relation of the formula (4), the amplitude of the output voltage is adjusted to be smaller. This mutually restricted negative feedback relationship ensures
Figure A03152327000711
And
Figure A03152327000712
relatively constant in amplitude.
From the above analysis, it can be known that the wireless parallel control can be realized by using the power/slope reduction method, but the premise is that the ups module must be connected in series with a large inductor at the output end, and the inductor is mainly composed of a winding and is connected in series with the output end of the ups module, which will undoubtedly make the size and weight of the ups module large and make the dynamic performance worse. After the load is carried, the output adjustment accuracy is deteriorated due to the internal resistance of the inductor. So far, the mutual exclusion is formed by the wireless parallel control function and the characteristics of the module volume, weight and adjustment precision, and how to take into consideration, a feasible solution is obviously to be further sought.
Disclosure of Invention
Therefore, the present invention is directed to a wireless parallel control method and system, which can solve the problems of size and weight derived from the series inductor. The control circuit can directly and effectively control the active power and the reactive power, and meanwhile, because differential or integral phase locking is not needed, the control circuit is not influenced by high-frequency harmonic waves and does not need to be actually added with an inductor. Thus, a heavy and expensive output inductor can be omitted, while still complying with the characteristics of the power slope Droop Method (Droop Method).
The main technical means adopted for achieving the purpose is to sample the uninterrupted power supply module to obtain output current, then translate the output current by a certain phase angle, then use the current after translating the phase angle and the output voltage to obtain a virtual active power and reactive power difference value, then adjust the output frequency according to the relation of P-omega, and adjust the output voltage according to the relation of Q-V, so as to achieve the purpose of wireless parallel connection.
The present invention further provides a wireless parallel control system.
The wireless parallel control system is formed by connecting at least one uninterrupted power supply module in parallel, and alternating current output parts of all the uninterrupted power supply modules are mutually connected in parallel through a power supply distributor (POD) so as to supply power to a load; wherein: each uninterrupted power supply module respectively including:
an inverter;
a PWM driving circuit for driving the inverter;
an inductor current detector located on the path of the inductor current in the inverter;
an output voltage detector, located on the output end of the inverter;
a load current detector located at the output end of the inverter;
a control unit connected to the PWM driving circuit, the inductor current detector, the output voltage detector and the load current detector; wherein:
the control unit is used for executing a translation current method to enable the uninterrupted power supply modules to be connected in parallel in a wireless mode.
The control unit samples the uninterrupted power supply module to obtain output current, translates the output current by a certain angle, obtains a difference value of virtual active power and reactive power by using the current after phase angle translation and the output voltage, adjusts output frequency according to the relation of P-omega, and adjusts the output voltage according to the relation of Q-V.
The control unit is formed by a Digital Signal Processor (DSP) in software.
It is another object of the present invention to provide a wireless parallel control method and system operating in a wired parallel mode.
In order to achieve the above purpose, the invention adopts that all uninterrupted power supply modules in a parallel system are connected with each other by a group of circuits under a wired parallel mode, and the group of circuits comprises a shunt circuit, a synchronous time sequence signal line and a communication line;
under the wired parallel control mode, each uninterrupted power supply module obtains the information of other uninterrupted power supply modules through the signal line group, and wired parallel control is carried out after operation; if the wireless parallel control mode is switched, the signal line group does not work.
The shunt line is used for connecting the load current detectors of the uninterrupted power supply modules.
Drawings
FIG. 1 is an equivalent block diagram of a parallel system with a series output inductor.
Fig. 2 is a diagram illustrating a power slope decreasing relationship.
Fig. 3 is a vector diagram of the power slope ramp down method.
Fig. 4 is a schematic diagram of the parallel system wiring under wireless control according to the present invention.
Fig. 5 is a control block diagram of an ups module in a wireless controlled parallel system according to the present invention.
FIG. 6 is a schematic diagram of the parallel system wiring under wired control according to the present invention.
FIG. 7 is a block diagram of the control of the UPS module in the wired parallel system according to the present invention.
FIG. 8 is an equivalent block diagram of a parallel system without a series output inductor.
FIG. 9 is a control block diagram of the translation current method.
The symbols in the drawings illustrate that:
10. 101-10N uninterrupted power supply module
11 inverter 12 PWM drive circuit
13 inductor current detector 14 output voltage detector
15 load current detector 16 shunt line
20 power distributor 21 shunt line
22 synchronous timing signal line 23 communication line
30 control unit
Detailed Description
As shown in fig. 4, a system wiring diagram of a parallel system of ups modules is disclosed, which is formed by connecting an unspecified number of ups modules 10, 101-10N in parallel, and if the ac Output part of each ups module 10, 101-10N has a large parallel Power, the outputs are connected in parallel through a Power Output Distribution 20 (POD) to supply Power to the load. If the power of the uninterrupted power supply modules connected in parallel is smaller, the uninterrupted power supply modules can be mutually connected through the wiring to jointly provide energy for the load. It must be stated that: the invention is applicable to the uninterruptible power supply module parallel system and also applicable to a power supply system with parallel AC output of an inverter.
The ups modules 10, 101-10N shown in fig. 4 are single-phase input and single-phase output, but are also applicable to a three-phase input and single-phase output system, and the difference is that two phases (S-phase and T-phase) are added to the input, the inverter part is not changed, and the phase lock and the bypass are based on the R-phase.
As shown in fig. 5, a functional block diagram of each of the aforementioned uninterruptible power supply modules 10, 101-10N (only one of the uninterruptible power supply modules 10 is illustrated in the figure) mainly includes an inverter 11, a PWM driving circuit 12 for driving the inverter 11, an inductive current detector 13 located in the inverter 11, an output voltage detector 14 and a load current detector 15 located at an output end of the inverter 11, and a control unit 30; wherein:
the control unit 30 may be implemented in software by a Digital Signal Processor (DSP).
In the foregoing system embodiment, the ups modules 10 have no other signal connections except for the power line (O/P), and under this configuration, the ups modules 10 can perform parallel control in a wireless mode. However, the wireless parallel control mode can still be applied to a wired power parallel system, and the system, in addition to the above basic architecture, enables all signals to be exchanged among the uninterruptible power supply modules 10, 101-10N through the following signal lines (see fig. 6), so as to perform a wired parallel control mode, which includes:
and a shunt line 21(Load Share Current) is responsible for exchanging the information of the Load Current output by each parallel module, and the voltage value on the shunt line represents the average value of the output currents of the parallel uninterrupted power supply modules 10 and 101-10N.
And a synchronization Clock Signal line 22(Synchronizing Clock Signal) for Synchronizing the phases of all the parallel uninterruptible power supply modules 10, 101-10N.
A Communication Line 23(Communication Line) for the parallel ups modules 10, 101-10N to exchange information, which is a necessary part for implementing the function of monitoring the operating status of the system in real time.
Under the basic framework, the uninterrupted power supply modules 10, 101-10N are connected with each other through the shunt line 21, the synchronous timing signal line 22 and the communication line 23 to exchange messages, and work in a wired parallel control mode;
referring to fig. 7, a functional block diagram of the ups modules 10 and 101-10N in the wired parallel mode is shown, except that the ups modules still include the inverter 11, the PWM driving circuit 12, the inductor current detector 13, the output voltage detector 14, the load current detector 15, and the control unit 30, the load current detector 15 is connected to the other ups modules 101-10N through a shunt line 16 and the shunt line 21, and performs an operation according to the current signal obtained by the shunt line 16 to serve as a basis for parallel control.
Since the wired parallel mode is not the main subject of the present invention, the working principle thereof will not be further detailed.
In order to improve the reliability of the parallel system and reduce single-point failure, the invention mainly provides a wireless parallel mode capable of avoiding single-point failure caused by communication faults, and the wireless parallel control mode still adopts a traditional power slope descending Method (Droop Method), namely, utilizes simulated P-omega and Q-V slope descending curves to realize automatic phase locking and current sharing.
The analysis of the wireless parallel principle in the background of the invention shows that the premise of wireless parallel control is that a large inductor needs to be connected in series with the output end of the uninterruptible power supply module, but the inductor causes the size and weight of the uninterruptible power supply module to be increased and the dynamic performance to be poor. Based on the consideration, the invention provides a method for simulating the effect of the series output inductor by matching the internal resistance characteristic of the uninterrupted power supply module with the load current translation phase angle operation, and calculating the active power and the reactive power related to the circulation by the circulation in the uninterrupted power supply module, thereby achieving the purpose of wireless parallel control.
In terms of technical principles adopted, assuming that an inductor is connected in series at the current output end of an uninterruptible power supply module, the current behind the voltage direction of the inductor and the corresponding voltage value can be used for calculating to obtain the output active power and reactive power of individual uninterruptible power supply modules and adjusting the output voltage and phase, such as formulas (1) to (4); according to the method, during power calculation, the load current lags behind by an angle beta, the inductance action is simulated by matching with the internal resistance characteristic of the uninterrupted power supply module, and the influence of the circulation current on the amplitude and the phase angle of the output voltage of each uninterrupted power supply module caused by the internal resistance is utilized to obtain the relational expressions similar to the expressions (1) to (4), which are the basic principle of the translation current method.
Since the values of the active power and the reactive power calculated by shifting the current and the output voltage obtained by the phase angle are not the actual active power and reactive power, VP and VQ (Virtual P and Q) represent the power calculated by the shift current method in the present embodiment.
FIG. 8 shows an equivalent ideal voltage source of the UPS module i, which is a parallel model of the UPS module without serially connecting inductors to the output terminalAnd the total output voltage
Figure A0315232700132
Angle deltaiThe internal resistance of the UPS module is equal toAnd (4) showing.
For convenience of further explanation, the letter designations and their meanings used hereinafter are specifically listed:
<math> <mrow> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>&angle;</mo> <mn>0</mn> </mrow> </math> -parallel voltages and referenced to 0 degrees in their phase angle;
s-total output power;
<math> <mrow> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>&angle;</mo> <mi>&theta;</mi> </mrow> </math> -a total load current corresponding to S, andthe included angle is theta;
-an equivalent output voltage of the ith ups module;
-an output current of an ith uninterruptible power supply module;
δi-ith UPS module
Figure A0315232700139
Andthe included angle of (A);
αi-the phase angle of the circulating current vector contained in the ith ups module;
ξiinternal resistance of the ith UPS Module itself
Figure A03152327001311
Phase angle of
si(t) -ith UPS module instantaneous output power
Suppose n uninterruptible power supply modules are operated in parallel, the total load is S, and the total load current is
Figure A03152327001312
It can be known that <math> <mrow> <mover> <msub> <mi>I</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>&RightArrow;</mo> </mover> <mo>+</mo> <mover> <msub> <mi>I</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>&RightArrow;</mo> </mover> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <mover> <msub> <mi>I</mi> <mi>Ln</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>,</mo> </mrow> </math> If the system is equalized, then there are <math> <mrow> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>&ap;</mo> <mo>|</mo> <mfrac> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>&RightArrow;</mo> </mover> <mi>n</mi> </mfrac> <mo>|</mo> <mo>.</mo> </mrow> </math> The output current of the ith uninterrupted power supply module in the system is <math> <mrow> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> In the case where the circulating current is not too large,it can be further approximately resolved as the sum of the equalized load current and the circulating current flowing through the module:
<math> <mrow> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>[</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
therefore, the ith UPS module instantaneous output power value Si(t) is:
Si(t)=Pi(t)+jQi(t)
<math> <mrow> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>&CenterDot;</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>&CenterDot;</mo> <mo>[</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mo>[</mo> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>+</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>[</mo> <msub> <mrow> <mi>cos</mi> <mi>&alpha;</mi> </mrow> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>]</mo> </mrow> </math>
the active power and the reactive power caused by the circulating current are as follows:
<math> <mrow> <msub> <mi>&Delta;P</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>cos</mi> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>&Delta;Q</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>sin</mi> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
at the same time, circulating
Figure A0315232700146
Can be regarded as the difference between the equivalent output voltage and the total output voltage of the ith UPS module and is caused by the internal resistanceThe current is represented by the following formula:
<math> <mrow> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mfrac> <mrow> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>-</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> </mrow> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>[</mo> <mi>cos</mi> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>-</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mrow> <mi>j</mi> <mi>sin</mi> <mi>&xi;</mi> </mrow> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
if the output current is delayed by an angle β during the operation, the circulating current also lags by an angle β, so that the equation (9) can be further approximated as follows:
<math> <mrow> <mi>&Delta;</mi> <mover> <msup> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&prime;</mo> </msup> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>[</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>j</mi> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </math>
<math> <mrow> <mo>=</mo> <mfrac> <mrow> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>-</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> </mrow> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>[</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&xi;</mi> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>+</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>+</mo> <mi>j</mi> <mo>[</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&xi;</mi> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>+</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <mo>|</mo> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
from the above equation, the angle beta can be used to compensate xiiAngle such that (beta + xi)i) Is about
Figure A03152327001411
The active/reactive power difference Δ VP calculated from the virtual circulating current after the phase angle shift can be made to be such thati/ΔVQiThe linear relationship can also be satisfied as shown in the following equations (1) and (2):
<math> <mrow> <msub> <mi>&Delta;VP</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> </mfrac> <mi>sin</mi> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>&Delta;VQ</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>cos</mi> <msub> <mi>&delta;</mi> <mi>i</mi> </msub> <mo>-</mo> <msup> <mrow> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mo>|</mo> <mover> <msub> <mi>Z</mi> <mi>oi</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
from the above description, it can be seen that the phase angle ξ utilizing the internal resistance of the known uninterruptible power supply module itselfiDetermining the beta angle of the translational compensation so that (beta + xi)i) Is about
Figure A0315232700152
The equations (11) and (12) are obtained to simulate the characteristics of output series inductance, and the descending method is applied to obtain the relation equation which is approximately linear with the output frequency and the output voltage amplitude.
The method for obtaining the corrected fall from the expressions (11) and (12) is as follows:
<math> <mrow> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>&omega;</mi> </msub> <mo>*</mo> <msub> <mi>VP</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>&omega;</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>&omega;</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>[</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msup> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>*</mo> </msup> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mo>{</mo> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>&omega;</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msup> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>*</mo> </msup> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>-</mo> <msub> <mi>k</mi> <mi>&omega;</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>&ap;</mo> <msup> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>*</mo> </msup> <mo>-</mo> <msub> <mi>k</mi> <mi>&omega;</mi> </msub> <mo>*</mo> <mi>&Delta;</mi> <msub> <mi>VP</mi> <mi>i</mi> </msub> </mrow> </math>
ωi *indicating the steady state output frequency in the loaded state.
<math> <mrow> <msub> <mi>V</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <msub> <mi>VQ</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>[</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msup> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>*</mo> </msup> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>=</mo> <mo>{</mo> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mfrac> <mrow> <mo>|</mo> <mover> <msup> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>*</mo> </msup> <mo>&RightArrow;</mo> </mover> <mo>|</mo> </mrow> <mi>n</mi> </mfrac> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <mo>|</mo> <mover> <msub> <mi>V</mi> <mi>o</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <mi>&Delta;</mi> <mover> <msub> <mi>I</mi> <mi>Li</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>|</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&beta;</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>&ap;</mo> <msup> <msub> <mi>V</mi> <mi>i</mi> </msub> <mo>*</mo> </msup> <mo>-</mo> <msub> <mi>k</mi> <mi>V</mi> </msub> <mo>*</mo> <msub> <mi>&Delta;VQ</mi> <mi>i</mi> </msub> </mrow> </math>
Vi *Representing the steady state output voltage in the loaded state.
As described above, in the formula (13), when Δ VPiWhen the frequency is greater than zero, the UPS module provides more power than expected, so that the frequency is adjusted to decrease to be close to omegai *(ii) a Conversely, when Δ VPiWhen the frequency is less than zero, the uninterrupted power supply module provides less power than expected, so that the frequency is adjusted to increase to be close to omegai *. (14) The adjustment of the output amplitude and the reactive power in the equation is also similar to the equation (13).
In terms of specific technical means, as described above, fig. 5 shows a functional block diagram of each of the ups modules 10, 101-10N under the wireless parallel control (only one of the ups modules 10 is illustrated in the figure), which mainly includes an inverter 11, a PWM driving circuit 12 for driving the inverter 11, an inductor current detector 13, an output voltage detector 14, a load current detector 15, and a control unit 30, where the PWM driving circuit 12 is located at an output end of the inverter 11; wherein:
the control unit 30 is still implemented by a Digital Signal Processor (DSP) in software, and is used to implement the aforementioned translation current method to realize wireless parallel connection, and the specific control flow thereof is shown in fig. 9Firstly, sampling the UPS module, detecting the output current by the load current detector 15, then translating the output current by an angle beta, and then utilizing the orthogonal decomposition quantity (V) of the current and the output voltage after translating the phase angle0*cosφ,V0Sin phi) to obtain a difference value of virtual active power and reactive power, finally adjusting output frequency according to the relation of P-omega, and adjusting output voltage according to the relation of Q-V.
As can be seen from fig. 5, the foregoing method is not only suitable for parallel connection of multiple ups modules, but also can add one ups module to a parallel ups module, which is also equivalent to the situation where ac output of the ups module is parallel to the utility power, so that parallel connection of a parallel system of ups modules and the utility power is feasible, and loads can be freely distributed between the parallel system of ups modules and the utility power by adjusting the P- ω curve. Under the condition of being connected with the mains supply in parallel, the mains supply can bear most of loads for the consideration of the reliability of the uninterrupted power supply module parallel system.
As can be seen from the above, in terms of physical significance, the shift current Method simulates the characteristic of connecting an inductor in series to an output terminal by using the internal resistance characteristic of the ups module itself in cooperation with shifting the load current to a certain angle, so that the heavy and expensive output inductor can be omitted, and the characteristics of the power slope Droop Method (Droop Method) can be still met. In other words, the invention not only achieves the purpose of wireless parallel connection, but also can avoid the defects of large volume and increased weight caused by connecting inductors in series at the output end of the uninterrupted power supply module.
The wireless parallel mode mentioned above can exist in parallel with the wired one, and can be used individually without affecting the control method, and any circuit or control method adopted by the well-known skill is included in the spirit of the invention. The inventive features are defined specifically by the appended claims.

Claims (12)

1. A wireless parallel control method is characterized in that the method comprises the following steps:
the AC output of at least one UPS module or at least one inverter is connected in parallel to a bus to provide energy for a load; wherein,
a power slope descending method is adopted to realize automatic phase locking and current sharing by utilizing a simulated P-omega and Q-V slope descending curve;
the effect of serially connecting inductors at the output end is simulated by utilizing the internal resistance characteristic of an uninterrupted power supply module or an inverter and matching with a translation current method so as to meet the requirement of serially connecting output inductors in a power slope descending method.
2. The wireless parallel control method according to claim 1, wherein the simulation inductor is generated by using a translation current method, the translation current method at least comprising the following steps:
sampling the output voltage in parallel and the load current of the machine;
lagging the local load current obtained by sampling by a phase to obtain a current after shifting the phase;
calculating virtual power by using the current and the voltage after the phase is shifted, and separating an active power part from a reactive power part;
and adjusting the output phase and amplitude according to a descending curve of the P-omega and Q-V slopes.
3. A wireless parallel control system is characterized in that,
the wireless parallel control system is formed by connecting at least one uninterrupted power supply module in parallel, and alternating current output parts of each uninterrupted power supply module are mutually connected in parallel through a power supply distributor so as to supply power to a load; wherein: each uninterrupted power supply module respectively including:
an inverter;
a PWM driving circuit for driving the inverter;
an inductive current detector located on a path through which an inductive current included in the inverter flows;
an output voltage detector at the output of the inverter;
a load current detector at the output of the inverter;
and the control unit is connected with the PWM driving circuit, the inductive current detector, the output voltage detector and the load current detector.
4. The wireless parallel control system of claim 3,
the control unit adopts a power slope descending method to realize automatic phase locking and current sharing by utilizing simulated P-omega and Q-V slope descending curves; and the effect of serially connecting inductors on the output end is simulated by utilizing the internal resistance characteristic of the uninterrupted power supply module and matching with a translation current method so as to meet the requirement of serially connecting output inductors in a power slope descending method.
5. The wireless parallel control system of claim 4, wherein the control unit uses a translation current method to simulate an output inductor, so that the UPS modules are connected in parallel wirelessly.
6. The wireless parallel control system of claim 5, wherein the control unit using the translation current method comprises at least the following steps:
sampling the output voltage in parallel and the load current of the machine;
lagging the local load current obtained by sampling by a phase to obtain a current after shifting the phase;
calculating virtual power by using the current and the voltage after the phase is shifted, and separating an active power part from a reactive power part;
and adjusting the output phase and amplitude according to a descending curve of the P-omega and Q-V slopes.
7. The wireless parallel control system of claim 3, wherein the uninterruptible power supply modules are interconnected in a wired parallel mode by a set of lines including a shunt line, a synchronization timing signal line, and a communication line, wherein:
a synchronous timing signal line including a synchronous timing signal for synchronizing the frequency and phase of all inverters in the system;
a shunt line for each parallel module to exchange and output load current information;
and the communication line is used for the parallel modules to exchange information.
8. The wireless parallel control system of claim 7, wherein the shunt line is configured to connect to the load current detector of each ups module.
9. A wireless parallel control system is characterized in that the wireless parallel control system is formed by connecting at least one uninterrupted power supply module in parallel, and comprises an inverter, a PWM (pulse width modulation) driving circuit for driving the inverter, an inductive current detector positioned in the inverter, an output voltage detector positioned on the output end of the inverter, a load current detector and a control unit connected with the PWM driving circuit, the inductive current detector, the output voltage detector and the load current detector, wherein:
the control unit adopts a power slope descending method to realize automatic phase locking and current sharing by utilizing simulated P-omega and Q-V slope descending curves; and the effect of serially connecting inductors on the output end is simulated by utilizing the internal resistance characteristic of the uninterrupted power supply module and matching with a translation current method so as to meet the requirement of serially connecting output inductors in a power slope descending method.
10. The wireless parallel control system of claim 9, wherein the control unit is configured to perform a translational current method to connect the uninterruptible power supply modules in parallel wirelessly.
11. The wireless parallel control system of claim 9, wherein the control unit uses a translation current method to sample and obtain the output current, then translates it by a certain angle, then uses the current after translating the phase angle and the output voltage to obtain the difference between the virtual active power and the virtual reactive power, then adjusts the output frequency according to the P-omega relationship, adjusts the output voltage according to the Q-V relationship,
12. the wireless parallel control system of claim 9, wherein the ups module has a set of lines including a synchronization timing signal line, a shunt line, and a communication line.
CNB031523277A 2003-07-30 2003-07-30 Wireless parallel control method and system Expired - Fee Related CN100355176C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB031523277A CN100355176C (en) 2003-07-30 2003-07-30 Wireless parallel control method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB031523277A CN100355176C (en) 2003-07-30 2003-07-30 Wireless parallel control method and system

Publications (2)

Publication Number Publication Date
CN1581628A true CN1581628A (en) 2005-02-16
CN100355176C CN100355176C (en) 2007-12-12

Family

ID=34579827

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031523277A Expired - Fee Related CN100355176C (en) 2003-07-30 2003-07-30 Wireless parallel control method and system

Country Status (1)

Country Link
CN (1) CN100355176C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100461607C (en) * 2007-04-05 2009-02-11 南京航空航天大学 Parallel-working sine ware inverter
CN106127609A (en) * 2016-06-30 2016-11-16 温州大学 Based on efficiency and current-sharing index area and maximum parallel operation system module number controlling method
CN106329575A (en) * 2016-09-20 2017-01-11 北京鼎汉技术股份有限公司 Method and system for digitally controlling precise phase locking during wireless parallel connection of inverters
US9634575B2 (en) 2014-11-06 2017-04-25 Delta Electronics, Inc. Control method and control device for inverter system
CN108134528A (en) * 2017-12-25 2018-06-08 易事特集团股份有限公司 And machine inverter wireless carrier synchronous method, device, medium and computer equipment
WO2019080493A1 (en) * 2017-10-24 2019-05-02 华为技术有限公司 Inverter current equalizing method and apparatus, inverter system, and wireless charging system
TWI667857B (en) * 2018-04-27 2019-08-01 致茂電子股份有限公司 Control method of inverters

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100461607C (en) * 2007-04-05 2009-02-11 南京航空航天大学 Parallel-working sine ware inverter
US9634575B2 (en) 2014-11-06 2017-04-25 Delta Electronics, Inc. Control method and control device for inverter system
CN106127609A (en) * 2016-06-30 2016-11-16 温州大学 Based on efficiency and current-sharing index area and maximum parallel operation system module number controlling method
CN106127609B (en) * 2016-06-30 2019-10-18 温州大学 Parallel operation system module number controlling method
CN106329575A (en) * 2016-09-20 2017-01-11 北京鼎汉技术股份有限公司 Method and system for digitally controlling precise phase locking during wireless parallel connection of inverters
CN106329575B (en) * 2016-09-20 2019-02-05 北京鼎汉技术股份有限公司 The method and system of actual phase lock when a kind of Digital Control inverter is wirelessly in parallel
WO2019080493A1 (en) * 2017-10-24 2019-05-02 华为技术有限公司 Inverter current equalizing method and apparatus, inverter system, and wireless charging system
US11677332B2 (en) 2017-10-24 2023-06-13 Huawei Technologies Co., Ltd. Inverter current equalization method and apparatus, inverter system, and wireless charging system
CN108134528A (en) * 2017-12-25 2018-06-08 易事特集团股份有限公司 And machine inverter wireless carrier synchronous method, device, medium and computer equipment
CN108134528B (en) * 2017-12-25 2020-10-09 易事特集团股份有限公司 Parallel inverter wireless carrier synchronization method, device, medium and computer equipment
TWI667857B (en) * 2018-04-27 2019-08-01 致茂電子股份有限公司 Control method of inverters

Also Published As

Publication number Publication date
CN100355176C (en) 2007-12-12

Similar Documents

Publication Publication Date Title
CN1035973C (en) Power inverting method and system
Agamy et al. An efficient partial power processing DC/DC converter for distributed PV architectures
CN102983588B (en) A kind of photovoltaic grid-connected inverting system based on cutting-in control algorithm
CN1910809A (en) Power conversion apparatus and methods using DC bus shifting
CN1669208A (en) Inverter
CN1992465A (en) Power balancing of multiple synchronized generators
CN109104097B (en) High-frequency transformer operation test device
Razali et al. Performance analysis of three-phase PWM rectifier using direct power control
CN1047484C (en) Single phase input three phase full bridge rectifier circuit and sigle phase input pseudo four phase full bridge rectifier circuit
CN205844371U (en) A kind of energy feedback AC electronic load device of wide input and output voltage
CN1581628A (en) Wireless parallel control method and system
CN105938509A (en) Simulation method of civil aircraft multi-electrical system loads
CN102882225A (en) Photovoltaic system based plug and play power management system of user side distributed power sources
CN106208054A (en) The apparatus and method of synchronous inverter negative-sequence current are suppressed under the conditions of unbalanced power supply
CN1405973A (en) Method for directly controlling structure-change torque of inductive motor modulated by space vector
CN111969861A (en) High-power inter-harmonic current source and control method thereof
Mandiola et al. An FPGA implementation of a voltage-oriented controlled three-phase PWM boost rectifier
Bagawade et al. Adaptive proportional-resonant controller based reactive power control for wind energy conversion systems
CN109541458A (en) A kind of common DC bus type aircraft starting-generating system analogy method and device
Pan et al. Fractional-order sliding mode control strategy for quasi-Z source photovoltaic grid-connected inverter
CN106452122A (en) Parallel coordinative running control method and control device of AC/DC direct current source
CN206649096U (en) The load testing circuit of alternating current-direct current frequency converter
CN111812503B (en) Testing method and testing system suitable for flexible direct current converter valve
CN109787534A (en) A kind of frequency converter and frequency-converting control device powered using high voltage direct current
CN116381395B (en) Power converter valve group opposite-impact test platform and test method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SANTAK ELECTRONIC (SHENZHEN) CO., LTD.

Free format text: FORMER OWNER: EATON PHOENIXTEC MMPL CO., LTD.

Effective date: 20110518

Owner name: MMPL INDUSTRIAL CO., LTD.

Free format text: FORMER OWNER: FEIRUI CO., LTD.

Effective date: 20110518

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: EATON PHOENIXTEC MMPL CO., LTD.

Free format text: FORMER NAME: MMPL INDUSTRIAL CO., LTD.

COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: NO. 588, SECTION 3, JHONGSHAN ROAD, GUEIREN TOWNSHIP, TAINAN COUNTY, TAIWAN, CHINA TO: 518101 NO. 8, BAOSHI ROAD, AREA 72, BAO'AN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE

Free format text: CORRECT: ADDRESS; FROM: BUILDING 20, NO. 105, SECTION 2, DUNHUA SOUTH ROAD, DA'AN DISTRICT, TAIPEI CITY, TAIWAN, CHINA TO: NO. 588, SECTION 3, JHONGSHAN ROAD, GUEIREN TOWNSHIP, TAINAN COUNTY, TAIWAN, CHINA

CP01 Change in the name or title of a patent holder

Address after: 000000, Taiwan County, Tainan, China Zhongshan Road 3 paragraph 588

Patentee after: EATON PHOENIXTEC MMLP Co.,Ltd.

Address before: 000000, Taiwan County, Tainan, China Zhongshan Road 3 paragraph 588

Patentee before: Mousse industrial Limited by Share Ltd.

TR01 Transfer of patent right

Effective date of registration: 20110518

Address after: 518101, 8 stone road, 72 District, Guangdong, Shenzhen, Baoan District

Patentee after: SANTAK ELECTRONIC (SHENZHEN) Co.,Ltd.

Address before: Taiwan County, Tainan, China Zhongshan Road county 3 paragraph 588

Patentee before: EATON PHOENIXTEC MMLP Co.,Ltd.

Effective date of registration: 20110518

Address after: Taiwan County, Tainan, China Zhongshan Road county 3 paragraph 588

Patentee after: Mousse industrial Limited by Share Ltd.

Address before: Dunhua South Road, Taiwan Taipei 2 China Daan District No. 105 20 floor

Patentee before: FEIRUI Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071212

Termination date: 20190730

CF01 Termination of patent right due to non-payment of annual fee