CN1405973A - Method for directly controlling structure-change torque of inductive motor modulated by space vector - Google Patents
Method for directly controlling structure-change torque of inductive motor modulated by space vector Download PDFInfo
- Publication number
- CN1405973A CN1405973A CN02148650A CN02148650A CN1405973A CN 1405973 A CN1405973 A CN 1405973A CN 02148650 A CN02148650 A CN 02148650A CN 02148650 A CN02148650 A CN 02148650A CN 1405973 A CN1405973 A CN 1405973A
- Authority
- CN
- China
- Prior art keywords
- psi
- stator
- torque
- control
- flux linkage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013598 vector Substances 0.000 title claims abstract description 118
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000001939 inductive effect Effects 0.000 title 1
- 230000004907 flux Effects 0.000 claims description 117
- 230000006698 induction Effects 0.000 claims description 51
- 230000009471 action Effects 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 7
- 238000004088 simulation Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010187 selection method Methods 0.000 description 3
- 241000699655 Akodon torques Species 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
Description
技术领域technical field
空间矢量调制的感应电动机变结构转矩直接控制方法属于交流电机传动技术领域。The invention relates to a space vector modulation induction motor variable structure torque direct control method, which belongs to the technical field of AC motor transmission.
背景技术Background technique
感应电动机是交流传动中应用最广泛的电动机,但是由于其复杂的控制特性,感应电动机的高性能控制是交流传动技术的主要研究难题之一。Induction motor is the most widely used motor in AC drive, but due to its complex control characteristics, high-performance control of induction motor is one of the main research problems in AC drive technology.
在两项静止坐标系(α,β)下,感应电动机的动态方程可以如下表示式中s=[sα sβ]Tr=[rα rβ]T分别表示定子磁链和转子磁链,is=[isα isβ]T表示定子电流,Rs、Rr分别表示定子电阻和转子电阻,ωr为转子转速,us=[usα usβ]T为定子电压,
式中Ls为定子自感,Lr为转子自感,M为互感。不失一般性设感应电动机的极对数np=1,则转矩方程为 In the formula, L s is the self-inductance of the stator, L r is the self-inductance of the rotor, and M is the mutual inductance. Without loss of generality, if the number of pole pairs of the induction motor is n p = 1, then the torque equation is
感应电动机高性能控制的核心问题是转矩控制。The core problem of high performance control of induction motor is torque control.
20世纪70年代,德国工程师F.Blashke提出了感应电动机的转子磁场定向控制原理,即通常所说的矢量控制原理,使得交流调速技术发生了一次质的飞跃。它从理论上基本解决了感应电动机控制在静、动态特性上可以与直流电机相当这一问题。矢量控制技术模仿直流电机的控制,采用转子磁场定向的方法,实现了对感应电动机转速和转子磁链控制的解耦。矢量控制中选择定子电流和转子磁链为状态变量,则结合方程(2)感应电动机的转矩动态方程(3)改写为 In the 1970s, German engineer F.Blashke proposed the rotor field-oriented control principle of induction motors, commonly known as the vector control principle, which made a qualitative leap in AC speed regulation technology. It basically solves the problem that induction motor control can be equivalent to DC motor in terms of static and dynamic characteristics in theory. The vector control technology imitates the control of the DC motor, adopts the method of rotor field orientation, and realizes the decoupling of the induction motor speed and the rotor flux control. In the vector control, the stator current and the rotor flux linkage are selected as the state variables, and the torque dynamic equation (3) of the induction motor combined with the equation (2) is rewritten as
对于(4)式,在与转子磁场定向的同步旋转坐标系(M,T)上有rM=‖r‖,rT=0,则转矩动态方程为其中转子磁链幅值满足如下动态方程 For formula (4), in the synchronous rotating coordinate system (M, T) oriented to the rotor magnetic field, there is rM = ‖ r ‖, rT = 0, then the torque dynamic equation is The amplitude of the rotor flux linkage satisfies the following dynamic equation
当转子磁链的幅值保持恒定时,感应电动机转矩与定子电流的转矩分量isT成线性比例关系,此时感应电动机具有与直流电动机相同的转矩控制特性。但是转子磁链不易直接测量又很难准确观测,而且矢量控制的控制特性受电机参数的变化影响很大,加之在模拟直流电机控制过程中要进行旋转坐标变换等复杂的运算,使得矢量控制的实际控制效果很难达到理论分析的结果。When the amplitude of the rotor flux linkage remains constant, the torque of the induction motor is linearly proportional to the torque component i sT of the stator current. At this time, the induction motor has the same torque control characteristics as the DC motor. However, the rotor flux linkage is not easy to measure directly and it is difficult to observe accurately, and the control characteristics of vector control are greatly affected by the change of motor parameters. The actual control effect is difficult to achieve the results of theoretical analysis.
1985年德国学者M.Depenbrock首次提出了直接转矩控制[US-4678248,July7,1987],为感应电动机的高性能控制开辟了崭新方向。它在实现上很大程度上解决了矢量控制算法复杂、控制性能易受电机转子侧参数变化影响等缺点,一经提出就受到广泛关注,成为研究的热点。目前,ABB等国际大公司也正在致力开发基于直接转矩控制的高性能交流驱动产品。与矢量控制相比,直接转矩控制主要的特点是:1,控制较易观测的定子磁链并通过直接反馈控制转矩;2,不需要旋转坐标变换;3,通过滞环比较器和查空间电压矢量选择表的方式直接生成逆变器开关信号驱动电机。在直接转矩控制中,转矩的动态方程(3)表示为 In 1985, German scholar M.Depenbrock first proposed direct torque control [US-4678248, July7, 1987], which opened up a new direction for the high-performance control of induction motors. In terms of implementation, it largely solves the shortcomings of the vector control algorithm being complex and the control performance easily affected by the parameter changes on the motor rotor side. At present, major international companies such as ABB are also devoting themselves to the development of high-performance AC drive products based on direct torque control. Compared with vector control, the main features of direct torque control are: 1. Control the easily observed stator flux and control the torque through direct feedback; 2. No need for rotating coordinate transformation; The space voltage vector selection table is used to directly generate the switching signal of the inverter to drive the motor. In direct torque control, the torque dynamic equation (3) is expressed as
式中σ=1-M2/LsLr,θs与θr分别表示定子、转子磁链矢量在静止坐标系上的转角。当定子磁链和转子磁链的幅值保持恒定时,感应电动机的转矩与sin(θs-θr)成比例关系。感应电动机的直接转矩控制通过调整定子磁链矢量的幅值和转角来控制转矩。由方程(1)定子磁链的动态满足 在忽略定子电阻上的压降的假设下,在控制周期ΔT内对定子磁链动态方程积分 Where σ=1-M 2 /L s L r , θ s and θ r represent the rotation angles of the stator and rotor flux vectors on the stationary coordinate system, respectively. When the magnitudes of the stator flux and rotor flux remain constant, the torque of an induction motor is proportional to sin(θ s -θ r ). The direct torque control of the induction motor controls the torque by adjusting the magnitude and rotation angle of the stator flux vector. By equation (1) the dynamics of the stator flux linkage satisfies Under the assumption that the voltage drop across the stator resistance is neglected, the stator flux dynamic equation is integrated over the control period ΔT
与矢量控制不同,直接转矩控制在控制周期ΔT内,定子电压是由逆变器生成的6个(或者包括零矢量在内的8个)电压矢量之一,那么对于(8)式,在控制周期ΔT内定子电压保持恒定。由逆变器生成的空间电压矢量控制定子磁链动态的原理如图1所示。可见在us(tK)的作用下,定子磁链矢量的幅值和转角的变化分别为 Different from vector control, direct torque control is within the control period ΔT, and the stator voltage is one of the 6 (or 8 voltage vectors including zero vector) generated by the inverter. Then for (8), in The stator voltage remains constant within the control period ΔT. The principle of the space voltage vector generated by the inverter to control the dynamics of the stator flux linkage is shown in Figure 1. It can be seen that under the action of u s (t K ), the amplitude and rotation angle of the stator flux vector vary as
假设在控制周期ΔT内,当定子磁链发生变化时,转子磁链的幅值‖r‖和转角r都不发生变化,且规定逆时针方向为定子磁链角度变化的正方向,则可以根据定子磁链的位置相应的选择空间电压矢量来改变定子磁链的幅值和转矩。例如图1所示,假设在k时刻感应电动机定子磁链的转角-π/6<θs≤π/6,在控制周期ΔT内,选择V3为定电压矢量,则在V3的作用下,在k+1时刻满足‖s(k+1)‖<‖s(k)‖,T(k+1)>T(k)。即在V3作用下定子磁链的幅值减小,转矩增加。根据图1和(9)式可以生成控制定子磁链幅值和转矩的空间电压矢量选择表。表1为目前通常采用的空间电压矢量选择表。 Assuming that within the control period ΔT, when the stator flux linkage changes, the amplitude of the rotor flux linkage ‖ r ‖ and the rotation angle r do not change, and the counterclockwise direction is defined as the positive direction of the stator flux angle change, then The amplitude and torque of the stator flux linkage can be changed by correspondingly selecting the space voltage vector according to the position of the stator flux linkage. For example, as shown in Figure 1, assuming that the rotation angle of the stator flux linkage of the induction motor at time k - π/6<θ s ≤ π/6, in the control period ΔT, V 3 is selected as the constant voltage vector, then under the action of V 3 , satisfying ‖ s (k+1)‖<‖ s (k)‖ at time k+1, T(k+1)>T(k). That is, under the action of V 3 , the magnitude of the stator flux linkage decreases and the torque increases. According to Fig. 1 and formula (9), the space voltage vector selection table for controlling the stator flux amplitude and torque can be generated. Table 1 is the selection table of space voltage vectors commonly used at present.
表1 直接转矩控制的空间电压矢量选择表Table 1 Space voltage vector selection table for direct torque control
直接转矩控制在一个控制周期内依据磁链和转矩误差的正或负,通过查表的方式选择6个(或8个)定子电压矢量中的一个来控制磁链和转矩增加或减小的趋势。在此意义上直接转矩控制对磁链和转矩是一种“定性”的控制,从而造成了逆变器的开关周期不恒定,转矩和磁链控制抖动大等缺点。究其原因主要是对定子磁链幅值和转矩的控制缺乏严格的理论分析。虽然继直接转矩控制提出之后,针对其缺点发展了若干的空间电压矢量选择表的改进方法,但是限于直接转矩控制本身理论分析的缺乏,这些方法不能从根本上克服直接转矩控制的缺点。Direct torque control selects one of the 6 (or 8) stator voltage vectors to control the increase or decrease of flux linkage and torque according to the positive or negative of flux linkage and torque error in a control cycle. small trend. In this sense, direct torque control is a "qualitative" control of flux linkage and torque, which causes the shortcomings of the inverter's switching cycle is not constant, torque and flux linkage control jitter. The main reason is the lack of strict theoretical analysis on the control of stator flux amplitude and torque. Although following the introduction of direct torque control, several improved methods of space voltage vector selection table have been developed to address its shortcomings, but limited by the lack of theoretical analysis of direct torque control itself, these methods cannot fundamentally overcome the shortcomings of direct torque control .
矢量控制和直接转矩控制分别在理论和实践方面极大的促进了感应电动机高性能控制的发展,但因其各自存在的优缺点,使得二者不能被其中之一所取代。开发结构简单、鲁棒性强、而且具有良好的动静态性能的控制方法是感应电动机高性能控制理论和实践的难题,而这一难题至今仍然没有得到很好的解决。Vector control and direct torque control have greatly promoted the development of high-performance control of induction motors in theory and practice, but because of their respective advantages and disadvantages, the two cannot be replaced by one of them. Developing a control method with simple structure, strong robustness, and good dynamic and static performance is a difficult problem in the theory and practice of high-performance control of induction motors, and this problem has not been well resolved so far.
发明内容Contents of the invention
本发明提出了空间电压矢量调制的感应电动机变结构转矩直接控制方法。本方法控制容易观测的定子磁链,不需要磁场定向实现磁链和转矩控制的解耦,通过直接反馈定子磁链幅值和转矩,采用变结构磁链和转矩控制器控制定子磁链幅值和转矩收敛到参考值。本发明方法的控制系统原理框图如图2所示。磁链与转矩观测器计算定子磁链幅值和转矩的观测值,观测值与参考值之间的误差eψ和eTe分别通过变结构磁链控制器和变结构转矩控制器生成定子电压分量usd和usq,将usd、usq变换合成为空间电压矢量并采用空间矢量调制(Space VectorModulation,SVM)发生器产生电压逆变器的开关信号,从而驱动感应电动机。The invention proposes a direct control method of variable structure torque of an induction motor with space voltage vector modulation. This method controls the stator flux linkage which is easy to observe, and does not require field orientation to realize the decoupling of flux linkage and torque control. By directly feeding back the amplitude and torque of the stator flux linkage, the variable structure flux linkage and torque controller is used to control the stator flux linkage. Chain amplitude and torque converge to reference values. The principle block diagram of the control system of the method of the present invention is shown in FIG. 2 . The flux linkage and torque observer calculates the observed value of the stator flux amplitude and torque, and the errors e ψ and e Te between the observed value and the reference value are generated by the variable structure flux controller and the variable structure torque controller respectively The stator voltage components u sd and u sq are transformed and synthesized into space voltage vector by u sd and u sq and a space vector modulation (Space Vector Modulation, SVM) generator is used to generate the switching signal of the voltage inverter to drive the induction motor.
本发明的特征在于:它是一种根据定子磁链幅值和转矩各自误差的大小采用变结构磁链和转矩控制器计算出控制这些误差收敛的定子电压矢量,再以空间矢量调制(SVM)发生器的方式发出电压逆变器的开关信号,以控制感应电动机转矩的方法,具体而言,它依次含有以下步骤:The present invention is characterized in that: it adopts variable structure flux linkage and torque controller to calculate the stator voltage vector to control the convergence of these errors according to the magnitude of the stator flux linkage amplitude and the respective errors of the torque, and then modulates with space vector ( SVM) generator to send the switching signal of the voltage inverter to control the torque of the induction motor. Specifically, it contains the following steps in turn:
(1).设定定子磁链幅值参考值ψsREF和转矩参考值TeREF,输入计算机;(1). Set the stator flux linkage amplitude reference value ψ sREF and torque reference value T eREF , and input them into the computer;
(2).再把由控制系统调整及控制器参数整定程序得出的以下参数送入计算机:变结构磁链控制器参数:εψ>εΔψ,
(3).磁链和转矩观测器计算定子磁链幅值 和转矩的观测值 (3). Flux linkage and torque observer to calculate the stator flux linkage amplitude and torque observations
(3.1).计算机通过电压电流测量电路从交流供电的逆变电路中测得相电流iA,iB,iC及母线电压Vdc,逆变器在观测周期内的开关状态SA(t),SB(t),SC(t);(3.1). The computer measures the phase current i A , i B , i C and the bus voltage V dc from the inverter circuit powered by AC through the voltage and current measurement circuit, and the switching state SA(t) of the inverter in the observation period , SB(t), SC(t);
(3.2).由下式计算定子电流、定子电压在静止坐标系上的分量:
(3.3).由下式计算 (3.3). Calculated by the following formula
(3.4).由下式计算 (3.4). Calculated by the following formula
(3.5).由下式计算 (3.5). Calculated by the following formula
(4).变结构磁链和转矩控制器分别根据eψ、eTe计算定子电压us在定子磁链动态坐标系上的分量usd、usq:(4). The variable structure flux linkage and torque controllers respectively calculate the components u sd and u sq of the stator voltage u s on the dynamic coordinate system of the stator flux linkage according to e ψ and e Te :
首先判别是否t>tψ若:定子磁链幅值在t时刻已经进入稳态,t≥tψ,则:
(5).电压矢量合成及空间矢量调制(SVM)发生器根据usd、usq, 计算逆变器所需要的三相开关控制信号SA,SB,SC:(5). Voltage vector synthesis and space vector modulation (SVM) generator according to u sd , u sq , Calculate the three-phase switch control signals SA, SB, SC required by the inverter:
(5.1).由下式计算usα,usβ:
(5.2).由下式计算定子电压矢量的幅值Us和转角θus
θus=cos-1(usα/Us);θ us = cos -1 (u sα /U s );
(5.3).通过θus确定合成定子电压的两个相邻基本电压矢量:
(5.4).当前时刻,定子电压矢量在区间N内,采用由下式计算定子电压矢量相邻的逆变器基本电压矢量VN、VN+1(如果N=6取VN+1=V1)和零矢量V0、V7的作用时间:在设定的SVM周期Tp内,
(5.5).根据基本电压矢量和零矢量以及各自的作用时间确定逆变器三相开关控制信号SA,SB,SC:(5.5). Determine the three-phase switch control signals SA, SB, and SC of the inverter according to the basic voltage vector and zero vector and their respective action times:
逆变器产生的基本电压矢量和零矢量所对应的三相开关信号分别是V1(SA SB SC):V0(000),V1(100),V2(110),V3(010),V4(011),V5(001),V6(101)V7(111);在一个SVM周期Tp内定子电压矢量相邻的基本电压矢量VN、VN+1和零矢量V0、V7的作用顺序如下:The three-phase switching signals corresponding to the basic voltage vector and zero vector generated by the inverter are V 1 (SA SB SC): V0(000), V1(100), V2(110), V3(010), V4( 011), V5(001), V6(101)V7(111); in one SVM cycle T p , the basic voltage vectors V N , V N+1 and zero vectors V0 and V7 adjacent to the stator voltage vector act in the following order :
V0作用T0/2→VN作用TN/2→VN+1作用TN+1/2→V7作用T7→VN+1作用TN+1/2→VN作用TN/2→V0作用T0/2;V0 acts on T 0 /2→V N acts on T N /2→V N+1 acts on T N+1 /2→V7 acts on T 7 →V N+1 acts on T N+1 /2→V N acts on T N / 2→V0 acts on T 0 /2;
并根据基本电压矢量与逆变器三相开关信号SA,SB,SC之间的对应关系,得出逆变器的开关控制信号SA,SB,SC,从而驱动感应电动机,以控制感应电动机的转矩。所述的控制系统性能调整以及控制器参数整定程序依次含有如下步骤:And according to the corresponding relationship between the basic voltage vector and the three-phase switching signals SA, SB, SC of the inverter, the switching control signals SA, SB, SC of the inverter are obtained, so as to drive the induction motor to control the rotation of the induction motor moment. The described control system performance adjustment and controller parameter tuning procedures contain the following steps in sequence:
(1).根据下式和系统性能要求确定Kψ、εψ、KTe、εTe:
εψ≈2εΔψ,Kψ的初值设定为Kψ=1,ε ψ ≈2ε Δψ , the initial value of K ψ is set to K ψ = 1,
εTe≈10ψsREFTeREF,KTe的初值设定为KTe=1;ε Te ≈10ψ sREF T eREF , the initial value of K Te is set as K Te =1;
(2).根据感应电动机本身特性和系统性能要求设定ψsREF、TeREF;(2). Set ψ sREF and T eREF according to the characteristics of the induction motor itself and system performance requirements;
(3).变结构磁链控制器按照控制主程序用增加Kψ的方法使磁链收敛速度满足性能要求;(3). The variable structure flux linkage controller uses the method of increasing K ψ according to the control main program to make the flux linkage convergence speed meet the performance requirements;
(4).变结构转矩控制器在磁链幅值稳定后按照控制主程序用增加KTe的方法使得转矩收敛速度满足性能要求;(4). After the flux linkage amplitude is stabilized, the variable structure torque controller uses the method of increasing K Te according to the control main program to make the torque convergence speed meet the performance requirements;
(5).确定满足系统性能要求的Kψ,KTe;(5). Determine the K ψ and K Te that meet the system performance requirements;
(6).结束。(6). End.
实验证明它达到了预期的目的。Experiments prove that it achieves the intended purpose.
附图说明Description of drawings
图1.直接转矩控制定子磁链动态原理图。Fig. 1. Schematic diagram of direct torque control stator flux dynamics.
图2.空间矢量调制的感应电动机变结构转矩直接控制系统原理框图。Figure 2. Schematic block diagram of induction motor variable structure torque direct control system with space vector modulation.
图3.定子电压分量usd和usq合成空间电压矢量us的向量图。Fig. 3. Vector diagram of stator voltage components u sd and u sq synthesized space voltage vector u s .
图4.三相电压型逆变器。Figure 4. Three-phase voltage source inverter.
图5.生成定子空间电压矢量us的向量图。Fig. 5. Vector diagram for generation of stator space voltage vector u s .
图6.系统硬件电路结构框图。Figure 6. System hardware circuit structure block diagram.
图7.控制主程序流程图。Figure 7. Control main program flow chart.
图8.定子磁链幅值与转矩观测器程序流程图。Fig. 8. Flow chart of stator flux magnitude and torque observer program.
图9.变结构磁链与转矩控制器程序流程图。Figure 9. Program flow chart of variable structure flux linkage and torque controller.
图10.定子电压矢量合成及SVM发生器程序流程图。Fig. 10. Flow chart of stator voltage vector synthesis and SVM generator program.
图11.控制系统性能调整及控制器参数整定程序流程图。Figure 11. Flowchart of control system performance adjustment and controller parameter tuning procedure.
图12.转矩和定子磁链幅值响应曲线:Figure 12. Torque and stator flux amplitude response curves:
a.转矩响应曲线;b.定子磁链幅值响应曲线。a. Torque response curve; b. Stator flux amplitude response curve.
图13.感应电动机定子电流响应曲线:Figure 13. Induction motor stator current response curve:
a.isα响应曲线;b.isβ响应曲线。ai sα response curve; bi sβ response curve.
图14.感应电动机转速响应曲线。Figure 14. Induction motor speed response curve.
图15.逆变器开关频率为5KHz,0.5s突加4Nm负载转矩时感应电动机转矩和定子磁链幅值响应曲线:Figure 15. The inverter switching frequency is 5KHz, and the induction motor torque and stator flux amplitude response curve when the load torque of 4Nm is suddenly added for 0.5s:
a.转矩响应曲线;b.定子磁链幅值响应曲线。a. Torque response curve; b. Stator flux amplitude response curve.
图16.逆变器开关频率为5KHz,0.5s突加4Nm负载转矩时感应电动机定子电流响应曲线:Figure 16. The induction motor stator current response curve when the switching frequency of the inverter is 5KHz and the load torque of 4Nm is suddenly added for 0.5s:
a.isα响应曲线;b.isβ响应曲线。ai sα response curve; bi sβ response curve.
图17.逆变器开关频率为5KHz,0.5s突加4Nm负载转矩时感应电动机转速响应曲线。Figure 17. The speed response curve of the induction motor when the switching frequency of the inverter is 5KHz and the load torque of 4Nm is suddenly added for 0.5s.
具体实施方式:Detailed ways:
磁链与转矩控制原理Flux linkage and torque control principle
首先,本发明针对感应电动机的非线性耦合方程,推导出定子磁链幅值和转矩与定子电压之间的动态方程,并在此基础之上设计了变结构磁链和转矩控制器。在两项静止坐标系下,感应电动机的定子磁链和转子磁链动态方程为定义ψs=‖s‖、ψr=‖r‖分别表示定子、转子磁链的幅值, 表示定子磁链矢量和转子磁链矢量之间夹角,Us,θus分别表示定子电压矢量的幅值和转角。则有sα=ψscosθs,sβ=ψssinθs;rα=ψrcosθr,rβ=ψrsinθr;usα=Uscosθus,usβ=Ussinθus。通过如上的变换,可以得到定子磁链幅值与转角的动态方程为式中usd=Uscos(θus-θs),usq=Ussin(θus-θs)。转矩的动态方程为进而得出定子磁链幅值和转矩与定子电压之间的动态方程为 Firstly, aiming at the nonlinear coupling equation of the induction motor, the present invention deduces the dynamic equation between the amplitude and torque of the stator flux linkage and the stator voltage, and designs a variable structure flux linkage and torque controller on this basis. In the two stationary coordinate system, the dynamic equations of the stator flux and rotor flux of the induction motor are Define ψ s =‖ s ‖, ψ r =‖ r ‖ to denote the amplitude of stator and rotor flux linkage respectively, Indicates the angle between the stator flux vector and the rotor flux vector, U s , θ us represent the magnitude and rotation angle of the stator voltage vector, respectively. Then sα = ψ s cosθ s , sβ = ψ s sinθ s ; rα = ψ r cosθ r , rβ = ψ r sinθ r ; u sα = U s cosθ us , u sβ = U s sinθ us . Through the above transformation, the dynamic equation of the stator flux amplitude and rotation angle can be obtained as In the formula, u sd = U s cos(θ us -θ s ), u sq = U s sin(θ us -θ s ). The dynamic equation of torque is Then the dynamic equation between the stator flux amplitude and torque and the stator voltage is obtained as
由方程(13),通过定子电压usd和usq分量可以控制定子磁链幅值和转矩。系统中的变结构磁链与转矩控制器的控制原理如下。By equation (13), the stator flux amplitude and torque can be controlled by the stator voltage u sd and u sq components. The control principle of the variable structure flux linkage and torque controller in the system is as follows.
变结构磁链与转矩控制器Variable Structure Flux Linkage and Torque Controller
本发明方法基于定子磁链的动态和转矩动态方程(13),设计变结构磁链和转矩控制器,分别通过调整定子电压的usd和usq分量来控制感应电动机的定子磁链幅值和转矩收敛到参考值ψsREF和TeREF。The method of the present invention is based on the dynamic and torque dynamic equation (13) of the stator flux linkage, designs the variable structure flux linkage and the torque controller, and controls the stator flux linkage amplitude of the induction motor by adjusting the u sd and u sq components of the stator voltage respectively The values and torques converge to the reference values ψ sREF and T eREF .
变结构磁链控制器通过改变定子电压的usd分量来控制定子磁链的幅值,控制律为
Kψ>0
εψ>εΔψ ε ψ > ε Δψ
感应电动机的定子磁链幅值在如上的变结构磁链控制器作用下可以在有限时间内收敛到参考值ψsREF,即定子磁链幅值满足The stator flux amplitude of the induction motor can converge to the reference value ψ sREF within a limited time under the action of the above variable structure flux controller, that is, the stator flux amplitude satisfies
ψs(t)=ψsREF,
其中t0 ψ为磁链控制的初始时刻。附录A中给出了变结构磁链控制器的稳定性证明和参数的选择方法。Where t 0 ψ is the initial moment of flux linkage control. The stability proof and parameter selection method of the variable structure flux controller are given in Appendix A.
感应电动机转矩控制的初始时刻
感应电动机的转矩在如上的变结构转矩控制器的作用下收敛到参考值TeREF。附录B给出了变结构转矩控制器的稳定性证明和参数的选择方法。The torque of the induction motor converges to the reference value T eREF under the action of the above variable structure torque controller. Appendix B gives the stability proof and parameter selection method of the variable structure torque controller.
电压矢量变换合成及SVM发生器Voltage Vector Transform Synthesis and SVM Generator
变结构磁链和转矩控制器分别输出定子电压的usd和usq分量,经变换合成空间电压矢量,从而可以采用SVM发生器生成逆变器的开关信号。The variable structure flux linkage and torque controllers respectively output the u sd and u sq components of the stator voltage, which are converted into space voltage vectors, so that the SVM generator can be used to generate the switching signals of the inverter.
定子电压矢量为:
由定子电压分量usd和usq合成空间电压矢量原理如图3所示。The principle of synthesizing the space voltage vector by the stator voltage components u sd and u sq is shown in Fig. 3 .
图4为三相电压型逆变器示意图,其中Vdc为直流母线电压,电力电子功率器件被视为理想开关。用“1”表示上臂导通,下臂关断;用“0”表示下臂导通,上臂关断。三相的开关控制信号分别为SA,SB,SC,相应的取值分别为1或0对应。用Vi(SA SB SC)表示逆变器生成的空间电压矢量,那么由SA,SB,SC取值组合可以得到逆变器输出的8个基本电压矢量V0~V7:V0(000),V1(100),V2(110),V3(010),V4(011),V5(001),V6(101),V7(111)。其中V0,V7的幅值为零,称为零矢量。采用SVM方式生成空间电压矢量的原理如图5所示,在任意的给定时刻,定子电压矢量都会落在由基本电压矢量V1~V6划分的六个区间之一。表2显示了根据θus选择相邻基本矢量。这样在设定的SVM周期TP内,通过两个相邻的基本电压矢量和零矢量的合成就可以表示出此定子电压矢量。定子电压矢量在区间N内,采用由下式计算定子电压矢量相邻的两个逆变器基本电压矢量VN、VN+1(如果N=6取VN+1=V1)和零矢量V0、V7的作用时间:
表2 根据定子电压矢量角度确定基本电压矢量Table 2 Determine the basic voltage vector according to the stator voltage vector angle
逆变器产生的基本电压矢量和零矢量所对应的三相开关信号分别是Vi(SA SB SC):V0(000),V1(100),V2(110),V3(010),V4(011),V5(001),V6(101)V7(111):在一个SVM周期TP内定子电压矢量相邻的基本电压矢量VN、VN+1和零矢量V0、V7的作用顺序如下:V0→VN→VN+1→V7→VN+1→VN→V0,作用时间分别为V0作用T0/2、VN作用TN/2、VN+1作用TN+1/2、V7作用T7、VN+1作用TN+1/2、VN作用TN/2、V0作用T0/2。根据基本电压矢量与逆变器三相开关信号SA,SB,SC之间的对应关系,得出逆变器的开关控制信号SA,SB,SC,从而驱动感应电动机,以控制感应电动机的转矩。The three-phase switching signals corresponding to the basic voltage vector and zero vector generated by the inverter are V i (SA SB SC): V0(000), V1(100), V2(110), V3(010), V4( 011), V5(001), V6(101)V7(111): In one SVM cycle T P , the basic voltage vectors V N , V N+1 and zero vectors V0 and V7 adjacent to the stator voltage vector act in the following order : V0→V N →V N+1 →V7→V N+1 →V N →V0, the action time is respectively V0 acting on T 0 /2, V N acting on T N /2, V N+1 acting on T N+ 1 /2, V7 acts on T 7 , V N+1 acts on T N+1 /2, V N acts on T N /2, and V0 acts on T 0 /2. According to the corresponding relationship between the basic voltage vector and the three-phase switching signals SA, SB, SC of the inverter, the switch control signals SA, SB, SC of the inverter are obtained to drive the induction motor to control the torque of the induction motor .
磁链与转矩观测器Flux and Torque Observer
感应电动机的定子磁链与转矩不容易直接测量,通过可直接测量的电机的定子电压和定子电流,利用磁链与转矩观测器得到磁链和转矩的观测值。目前已经有多种定子磁链和转矩的观测器设计方法,例如可以通过积分(1)式中定子磁链动态方程的方法,定子磁链的观测值为: 通过测量相电流iA,iB,iC,母线电压以及逆变器的开关信号SA,SB,SC可以得到isα,isβ’
计算公式如下
系统硬件结构为图6所示,系统包括:整流电路,滤波电路,逆变电路,隔离电路,电压、电流检测电路,微处理器(CPU)和相应的接口电路。对于本系统也可以增加转速测量装置和相应的转速控制算法,从而构成感应电动机转速控制系统。The hardware structure of the system is shown in Figure 6. The system includes: rectification circuit, filter circuit, inverter circuit, isolation circuit, voltage and current detection circuit, microprocessor (CPU) and corresponding interface circuit. For this system, the speed measurement device and the corresponding speed control algorithm can also be added to form an induction motor speed control system.
控制系统的控制主流程图为图7所示,由观测器单元,变结构控制器单元和空间电压矢量合成及SVM发生器单元三个主要部分构成,程序流程图分别为图8-图10所示。图11是系统性能调整以及控制器参数整定程序流程图。首先根据系统性能要求依据控制器参数选择方法确定定子磁链幅值和转矩的参考值ψsREF和TeREF,变结构控制器参数Kψ,εψ,KTe,εTe以及tψ,确定的参数送入控制主程序。根据系统性能调整Kψ,KTe,最后确定满足系统要求的控制器参数。The main control flow chart of the control system is shown in Figure 7. It consists of three main parts: the observer unit, the variable structure controller unit, the space voltage vector synthesis and the SVM generator unit, and the program flow charts are shown in Figures 8-10 respectively. Show. Fig. 11 is a flow chart of system performance adjustment and controller parameter setting procedure. First, according to the system performance requirements and the controller parameter selection method, the reference values ψ sREF and T eREF of the stator flux amplitude and torque are determined, and the variable structure controller parameters K ψ , ε ψ , K Te , ε Te and t ψ are determined. The parameters are sent to the control main program. Adjust K ψ , K Te according to the system performance, and finally determine the controller parameters that meet the system requirements.
为验证本发明方法,采用MATLAB5.3-SIMULINK3进行仿真验证。仿真中感应电动机的参数选取如下,定子和转子自感Ls=Lr=0.47H;互感M=0.44H;定子电阻Rs=8.0Ω;转子电阻Rr=3.6Ω;感应电动机转动惯量JM=0.06Kgm2;极对数np=1。经控制器参数整定后,转矩和磁链变结构控制器的参数分别取值为Kψ=10Ω/H;KTe=10Ω/H;eψ=160V;eTe=40V。仿真分两个部分,发明方法性能的理论验证,和实际系统的模拟验证。在理论验证部分,忽略SVM发生器对系统性能的影响,ψsREF=0.9Wb,设定tψ=0.1s,TL=0Nm,转矩参考值为: In order to verify the method of the present invention, MATLAB5.3-SIMULINK3 is used for simulation verification. The parameters of the induction motor in the simulation are selected as follows: stator and rotor self-inductance L s = L r = 0.47H; mutual inductance M = 0.44H; stator resistance R s = 8.0Ω; rotor resistance R r = 3.6Ω; induction motor moment of inertia J M =0.06Kgm 2 ; number of pole pairs n p =1. After the controller parameters are adjusted, the parameters of the torque and flux linkage variable structure controllers are K ψ =10Ω/H; K Te =10Ω/H; e ψ =160V; e Te =40V. The simulation is divided into two parts, the theoretical verification of the performance of the invented method, and the simulation verification of the actual system. In the theoretical verification part, ignoring the influence of the SVM generator on the system performance, ψ sREF = 0.9Wb, set t ψ = 0.1s, T L = 0Nm, and the torque reference value is:
图12为转矩和定子磁链幅值响应曲线,图13为定子电流响应曲线,图14为转速响应曲线。在实际系统的模拟仿真中,逆变器开关频率为5KHz,直流母线电压Vdc=380V,ψsREF=0.9Wb,tψ=0.05s,TeREF=4Nm且在0.5s突加4Nm负载转矩。图15-图17分别为转矩、定子磁链幅值、定子电流以及转速的响应曲线。Figure 12 is the torque and stator flux amplitude response curve, Figure 13 is the stator current response curve, and Figure 14 is the speed response curve. In the simulation of the actual system, the switching frequency of the inverter is 5KHz, the DC bus voltage V dc = 380V, ψ sREF = 0.9Wb, t ψ = 0.05s, T eREF = 4Nm and a sudden load torque of 4Nm is added at 0.5s . Figures 15-17 are the response curves of torque, stator flux amplitude, stator current and rotational speed respectively.
本发明方法同矢量控制相比运算量小,实现简单,且对感应电机的参数变化具有鲁棒性;同直接转矩控制相比,本发明方法依据磁链和转矩误差的大小计算出控制这些误差收敛的定子电压矢量,并采用SVM的方式发出逆变器的开关信号,既实现了逆变器开关周期的恒定,又克服了直接转矩控制中存在的磁链和转矩控制的抖动问题。Compared with the vector control, the method of the present invention has a small amount of calculation, is simple to implement, and is robust to the parameter change of the induction motor; compared with the direct torque control, the method of the present invention calculates the control according to the magnitude of the flux linkage and torque error The stator voltage vector of these errors converges, and the switching signal of the inverter is sent out in the form of SVM, which not only realizes the constant switching cycle of the inverter, but also overcomes the jitter of flux linkage and torque control in direct torque control question.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021486506A CN1194464C (en) | 2002-11-15 | 2002-11-15 | Direct Control Method of Variable Structure Torque of Induction Motor Based on Space Vector Modulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021486506A CN1194464C (en) | 2002-11-15 | 2002-11-15 | Direct Control Method of Variable Structure Torque of Induction Motor Based on Space Vector Modulation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1405973A true CN1405973A (en) | 2003-03-26 |
CN1194464C CN1194464C (en) | 2005-03-23 |
Family
ID=4751524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021486506A Expired - Fee Related CN1194464C (en) | 2002-11-15 | 2002-11-15 | Direct Control Method of Variable Structure Torque of Induction Motor Based on Space Vector Modulation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1194464C (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1293698C (en) * | 2004-11-26 | 2007-01-03 | 南京航空航天大学 | Direct moment controlling system without position sensor for brushless D.C. motor by fundamental wave |
WO2008064545A1 (en) * | 2006-11-28 | 2008-06-05 | Zhuzh Csr Times Electric Co., Ltd. | Control method of a linear induction motor |
CN100440720C (en) * | 2006-12-12 | 2008-12-03 | 浙江大学 | Hybrid speed regulation method for permanent magnet synchronous motor |
CN100563092C (en) * | 2004-12-29 | 2009-11-25 | 旺玖科技股份有限公司 | Controller, control method thereof and motor driver with controller |
CN101174811B (en) * | 2007-10-19 | 2011-05-11 | 奇瑞汽车股份有限公司 | Electric motor control method and device adopting space vector pulse width modulation |
CN102201780A (en) * | 2010-03-24 | 2011-09-28 | 发那科株式会社 | Motor driving apparatus easily analyzable for cause of fault |
CN103069710A (en) * | 2010-08-12 | 2013-04-24 | Caf电力与自动化公司 | Method for adjusting the electromagnetic torque of electric traction motors of railway vehicles |
CN103208817A (en) * | 2013-04-11 | 2013-07-17 | 浙江大学 | Second-order slip form-based method for controlling doubly-fed wind generator (DFIG) |
CN103973192A (en) * | 2014-04-25 | 2014-08-06 | 中国矿业大学 | Method for optimizing DTC system of six-phase asynchronous motor |
CN104467497A (en) * | 2014-12-18 | 2015-03-25 | 安徽大学 | Method for modulating multi-level space vector |
CN105890904A (en) * | 2014-12-12 | 2016-08-24 | 广西大学 | A load conversion control method for a servo motor test platform |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102364871B (en) * | 2011-10-24 | 2013-06-05 | 洛阳理工学院 | Method for directly controlling torque of induction motor and control device |
CN110086398B (en) * | 2019-05-10 | 2021-03-30 | 华南理工大学 | A DIRECT TORQUE CONTROL METHOD BASED ON DUTY CYCLE CONTROL |
-
2002
- 2002-11-15 CN CNB021486506A patent/CN1194464C/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1293698C (en) * | 2004-11-26 | 2007-01-03 | 南京航空航天大学 | Direct moment controlling system without position sensor for brushless D.C. motor by fundamental wave |
CN100563092C (en) * | 2004-12-29 | 2009-11-25 | 旺玖科技股份有限公司 | Controller, control method thereof and motor driver with controller |
WO2008064545A1 (en) * | 2006-11-28 | 2008-06-05 | Zhuzh Csr Times Electric Co., Ltd. | Control method of a linear induction motor |
CN100440720C (en) * | 2006-12-12 | 2008-12-03 | 浙江大学 | Hybrid speed regulation method for permanent magnet synchronous motor |
CN101174811B (en) * | 2007-10-19 | 2011-05-11 | 奇瑞汽车股份有限公司 | Electric motor control method and device adopting space vector pulse width modulation |
CN102201780B (en) * | 2010-03-24 | 2014-04-02 | 发那科株式会社 | Motor driving apparatus easily analyzable for cause of fault |
CN102201780A (en) * | 2010-03-24 | 2011-09-28 | 发那科株式会社 | Motor driving apparatus easily analyzable for cause of fault |
CN103069710A (en) * | 2010-08-12 | 2013-04-24 | Caf电力与自动化公司 | Method for adjusting the electromagnetic torque of electric traction motors of railway vehicles |
CN103208817A (en) * | 2013-04-11 | 2013-07-17 | 浙江大学 | Second-order slip form-based method for controlling doubly-fed wind generator (DFIG) |
CN103973192A (en) * | 2014-04-25 | 2014-08-06 | 中国矿业大学 | Method for optimizing DTC system of six-phase asynchronous motor |
CN103973192B (en) * | 2014-04-25 | 2016-08-17 | 中国矿业大学 | A kind of optimization method of six-phase asynchronous motor DTC system |
CN105890904A (en) * | 2014-12-12 | 2016-08-24 | 广西大学 | A load conversion control method for a servo motor test platform |
CN105890904B (en) * | 2014-12-12 | 2018-04-03 | 广西大学 | A kind of servomotor testing platform load conversion control method |
CN104467497A (en) * | 2014-12-18 | 2015-03-25 | 安徽大学 | Method for modulating multi-level space vector |
CN104467497B (en) * | 2014-12-18 | 2017-02-08 | 安徽大学 | Method for modulating multi-level space vector |
Also Published As
Publication number | Publication date |
---|---|
CN1194464C (en) | 2005-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1405973A (en) | Method for directly controlling structure-change torque of inductive motor modulated by space vector | |
CN101355337B (en) | Drive control method of permanent magnet synchronous motor based on magnetic field quadrature control | |
CN102882455B (en) | Excitation control method and device used in starting process of aeronautical tertiary brushless AC synchronous motor | |
CN103731084B (en) | The low inverter power consumption direct torque control of permanent-magnet synchronous motor and device | |
CN103187919B (en) | A kind of system and method for permagnetic synchronous motor weak-magnetic speed-regulating | |
CN102780443B (en) | Aerial three-level electric excitation motor starting control method and aerial three-level electric excitation motor starting control device | |
CN107943121B (en) | Permanent magnet synchronous motor simulator considering nonlinear characteristics and control method thereof | |
CN103401503B (en) | A kind of method and device in harmonic wave plane on-line identification double three-phase machine parameter | |
CN103269191B (en) | Method for controlling direct torsion/ flux linkage of permanent magnet synchronous motor | |
CN1794537A (en) | Electric network power oscillation inhibitor based on photovoltaic battery | |
CN101039093A (en) | Vektorsteuerungsvorrichtung fur dauermagnetmotor | |
JP2004048868A5 (en) | ||
CN1319947A (en) | Vector controller without speed sensor | |
JP2014507113A (en) | Method and apparatus for characterizing an embedded permanent magnet type machine | |
CN100345370C (en) | Methods related to sensorless induction motors | |
CN107070335A (en) | Double PWM permanent magnetism power-driven system torque feed forward control methods and its control device | |
CN110929448B (en) | A simulation analysis method for no-load current consistency of permanent magnet synchronous motor | |
CN111740664A (en) | Method for realizing salient pole permanent magnet synchronous motor field weakening control based on Id (Id-0) | |
CN102868352A (en) | Induction motor vector control system with rotor resistance robustness and induction motor vector control system method | |
CN106849809A (en) | A kind of SVM DTC motor control algorithms based on magnetic linkage error vector method | |
CN103944471A (en) | Direct torque control method for improving torque and flux linkage performance of matrix converter | |
CN102364871A (en) | Method and control device for direct torque control of induction motor | |
Vasudevan et al. | New direct torque control scheme of induction motor for electric vehicles | |
CN1842959A (en) | Vector controller of induction motor | |
CN106160613B (en) | A kind of design method of discrete domain current regulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |